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FUNCTIONS WITH GIVEN MOMENTS AND WEIGHT
FUNCTIONS FOR ORTHOGONAL POLYNOMIALS

ANTONIO J. DURAN

ABSTRACT. We give a constructive technique to find
smooth functions with given moments. We apply this tech-
nique to find weight functions for classical polynomials. In
particular, we give some weight functions for Bessel polyno-
mials.

Introduction. Given any sequence of complex numbers (ay,),, called
moments, satisfying

A = det [aiy;]ij-0 # 0,

there correspond the set of Chebychev polynomials defined by po(z) = 1
and

aO .. an
1 . . .
pn(z) = A : ‘ ‘ , n > 1.
n—=11Qp_1 *** Q2n-1
l " e mn

They are mutually orthogonal with respect to any linear functional w
defined on polynomials generating the moments, that is,

(w,z™) = an, n > 0.

Such a functional is called a weight for the polynomials (p,,(z)).

A known result by Boas and Polya [2, 17] guarantees that for every
sequence (ay), there is a function of bounded variation such that

(0.1) /Ooot” d#t) =an, n>0.
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88 A.J. DURAN

More recently, [4], the author proved that it is possible to find a very
regular function f (f belonging to the Schwartz space S and vanishing
for ¢ < 0) such that (0.1) holds.

That is, every set of Chebychev polynomials has a weight function.
But how are these weight functions found?

Recently there have been many attempts to interpret the formal
weight w in some generalized sense. R.D. Morton and A.M. Krall [16]
have introduced the formal functional Taylor series (§ series in short)

of w:
= (~1 "An (n
n=0 :

Assuming suitable restrictions on the growth of a,, these series have
been used to obtain distributional weight for Chebychev polynomials.
S.S. Kim and K.H. Kwon [13] have interpreted the ¢ series in the
hyperfunctional sense.

However, an old open problem remained unsolved: to find a weight
function for the Bessel polynomials.

This problem appeared the first time in the paper by H.L. Krall and
O. Frink [14]. More recently, the same problem can be found in [15,
16] and elsewhere. The problem is to find a function f which satisfies:

/t”f(t)dt:ﬂ foralln >0
R (n+1)! -

It has been shown [16], that the ¢ series

(0.2) @) =-3 2 s
0.2 w(x) = — — "
— nl(n+1)!

serves as a distributional weight for the Bessel polynomials. But a
function f which generates the Bessel moments was unknown.

In this paper we give a constructive technique to find a function with
given moments. Moreover, we will construct these functions in the
Schwartz spaces S or ST (S* is the Schwartz space on the interval
(0, +00)).

In Section 1, we give the technique using a certain class of continuous
linear maps from the space S(I) (S(I) is the Schwartz space on the
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interval I) into itself; for example, the Fourier transform and the
Hankel transform belong to this class. Any operator in this class would
satisfy that its transpose operator transform the functions ¢" into the
derivatives of the Dirac’s delta (up to known constants). Hence, the
problem of finding a function with given moments is equivalent to the
well-known Borel Theorem of finding a function whose derivatives at
the origin are given.

In Section 2, we use the above technique to find weight functions
for the classical orthogonal polynomials. Thus, we find the following
weight functions for the Bessel polynomials:

_q e
O / ((2i)~V/2., (VBiz)-

e

— 00

/ (X1-1,0/(uw) = X(0,1) (U))e_l/uz—l/(l—uz) du)e—izt da

-1

f2(8) = _% OOO ((i 2n+1(n!§:(n+ 1)!)'

n=0

' / (X-1,01(w) —X<o,1](u))e”"21/<1“2>du>J0(\/E) dz

-1

(c= f?l(X[,Lo} (u) = X(0,1] (u))e=1/%*=1/(1=v*) ) which belong to the
space S and ST, respectively, and satisfy

g GO [T
Jorawe=Gy ), rewe= Gl nzo

Finally, in Section 3 we prove that the ¢ series (0.2) is not a tempered
distribution with support contained in [0,+o00). This is a partial
negative answer to the question in [15], whether there exists a function
of bounded variation f such that w = df (z)/dz (also see [16, p. 624]).

