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HALL SUBGROUPS OF ORDER NOT DIVISIBLE BY 3
FLETCHER GROSS

1. Introduction. In [9] it is proved that if a finite group G has a
Hall w-subgroup and if 7 does not contain 2, then all Hall 7-subgroups
of G are conjugate. The proof of this is based upon proving it in the
special case when G is a simple group. Further, it is shown that if H
is a Hall w-subgroup of a finite simple group and 2 ¢ 7, then H has a
Sylow tower. An examination of the proof of this shows that a crucial
point in the argument is that a Weyl group has very few Hall subgroups
other than the Sylow subgroups. Indeed, if H is a Hall subgroup of a
Weyl group and the order of H is divisible by at least two distinct
primes, then H must have even order; one use of the assumption that
2 ¢ 7 in the result quoted above is to assert that, when G is a simple
group of Chevalley type, a Hall m-subgroup of the Weyl group of G
must be a Sylow subgroup. Since if H is as above, it is also true that
|H| is divisible by 3 as well as by 2, it is tempting to consider Hall
m-subgroups of a finite simple group where now 2 may belong to 7 but
we exclude 3. The main result of this paper deals with the case when
the simple group is either of the groups A, (q) or Cy,(q); specifically, we
prove the following:

Proposition. Let S be either A,(q) or C,(q). Assume S has
a Hall m-subgroup with 3 ¢ m. Then all Hall w-subgroups of S are
conjugate in S and a Hall w-subgroup of S has a Sylow tower. Further,
if S < G < Aut(S), then G has a Hall w-subgroup, all Hall 7-subgroups
of G are conjugate in G, and a Hall w-subgroup of G is solvable.

It should be noted that the results in this paper make use of the
fact (an immediate consequence of the classification of finite simple
groups) that the Suzuki groups are the only non-Abelian finite simple
groups of order not divisible by 3. Using this, the above proposition is
straightforward to prove when S is A,,(¢). When S is the Symplectic
group Cp(q), however, the argument is more difficult and also requires
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570 F. GROSS

a result of Glauberman [5] concerning normal 2-complements of groups
which do not involve Sy as well as some recent work of mine [10] on
large Abelian subgroups of wreath products.

Conjecture 1. The above result holds true if S is allowed to be any
of the classical simple groups, i.e., if S is one of An(q), Bn(q), Cn(q),
Dn(q), *An(q) or >Dyu(g)-

Note that the proposition implies that if S has a Hall 7-subgroup
with 3 ¢ 7, then Aut (S) also has a Hall 7-subgroup. The significance
of this is that if G is a finite group and Aut (S) has a Hall m-subgroup
for each composition factor S of G, then G has a Hall w-subgroup |7,
Corollary 3.6].

Conjecture 2. Let G be a finite group and © a set of primes with
3 ¢ m. Then G has a Hall w-subgroup if and only if each composition
factor of G has a Hall w-subgroup.

It is not true that if a simple group G has a Hall w-subgroup with
3 ¢ m, then all Hall w-subgroups of G are conjugate. For suppose G
is the group 2G»(27) and m = {2,7}. Then |G|, = 56 and G has 2
conjugacy classes of subgroups of order 56 [19]. The Hall w-subgroups
of G have Sylow towers but in one class the Sylow 2-subgroup is normal,
whereas in the other class the Sylow 7-subgroup is normal. It is also
possible for a Hall m-subgroup of a simple group to not be solvable
when 3 ¢ 7. If G is one of the Suzuki groups 2B,(22"*1) and H = G,
then H is a Hall subgroup of G, 3 does not divide |H|, and H certainly
does not have a Sylow tower. I conjecture that this is the only case
where this occurs.

Conjecture 3. If H is a Hall w-subgroup of the finite simple
group G and 3 ¢ w, then either H has a Sylow tower or H = G =
a Suzuki group.

It is easy to show that if the third conjecture is true, so is the second.
Also, it follows from [9] that all 3 of the above conjectures are true if
2 ¢ m. Thus, these conjectures really are concerned with the situation
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2 € m and 3 ¢ w. Conjecture 3 above is true in the special case when G
is a Chevalley group and 7 contains the characteristic of the underlying
field (see Theorem 3.1). It should be mentioned that if 7 contains both
2 and 3, it is quite possible for each composition factor of a group G to
have a Hall w-subgroup and yet for G to not have a Hall m-subgroup
(see, for example, [11]).

The results leading to the above proposition also lead to necessary
and sufficient conditions for the groups GL,(q) and Sps,(q) to have
a Hall w-subgroup, at least when ¢ is odd and 7 does not contain 3.
In the case of GL,(q), once it is shown that a Hall 7-subgroup of
GL,(q) is solvable, the results of [13] are applicable and lead at once
to the desired result. In the case of Spa,(q), necessary and sufficient
conditions for the existence of a Hall w-subgroup were known if 2 ¢ «
([13, 6]), but not when 2 € 7 and 3 ¢ .

