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HOLDER ESTIMATES FOR LOCAL SOLUTIONS
FOR 9 ON A CLASS OF
NONPSEUDOCONVEX DOMAINS

LOP-HING HO

ABSTRACT. We prove in this paper that in a class of
nonpseudoconvex domains we have the anticipated Holder
estimate for the local solution of the 0-equation. We then
extend the class of domains where the theorem applies. It
is also noted that the method can be applied to improve a
theorem by Range and Diederich-Fornaess-Wiegerinck.

Introduction. We investigate in this paper the Holder estimates
for the local solutions of the O-equation on domains of the form
Q={r(z) <0:r(z) = XV |2*" + g(2pt1,--- ,2n), where g is C*
with ¢g(0) = 0 and dg(0) # 0}. Thus the domains we consider here are
not necessarily pseudoconvex. We prove that the right Holder estimate
holds in a neighborhood of 0 for (0, ¢) forms with ¢ > n — p.

It is well known that for strictly pseudoconvex domains the (1/2)
Holder estimate holds. (See, for example, Grauert and Lieb [6], Henkin
[7] and Kerzman [10].) In the weakly pseudoconvex domains there are
the works of Range [11], Diederich-Fornaess-Wiegerinck [3] and Bruna
and Castillo [1] on ellipsoid type domains. Recently, Fefferman and
Kohn [4] and Range [13] proved the estimate in C? on domains of
finite type by using different methods.

In the case that the domain is not necessarily pseudoconvex Fischer
and Lieb [5] proved the (1/2) Holder estimate on g-convex domains
with smooth boundary. Recently Schmalz [14] proved the same result
on domains with nonsmooth boundary.

In this paper we study the problem on a certain class of non-
pseudoconvex domains. In this class of domains the nonnegative
directions of the Levi-form is of ellipsoid type as in Range [11] while
in the other directions it is arbitrary. We prove (Main theorem) that
the anticipated order of Holder estimate holds in a neighborhood of the
origin. This type of phenomenon is known in subelliptic estimates of
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the 0-Neumann problem (Ho [8, 9]). We then extend the result to a
larger class of domains.

The technique used to prove the theorem here follows closely that
of Range [11] and Diederich-Fornaess-Wiegerinck [3] while in the
nonpseudoconvex domains we consider here we need to add some non-
holomorphic terms to the support function. We also need to add a
piece of boundary to apply the treatment of Range and Siu [14]. We
will prove the following theorem:

Main theorem. Let (2 C C" be defined by

P
{r(z) <0:r(2) =D lz*™ + g(zpsr,- -, 20),
1

g 18 a real C*° function with g(0) = 0 and dg(0) # 0}.

If ¢ > n—p, then there exists a neighborhood U of 0 such that for every
(0,q) form f which has bounded coefficients, C! and O-closed in UNYY,
there is a solution u of the equation Ou = f in U NQ with the estimate

[lull s <[1f]lo

holds in a smaller set BN Q) where B CC U 1is a neighborhood of 0.

In here m = maxi<i<p Ms, 1/2m denotes the Hélder norm and oo
denotes the supremum norm.

Note. In fact we can strengthen this result to B = U in the above
theorem. (See the remark at the end of Section 3.)

1. Preliminaries. We write down the basic ingredients that lead
to the solution of the O-problem by integral kernels on domains with
piecewise smooth boundary. We refer the reader to Range and Siu [14]
for details.

We will be studying domains that are intersections of two domains
with smooth boundaries, hence we restrict our attention to the solution
of 0 on such domains.

Definition 1.1 [14]. A bounded domain D in C" is said to have a
piecewise smooth boundary if there exist
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(i) An open cover {Uy,Usz} of an open neighborhood U of bD,
(ii) C! function p; : U; - R, j=1,2
such that
(a) DNU ={xz € U: either z ¢ U; or p;(z) <0, j =1,2}
(b) dp1,dps are linearly independent over R at every point of U; NUs.