1. Functions with given moments. First we recall the definition
of the Schwartz spaces S(I),

S(I)={f eC®() : |fl|1.hm = sup |t* f™(t)| < oo for all k,n € N}.
tel



90 A.J. DURAN

Here, I =R or I = (0,400). We put S = S(R) and ST = S((0, +00)).
It is easy to prove that a function f belongs to ST if and only if f is
the restriction to (0,+00) of a function which belongs to the space S.

We will endow these spaces with the Frechet topology generated by
the semi-norms (|| f]|kn)kn>0. Their dual spaces are the space of
tempered distribution S’ and the space of tempered distributions with
support contained in [0, +00) (S™)’, respectively.

Now, we give a construction of a function in the space S(I) with given
moments:

Let (fI), be a sequence in S(I) such that

(1.1) /t"’f,{(t) dt =0kn,  k,n>0
I

where dj, ,, is the Kronecker delta.

Given a sequence of complex numbers (a, ), the function

12 =3 szt ()

n=0

formally satisfies

(1.3) /tkf(t) dt=ap, k>0

I

for all sequences (), of positive numbers.

The formula (1.2) was suggested to the author by Jaak Peetre, and
it has been used in [7] to extend some results on a Stieltjes moment
problem with complex exponents for Banach space valued functions.

So, first we will give a sequence (f!), satisfying (1.1).

We denote by 77 any continuous linear map from S(I) into itself
which satisfies the following conditions:

Condition C.1. For all h € S(I) and A > 0,

Ty (h(t)) <X> = Ty (Ab(A)) (x).
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Condition C.2. Its transpose mapping 7% defined by

Tk :S'(I) — S'(I)
(T1(u), 6) = (u, T1(¢))

satisfies that there exists a complex sequence (dZ),, such that T¢(t") =
dLs™ and dl # 0 for all n > 0.

In order to construct the sequence (f!),, we consider a function g
which satisfies

g€ C*(R), supp(g) is a compact set, 0 € int (supp g),

(1.4)
g(0)=1 and ¢™(0)=0 forn > 1.

Remark 1.1. A function satisfying (1.4) is the following one:

g(a:) = —/ (X[—l,o] (t) _ X(O,l] (t))671/t271/(1,t2) gt

cJ1

where ¢ = ffl e~/ -1/(=t%) gy

We define the functions fI by fI(t) = CLITi(t"g(t)) where the
constants C! are defined by

(="
(1.5) cl = ol

and g is a function satisfying (1.4).
Since t"g(t) € S(I), it follows that fI € S(I), and we get:
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We simplify the expression for the function f. From Condition C.1,
formally the function (1.2), whose moments are (a,), can be written

=2 An+1f’( )
—ZWI Tr (X e g () ()

=T < > anC,Ilac”g(/\nx)> (t).

n=0

Now we prove that for a suitable choice of the sequence ()., the
function f is in S(I) and (1.3) holds.

Indeed, taking A =n+>" _ |a,,CLm!|, we get (see [3, p. 50]) that
the function

(1.6) h(z) = Z anClz"g(\ z)

is a C* function with compact support and which satisfies h(™)(0) =
anCknl. So h € S(I) and, hence, f(t) = T7(h)(t) € S(I). Moreover,
we get

/1 (1) dt = (t*, (1))

= (t*, Tr(h)) = (T1(t"), h(x))
= (46", h(z)) =ax k>0

(1.7)

Remark 1.2. Notice that the keys in the above construction are the
formula (1.2) and Conditions C.1, C.2. From Conditions C.1 and C.2,
it follows that if a function f is regular enough, its moments are the
derivatives of the function Ty f at the origin (modified by some known
constants). So, to give a function with given moments is equivalent to
giving a function whose derivatives at the origin are given, that is the
well-known Borel Theorem. From here, the formula (1.2) which gives
a function with given moments is equivalent to the formula given by
Garding ([3, p. 50]) to prove the Borel Theorem.
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Now, we give some operators 77 which satisfy Conditions C.1, C.2.