Let Sy =UyND, Sy =UsND and S12 = Uy NUzN D. The orientation
is chosen so that

bD = Sl + Sz and bSl = 512.

Let A = {A = (Mg, A1, A2) € R : \; >0, Z?:o)\' = 1} be equipped
with the canonical orientation and Ay ={A € A: >, ; A; =1}

A generating form for S; is a form W®(¢,2) = YT w ( z) dg;
defined on S; x D so that

n

S wl?(¢,2)(¢ - 2) =1

1

for ( € S; and z € D. Denote

n

WO((, 2) Z |2 ) g,

1
2
W2 (¢, A, 2) Z ),
and
2
W(Ca A z) - Z AjW(j)(Ca A, Z)
7=0

whenever these are defined.
The Cauchy-Fantappie kernel Q,(W) is defined as

R —1)e(a=1)/2 7/ L
0,17) = S (7)) WA @iyt @by
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where O » =0; +dy. Qu(W®) is given by the same formula as above
except that W is replaced by W,

We have the following integral formula:

Theorem 1.2 [14]. With the above notations, assume W is a
smooth generating form for S;, i = 1,2. Then for any (0,q) form f
with coefficients C* on Q with 1 < q¢ < n, we have

f:/z . FAQWWD) 48T, f + T, 10f on Q
IXAr

0gI

where

7,7 = (-0 [

FARua () = [ Faw
SrxXAor Q

The following lemma is often used in proving the Holder estimates
for the solution. (See for example Range [12] and Range and Siu [14].)

Lemma 1.3. If f € C*(Q) and for some 0 < a < 1,
lgrad f(z)| < (dist (z, b€2)) ™.

Then there exists C' > 0 with

1f(2) — f(w)| < Clz —w|*™ z,w € Q.

The following computational lemma, which will be used in Section 3,
is proved in Diedrich-Fornaess-Wiegerinck [3].

Lemma 1.4. Forq > 1, j > 0 and A positive close to 0, we have

z4+wf dzdy _
[ n Gor i = 00
z|<

A+ ]z +wl[2]?)

independent of w, |w| < R.
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2. The J-solution.

Lemma 2.1. Let 2 be defined as in the main theorem and ¢ > n—p.
Then there exists a small neighborhood U of 0 such that for all (0,9)
forms f which is C! in U N Q and O-closed, there is an operator
Ty : C§,(UNQ) = C§,_1(UNQ) such that f = T, f.

Proof. By a change of variables we may assume that
9(Zpi1s- - y2n) = 2Re 2, + O(]Z)?)

where we denote 2’ = (2p41,...,2,). It is not difficult to see that the
Levi-form has at least p nonnegative eigenvalues in a neighborhood of
0.

Let us first construct a generating form for a piece of the boundary
r = 0 near the origin. Define

Pi(C,Z):g—gi(C) 1=1,2,...,p,n

_Or
- 0G

Fi(¢, 2) )+CG—2z) i=p+l...,n—1

where C' is some positive constant to be determined. Define
Ql((a Z) = Z-Pl(C7 Z)(zz - Cz)
1
We have

n n—1
2Re ®1((,2) = 2Re Z g—g(()(zl —-G)— QCZ lzi — Gi|%.
1 ¥

p+1

From Lemma 5.5 of Range [11] we know that for z, ( € C
(2.1)

o = o1~ 2Re ( (2216 ) (=) 2 (gl le =<+ 2=/
ac Z \acac
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Applying (3.1) to each of the variables z1, ... , z, we get

r(2) = 1(¢) — 2Re Z% ¢)
p
o R P |2
5;<agag(o|zl G+l = 67

- C'(i%‘ - Ci2>

p+1
Hence if we choose C' large enough we have for ¢ € b2

P 0%r
[Re ®1(¢,2)| > —r(2) + ) (— (©)lzi — Gil* + | —cz-l”"")
S — \ 9¢;0C;

n—1
+ Z |2 = Gif* = C'|zn — Gl

p+l
If we put d = r({) —r(z) and A = Im @4 ({, z), then using the implicit
function theorem we may see that