If I = R, we consider the Fourier transform defined by

TR : S— S
(Tnf)(@) = (FP)() = [ fOe = at
R
If I = (0, +0o0), we consider the Hankel transform defined by
T(0,+oo) : St 5 87
(T &) = (Ha)(o) = 5 [ 501l

(Jo is the Bessel function of first kind). In both cases Ty is an
isomorphism from S(I) onto itself (In the case I = R, this result is
well known. For the case I = (0,+00), see [5]). Its transpose T} is also
an isomorphism from S’(I) onto itself, which satisfies the following
formulas:

IfI =R,
(1.8) (TE)*(v) =27a  forallue S’
(4 is the distribution defined by (1, ¢) = (u, p(—z)))
(1.9) TE(6™) = "™
(1.10) Th(t") = 2min6™)

and if I = (0,400) (see [6, Lemma 3])

(1.11) (T 100))” = 1d.
(Here, Id denotes the identity map)

. 1 1 2n+1 .
(1.12) Ty ooy (6) = ﬁ<§> z".

A change of variables gives Condition C.1 for the Fourier and Hankel
transforms. In these cases, the constant C! defined in (1.5) are
CI =in/(2rn!)if I = R and

N G Y P
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Remark 1.3. When I = (0,400), we can extend the above technique
as follows: Let @ > —1, and let T(% +o0) be the operator defined by

T oo (@)= 5 [ 1000001, (Ve at

(Jq is the Bessel function of first kind) where it is an isomorphism from
ST onto itself and satisfies (T(O(‘]7_|F(>o))2 = Id (see [5]). Its transpose

1s also an isomorphism from onto itself. e followin
T(%+Oo)t' | i hism f Sty itself. The following
formula can be found in [6, Lemma 3]:

(T(o 400)) (") = T + m 4 1)20F 2041500,

So, taking

I,a __ (_l)n o - I«
O™ = 20+t + n + 1)n! and Ay =nt Z [ Ca

)
m=0

we get that the function
5O =T S anChrena3z)) 0
n=0

satisfies that [ t"t*f(t) dt = a, for n > 0.

In this way, the following theorem has been proved:

Theorem 1. Let (an), be a sequence of complex numbers and
a > —1. Then the functions:

+o00 ©
(1.13) f (t) = / (Z anC}}x"‘q()\Sw)> e~ it dop
- n=0

(1.14)
1

h(t) =5 /Om (Z an0£°’+°°>’“w"g(xzw>> (tz) /2" I (Vat) de
n=0



ORTHOGONAL POLYNOMIALS 95

satisfy
+oo +o00
/ t" f1 (t) dt = ay,, / t”tan(t) dt = a, n>0,
oo 0
where

CR = L 0 F+00),a =
"o 2mnl’ " 202041 (a0 + n + 1)n!’

M=n+Y"_lanCLm!|, and g is a function satisfying (1.4).

2. Weight functions for orthogonal polynomials. The second
part of this paper is devoted to showing some applications of Theorem
1. We study some cases in which the expressions (1.13) and (1.14) can
be simplified. They are used to compute weight functions for classical
polynomials.

Case 2.I. We assume that the function ¢(z) =Y 7 a,CLz™ belongs
to the space S(I).

In this case, we can put ¢ = 1 in the formulas (1.13) and (1.14).
Indeed, since the function ¢ € S(I), if we change the function h (see
(1.6)) to the function ¢, (1.7) remains valid.

Example 2.1.1. Hermite polynomials. The moments for the Hermite
polynomials are as,, = v/7(2n)!/4"n!, azp11 =0forn =0,1,2,....