‘zn - Cn|2 < |)‘|2 + |d|2

+c(Z|<2m12|z@ G + = 4 S [ = <l|2)

p+1

< c<|)\ + |d|

+Z|<z|2"~ 2o G + = G S <l|2)

p+1

where ¢ is as small as we please if ( € bQ2 and z are close enough to 0.
Hence,
(2.2)

[21(6,2) > Mm@+ |r(z) [+ (G2l = GI + |20 = GIP™)
1

n—1
+Y =GP

p+1
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when ¢ € b2 and z are close enough to 0.

Clearly,

Wi, =30 D o
1
is a generating form on ({r = 0} NU) x (2N U) where U is a small
neighborhood of 0.

Let p = Y7 |z + > il |z;|* — €2 be the defining function of the
piece of boundary S3. We choose € small enough so that the estimate
(2:2) holds in D = QNUN{37 |z:*™ + 37, [2:]* < &’} and that dr
and dp are linearly independent over R on 7 = p = 0. We will see that
¢ needs to satisfy some additional conditions later on. Thus, D has a
piecewise smooth boundary as defined in Section 1.

Denote

s

2(C, 2) =Z
1

Clearly, (2.2) still holds if ®; is replaced by ®; and

TP, ! %,

1

is a generating form for Sy x D.

We can now apply Theorem 1.2, namely, if f is a d-closed (0, q) form
with C! coefficients in D, we have

;= / £ A QWD) + 3T, f
OQISIXAI
where

T,f =Y (- l”“/ fAQq,l(W)—/ FAWYD =T+ .
SIXAOI Q

Note that Q (W) = 0 on S; x Ag;. This follows from the fact
that €2, involves ¢ times differentiation of W@ in z, the P’ in W1
have nonholomorphic terms in 2zp11,...,2,—1 only, with the number
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of variables being n — p — 1 < ¢ and all the coefficients in W () are
holomorphic in z. Hence, u = T;f is a solution for Ou = f. The
regularity property of 1, is standard. This completes the proof of
Lemma 2.1. O

3. Estimation of kernel. By an argument as in Range and Siu
[14] we may assume that f € C1(U N Q). It is well known that the
integral Jo in Section 2 satisfies ||Ja2]|7/2 < C||f||oo- Hence we only
need to prove the desired estimate for J;. Since we only want to prove
the Holder estimate in BN where B CC U we only need to show that

dz/ f /\qu(W)‘ < (65, (2))1/2m) =1,
S1XAp1 ~

Now
/ f A Qq—l(W) = f A Aq—l(W(l))
51><A01 Sl
where
n—qg—1qg—1
Ag (W) = Z af,LlAf,Ll(W(l))
j=0 k=0

j ke
for some constants a”, and

(3.1) A WD) = WD AW A QWD) A @WO)rmat
A (@, WOYE A (5, W (@)a-1-k,

In view of Lemma 1.3 and that ds, > dp to obtain the desired Holder
estimate, we need to show that

(3.2) IdZAg’fl(W(l))(-,zﬂ < (83, (Z))(1/2m)—1
S1 ~

where m = maxi<j<p M;.
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Computing W) and putting this into (3.1) we see that
(3.3)

A]’ LW @) <Z |¢i[*™ 71 + other terms) A Z I — 2| d¢;

=1

J
A ‘<i|2mi72 d@' A d(; + other terms>

< .
A <Z i A dg)n_q_l_]
(=

k qg—1—-k
—p+1 dz; A d§2> A (Z?_l dz; A d§i>

B¢ et

A

Expanding the above expression we may see that the terms of
Afl’fl(W(l)) have coefficients of the type (total order of the form in
Cis2n —1):