Taking I = R, we obtain that the function

LS yen) 1 e,
¢(z) = 2\/@;J ) T T oE /

belongs to S, and so a weight function for the Hermite polynomials is

2

ft) = 1 /+oo e " eIt gy = ¢t
PAVZ N '

Example 2.1.2. Laguerre and generalized Laguerre polynomials.
The moments for the generalized Laguerre polynomials are a, =
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I'n+a+1)/T(a+1) for n > 0 and a > —1. In 2.II1.2, we shall
give weight functions also when o < —1, a # —1,-2,...).

Taking I = (0, +00), we obtain that the function

_ - (71)nr(n+a+1) n __ 1 —z/4
##) = 2 3o m T (n + a4 D@+ Dul® ~ 27T 1 1)°

n=0

belongs to ST, and so a weight function for the generalized Laguerre
polynomials is (see [11, p. 185 (30)])

1 Hoo
et e —x/4 —a/2,
1) = 1 S /0 e~/ (t2) =2/ 2% ], (Val) da
o
I'a+1)

Case 2.1I1. We assume that there exists a distribution u with compact
support such that Tiu ="  a,CLlz".

Here, when I = (0, +00), we assume « = 0.

In this case, we can obtain a distribution with compact support v
such that (v,t") = a,.

Indeed, taking v = TF(> oo ,an,Clz™), from (1.8) and (1.11), it
follows that v = 274 if I = R and v = w if I = (0,400). From
the following Lemma, (1.9) and (1.12), it follows that (v,t") = a,.

Lemma. Let wy,ws be two distributions with compact support. Then
(wl,T[tw2> = <w2TItw1>.

Proof. Let u be a distribution with compact support K, ¢ a C®
function with compact support such that p(z) = 1if z € K and F
and entire function. Since the series which appears in the right side of
the following formula F(z)p(z) = Y o0 F(™(0)z"p(z)/n! converges
uniformly on compact sets of R, we get

oo

(n) ey Al C0))
wF@) =3 Oz = 3 0 0,
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It is not hard to prove that Ttu(z) = (u(t),e ') if I = R and
Tiu(z) = (u(t), Jo(vVxt)/2) if I = (0,+00).

From these previous results, it follows that T}w; is an entire function
and (Ttw;)™(0) = (w;, alt") for i = 1,2, where ol = (—i)" if I = R

and af = (—1)"/(22"*1n!) if I = (0,+00). The same argument gives

~

[e's)
(¢4

(wi, Tjwz) =) oy (wa, ") {(wi, 2")

and

(wa, Thwr) =Y iy (w2, 2" ) (wy, ")

n=0

finishing the proof of the Lemma. O

Example 2.I1.1. Jacobi polynomials. The moments for the Jacobi
polynomials are

“/n T'(b+m)T'(a+b)

= _qymom _PTTZAETR) for >0 and a,b > 0.
o= () U ey rn 20 e >

In 2.II1.2 we shall give weight functions also when b # 0, b < 0 and
a<0,a#0,-1,-2,...). Taking I = R, we obtain the function

1 .
() = %e_“”lFl (b, a + b; 2iz)

(1F1(—,—;—) is the hypergeometric function). So, we obtain the
following distribution with compact support

f(m) = %(1 — x)b_l(l + m)a_lx[—l,l]-

Remark . Notice that when the function ¢(z) = Y > a,Cla™ can
be written as the sum of two functions Y~ a,Clz™ = ¢y + ¢o, such
that ¢y € S(I) and there exists a distribution with compact support
such that Tju = ¢2, we can put g = 1 in the formulas (1.13) and (1.14)
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to obtain the weight Tr¢; + TF¢2 which is a sum of a function in S(7)
and a distribution with compact support.

Example 2.I1.2. Laguerre type polynomials. The moments for the
Laguerre type polynomials are ap = (R+1)/R, a,, = T'(n+a+1)/T'(a+
1) for n > 1 and o > —1. Taking I = (0,400), we obtain the function
¢(z) = 1/R+e */*/2. So, we can take ¢ = 1/R and ¢; = e */4/2 to
obtain the weight 6/R 4 e~ %.

Case 2.ITI. We assume that

(2.1) limsup {/|a,CL| = R < +oo0.