[Th=q1,... j+13 [Gin [PMin =2
1<in<p

i+k+1 o _ok—
<I)Jl+ + |<‘_Z|2n 2j—2k—3

X other terms

where i, denotes a distinct sequence of integers between 1 to n and . ..
in the above expression. We should note here that every term |;|?™i 2
is associated to a form d¢(; A d(; or d(;. Now we apply d. to the above
expression. If we differentiate the ‘other terms’, we get terms that are
stronger and we may omit these terms. Hence we only differentiate the
denominator and we get terms of the following two types:

[Th=i1,... j+13 [Gin [P0 =2

1<in<p

(3.4) P I P X other terms
Hh:{l,.'.. g1y G [Pmin 2
(3.5) L1Sinsp x other terms

<I>{+k+1|§ _ Z|2n—2j—2k:—2

We will integrate the terms (3.4) and (3.5) over a small neighborhood
of the boundary. Let § = dist(z,51). Let a < £ be a small fixed
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number. We only consider points z that 0(z) < « given any such point
z. Consider a piece of the boundary S = {( € S1 : |z — (| > 2a}.
Since the integrands (3.4) and (3.5) are all smooth except at { = z,
the integrals over S are bounded independent of z. Pick any point
t(z) on Sy such that |z — t| < a. We need to estimate the integral on
S1 N B3y (t). From (2.2) we get

p
[®1(¢,2)| > 0+ [Im @, | + D UGP™ 2z =GP + 2 — GIP™)
2

n—1
+ )l =GP

p+1

(3.6)

If « is small enough, then we can always use the coordinates

7; = Re (2; — ¢;) j=1,...,n—-1
oj =Im(z; — ;) j=1,...,n—1
A = Im P,

§ =ds,-

Consider the integral of (3.4) over Sy N Bs,(t), calling it I. We note
that in the product

H ‘Cih|2mih -2

h={1,...,j+1}
1<in<p

of (3.4) there is at least j — (n — p — 1 — k) number of terms. (d¢;’s
in the term (Z?;plﬂ dz; A d¢;)F occupies k spots from d(,41 to dCn—1.
Hence this left only n — p — 1 — k spots to be filled. In the worst case
all the spots are filled by the forms associated to the product above.)
We assume that the product is from (; to (j_n4pt1+x and also that
m, = m. Then we have
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I<
= fime <R
Imil.los <R

i — 1+k
[T l@n = )% + (vn = o)™ n " dTm @y Adry Adot A~ Adrn_y Adon_y

j+k+2 n—1 e
${ThH2 |52 4 3012 4+ 02)
5/
Irillog| <R

| A
1

j—k—3/2

[z, — o) + (yp — op)?|™h~tdry Adoy A+ - AdTp_1 Adop_y

Jtk+1
— -1
(5+§ f(‘(zh*"'h)2+(yh*‘7h)2‘mh Y2 +o2)+ (72 +o2)™h)+ :+1(T,%+Ufb)>

1

5 1o n—j—k—3/2
+Z1 (r3 +o3)

<
ITilslo <R
ATj _nipt2+k NdOj _nipirotp N - AdTp_1 Adop_1

P 2, _2\2m; n=1_o, 2\\"7P (s
(6+Zj7n+p+2+k(‘rh+o-h) o p+1(7—h+gh)) (5+

g/
ITilsloil <R

dTj—ntpt2+k N4 —nipt24k N - AdTp Adop

P 2 2ymp 2 p 2 2
(6+Z'7n+p+2+k(7—h +op) ) (6 +2j7’n+p+2+k(‘rh +Uh))
nk P2n—2j—2k—3 g
<
~J, (6 + r2™p) (62 4 r2)n—j—k—3/2

nR
dr
S —_—
, (E+r7Te)