Here, in the formulae (1.13) and (1.14), we can put A\, = 1,
choosing the function g (which appears in those formulae) such that
suppg C (—1/R,1/R). This choice guarantees that the function
h(z) = Y7 anCLlz"g(x) belongs to the space S(I) and so (1.7) holds.

Example 2.IT1.1. Bessel polynomials. The moments for the Bessel
polynomials are a, = (=b)""I'(a)/T(a + n) for n > 0 and b # 0,
a#0,-1,—-2,.... Since

lim sup ’(/
n

taking I = R, we obtain that a weight function for the Bessel polyno-
mials is
+o0 1 o0 (7b)n+1inr(a) .
t) = - N S TN 77,ztd
1®) /700 <27r Z I'(a + n)n! v >g(x)e v

n=0

(—b)"*'(a)
Fla+n) "

:0,

where g is a function satisfying (1.4). Now, from the Taylor expansion
for the Bessel functions and taking the function of Remark 1.1, we
obtain that the above function can be written as follows

ft) = —b(e) /+oo <(bz’x)(1_“)/2Ja1(\/4bix)

2mc J_o

T , . '
/ (X[-1,0(u) = X(0,1] (U))e_l/u —1/(1-u )d’u,> e~ i@t g

-1
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Also, taking I = (0,+00), we obtain that the function

o= [ (S Tarn i)

n=0

i/ ax1@@)—xmﬂunk-”“-”“-“>mQJav%bdw
-1

is a weight function for Bessel polynomials.

Example 2.IT1.2. Here we can give weight functions for generalized
Laguerre polynomials when o < —1 and o # —1, — . Indeed, the
moments satisfy (2.1). So, if we take the least p051tlve 1nteger kq such
that —1 < o + ky, we get the following weight function

)Tt at 1) .
1® / (Z a—l—lw”“"k o210 (n + o + kg —|—1)n' )g(x)

(tz)~(@Fka)2gatha g o (Vat) de,

that is,

ft)= ! ) /oolF1(Oé+1,a+ka+l;—ac/4)
0

20tk 2+ ko + 1)c
z 2 2
- </ (X[ 1,0(u) = X(0,17(w))e™ /W /0w )du>
-1
(tz)~(@Fka)2gatha g o (Vat) d.

Finally, for the Jacobi polynomials, when b # 0 and a # 0,—1,-2,...,
we obtain the following weight function

+oo

2me J_o

¢ 2 2 .
. </ (X[—I,O](u) _ X(O,l] (u))efl/u —1/(1—u )du> efm(1+t) dz.
-1
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APPENDIX

Here we prove that the ¢ series

el gn+1 (n)
(31) LR P eIk

is not a tempered distribution with support contained in [0, +00) (that
is, w ¢ (ST)’). More exactly, there exists a dense subspace A of ST (so
St) c A’), such that the § series w belongs to A’ (that is, the series
which defines w converges in the weak topology of A’) and w # w in A’
for all uw € (ST)".

To prove this, we consider the Gelfand Shilov space Sf’ 0 defined by
(see [8]):
S0 = {f € C>=((0,40)): 3 C, A, B > 0 such that
sup [tF fP) ()] < CA*BPEF  Vk,p > 0}).
t>0

The space S’fo can be regarded as the union with respect to A, B > 0
of the Banach spaces

Sig’B ={f €C>((0,+00)) : 3C > 0 such that
sup [tF f®P)(t)| < CAFBPEF Vk,p > 0}
t>0

with the norm ||f||4,5 = infy >0 sup;g |tkf(p)(t)\/(AkBpKk).

The space S’f’ 0 is a dense subspace of the Schwartz space S*, and the
inclusion is a continuous map, so we get (S*)" C (S;°)".

Now the § series w defined by (3.1) belongs to (S;™°)/, and the
series which defines w converges in the weak topology of (S;°).
Indeed, it is sufficient to prove that for all f € S; O the series
=32 o (=1)m2n+1 (M) (0) /nl(n + 1)! converges. But this follows since
|f™(0)] < CA™ for n > 0 and certain A > 0 for all f € S;*° (see [8,
Proposition 4.11]).

We consider the Laguerre orthogonal system in L?((0,+0o0)) defined
by:

(3.2) () = Lo(a)e™"/?
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where (L, (x)), are the Laguerre polynomials.

Since ¢, € S , the Laguerre-Fourier coefficients for an element
u € (S;°) can be defined by the formula (u, ¢,,).

The following characterization of these Laguerre-Fourier coefficients
can be found in [8, Corollary 3.1]:

Theorem A. If u € (S;°), then limsup,, ¥/|{u,d,)| < 1.

And the following characterization on the Laguerre-Fourier coeffi-
cients for tempered distribution with support contained in [0, +00) can
be found in [9, Theorem 3.9]:

Theorem B. If u € (S1), then there exist two constants C, k > 0
such that |(u, ¢n)| < C(n+ 1)*.

From Theorem B, it follows that if there exists a tempered distribu-
tion u with support contained in [0, 4+00), such that (u, f) = (w, f) for
all f € S8/, then

(3.3) [(w, ¢n)| < C(n+1)F

for certain constants C', k > 0.

Now, by computing the sequence ({(w, ¢y,))n, we prove that (3.3) does
not hold, and so the § series w is not a tempered distribution with
support contained in [0, +00).

The following formula which gives the Laguerre-Fourier coefficients
of §%) can be found in [9, Ex. 3.1]:

- £ ()

m=0
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From this formula, it follows that:

(w60 = — 32 B 509,65, (2))
W, Pn) = ];Jk'(k+1)' s Pn\T
= 2k+1 k n
SO0
> 2m+1EIn!
- I;) k+1'zm'k m)!m!(n —m)!

2m+1

= 1
_n'z(k+1'zm'k m)!m!(n —m)!

So, for all £ > 0 and 0 < m < k, we get

nlom+1

[, én)| 2 (k+ 1)1k — m)!(n — m)!m!m!’

If we take m = k = logn, and by using the Stirling formula, we obtain
the following estimate

n|2log n+1
(logn 4 1)!(n — log n)!(logn)!(log n)!
an®ne "
(3 4) (n _ 10g n)n—log "6_"(10g n)Slogn
. nn
s
Z an (log n)Slog npnp—logn
nlogn
= (Xz —_— .
N log n)sloen

where a7 and ay are constants which do not depend on n.

From (3.4), we deduce that it is not possible that the Laguerre-Fourier
coefficients of w satisfy (3.3).

Using a similar technique, the author has tried (without success)
to prove that the § series w is not a tempered distribution. In this

case, we have changed the space S;  to the Gelfand Shilov space

gl/2

12 (see [12]), and the Laguerre orthonormal system to the Hermite
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orthonormal system. Similar results to Theorems A and B can be found
in [1, 10, 18], respectively. However, the expression for the Hermite
Fourier coefficients of w is more involved than the expression for the
Laguerre Fourier coefficients. For example, the even Hermite Fourier
coefficients of w are:

-1 n+1 s 0 1 k2k:+1
(W, pon) = (\4/_#((2”)!) / kZ:O ((219)#1)'
min(k,n) g3m
P Gk

The factor (—1)*, which appears in the series on the left side in the
above equality, makes it difficult to prove the result with this approach.

Acknowledgment. I would like to thank Professors L.L. Litteljohn
and K.H. Kwon for our discussion at Erice, prior to the elaboration of
this paper. I would also like to thank Professor J. Arias de Reyna for
his advice during the preparation of this paper.

Noted added November 1992. After this papr was written in
June 1990 containing the first weight functions for the Bessel polyno-
mials, K.H. Kwon, S.S. Kim and S.S. Han have found (January 1991)
other weight functions for these polynomials (see their paper Orthogo-
nalizing weights of Tchebychev sets of polynomials, Bull. London Math.
Soc. 24 (1992), 361-367).
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