< s1/2m)—1

n—1

2 2 n—j—k—3/2
j—n+p+z+k(Th+ah))

n—j—k—3/2

where in the second line we substitute (3.6) into ®; and integrate
with respect to Im ®;. In the third line we integrate with respect to
dri,doy,. .. ,dTj_pipti+k, d0j pnipri+k and apply Lemma (1.4). In
the fourth line we integrate with respect to d7pi1,dopi1,... ,d7n—1,
doy,_1. We use polar coordinates in the fifth line.
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The integral of (3.5) was dealt with in a similar way. This completes
the proof of the main theorem. mi

Remark. In fact we can prove the main theorem with the set B = U.
For this, we need to prove the analog of (3.2) for S; where |I| =1, 2.
The estimate on Si5 is more tedious. We omit the details here.

4. Holder estimates on some other domains.

Theorem 4.1. Let Q) C C" be defined by Q ={z:r(z) <0:7r(z) =
S0 si(|2i]?) 4+ 9(2p41,s - -+, 20)} that satisfies

(i) g is a real C* function and g(0) =0

(i) s;’s are real C* functions, s;(0) = 0, and s;(t) > 0 for0 <t < 4
for some § > 0.

Then the same conclusion holds as in the main theorem with
[ulli/2m <[1f]leo

where m is some positive integer.

Proof. If s; satisfies the required condition, then clearly
si(t) = bpt® + higher order terms

with b, > 0. With the same functions P; and ®; as defined in Lemma,

2.1 it is easily seen that (2.1) can be replaced by
(4.1)

si(22) = su(6F) ~ 2Re 16z 0)) 2 P21 = P+ o=

in a neighborhood of 0. Hence (2.1) holds with some m;, i =1,... ,p
and we obtain the inequality (2.2). For that set of m; we use the
same defining function p for the boundary S; with € small enough. We
then define the same ®5. All the estimates and the proof of the main
theorem then go through without change. i

Remark. Same as in the remark at the end of Section 3, the Holder
estimate in the above theorem can be shown to hold in the whole set
UnqQ.
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On complex ellipsoids

E= {r(z) <0: Z|zi|2mi -1< 0}.
i=1

Range [11] showed that the Holder estimate holds for o < 1/2m,
m = maxi<i<n, m; for (0,¢) forms. In Diederich-Fornaess-Wiegerinck
[3] it was improved to & = 1/2m for (0, ¢) forms. It is noted here that
we have

Theorem 4.2. On the complex ellipsoid E if f is some (0,q) form
such that Ou = 0, then Range’s solution w = T'f of Ou = [ satisfies

lulli/2a <[If]loo

where a = (n — q + 1)*" largest number out of {m1,... ,m,}.

Note that the (n — ¢ + 1)t" largest number of {2m;, ... ,2m,} is the
maximum of the g-type of the points on E as defined in D’Angelo [2].
We just outline the proof of this theorem since it follows from that
of Range [11] while in here we adopt the generating form W) and
estimate the kernels as in the proof of the main theorem:.

Proof. Assume that m; < m;41,i=1,...,n—1. Let
or — .
Pi(C:Z):a—C(<)+C(Ci_Zi) i=n—-q+2,...,n
and

n

=Y " P 2) (2 — G)

i=1
Then with C large enough we have

n—qg+1

[Re®(¢,2)| > —r()+ 3 (GP™ Gz )+ 3 sl

1 n—q+2
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for all z € F and ¢ € bE. Hence

n—q+1

|9(¢,2)| > m @]+ [r(2)[ + D (1G22 — G
1

+lz =GP+ ) s =GP

n—q+2
and Y7 (P;(¢, 2)/®) d¢; is a generating form on bE x E. Now Qg (W) =
0 since €, involves ¢ times differentiation in z of Y | (P;(¢, 2)/®) d¢;
and there are only ¢—1 antiholomorphic variables in z. Hence f = 0T, f
as before. The integral kernel and the estimate of the kernel is the same
as the estimate of fSi fAA (WD) in Section 3. Hence, it follows
that

T f111 2 <115l

where m = mp_g41. O
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