2. Notation and preliminary results. The groups considered
in this paper are assumed finite. We follow the notation of [3] for
describing the linear and Chevalley groups. The symmetric group of
degree n is denoted by S,. For a general reference on the Chevalley
groups, see [15, 1].

Throughout this paper, 7 is a set of primes and 7’ is the set of all
primes not belonging to m. Following [12] we say that the group G
satisfies F; if G has a Hall w-subgroup; G satisfies C if G satisfies
E; and all Hall w-subgroups of G are conjugate; and G satisfies D,
if G satisfies C, and every mw-subgroup of G is contained in a Hall
m-subgroup of G.

The largest normal m-subgroup of the group G is O,(G). The group
G is said to be w-closed if O;(G) contains all m-elements of G. In
particular, G is 2'-closed if and only if G has a normal 2-complement.
If n is a positive integer, then n, is the largest divisor of n all of whose
prime factors belong to 7. In particular, n, is the largest power of the
prime p which divides n. The set of primes dividing n is denoted by
m(n); if G is a group, then 7(G) = 7(|G|). The integral part of the real
number z is denoted by [z].

If G is a p-group for a prime p and n is a positive integer, then
Q,(G) is the subgroup generated by all elements of order dividing p".
Again with G a p-group, J(G) is the subgroup generated by all Abelian
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subgroups of maximal order in G.

The derived subgroup and center of the group G are denoted by G’
and Z(G), respectively, while Aut (G) is the automorphism group of G.
If H is a subgroup of G, we write H < G and use H < G to indicate
that H is a proper subgroup of G. Similarly, H < G denotes that H is

a normal subgroup of G while H <G implies that H is a proper normal
subgroup of G. The normalizer and centralizer of H in G are Ng(H)
and Cg(H), respectively.

If r is a prime and s is an integer not divisible by r, then e(s,r) is the
smallest positive integer m such that (s™ — 1), > 2. Hence, if r > 2,
then e(s,7) is the order of s in the multiplicative group of GF(r); e(s, 2)
is1if s=1 (mod 4) while e(s,2) =2 if s =3 (mod 4).

If n is a positive integer, then Z,, denotes a cyclic group of order n. If
Ais a group and B is a permutation group of degree n, then A wr (B, n)
is the semi-direct product of M, the direct product of n copies of A,
by B where B acts on M by permuting the factors. We refer to M as
the base of Awr (B, n).

The group G has a Sylow tower if for some ordering of the primes
{p1,... ,pm} which divide |G|, G has a normal series 1 = Gy < G; <
-++ < G, = G such that G;/G;_ is isomorphic to a Sylow p;-subgroup
of G for 1 < ¢ < m. If H is a group with a Sylow tower relative to
the same ordering of the primes, we say that G and H have Sylow
towers of the same complexion. The p-rank of the group G is denoted
by m,(G) and is the largest positive integer m such that G contains an
elementary Abelian p-subgroup of order p™. If k is a positive integer,
then pg(G) is the maximum of |A| where A runs through all Abelian
subgroups of G with the property that z* = 1 for all z € A.

The following result is well known and may be found in [12].

Lemma 2.1 If M is a normal subgroup of the group G, then the
following are true:

(a) If H is a Hall w-subgroup of G, then HNM is a Hall 7-subgroup
of M and HM /M is a Hall 7-subgroup of G/M.

(b) If M satisfies Cr and G/M satisfies E,, then G satisfies E.
(¢) If M and G/M both satisfy Cr, then G satisfies Cy.
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Lemma 2.2 Let r be a prime, s an integer not divisible by T,
e =e(s,r), and n a positive integer. Then

(s¢ = 1)-(n/e), if e divides n,
(s"=1),=<¢1 if e does not divide n and r > 2,

2 if e does not divide n and r = 2.

Proof. This is proved in [20] if r > 2. Using induction on n, the
result is easily extended to the case r = 2. O

Theorem 2.3 If H and K are both Hall w-subgroups of G and iof H
and K have Sylow towers of the same complexion, then H and K are
conjugate in G.

Proof. This is Theorem A1 of [12]. o

Lemma 2.4 Let G = Awr(B,n) where B is a subgroup of S,, and
let M be the base subgroup of G. Let p be a prime and k a positive
integer. Then the following are true:

(a) If |Alp > 2 and P is a Sylow p-subgroup of G, then J(P) =
JPNM)< M.

(b) If ux(A) > 2, then ux(G) = pr(A)™ and, if H is an Abelian
subgroup of G such that |H| = ui(G) and x* = 1 for all x € H, then
H< M.

(c) If |Alp > 1, then my(G) = mp(A)n.
Proof. This is proved in [10, Theorem 3.4 and Corollary 3.6]. ]

Lemma 2.5 Let t be an odd prime, and let G = GL.(q) with (q,t) =1
and e = e(q,t). Let T be a Sylow t-subgroup of G, C = Cg(T), and
N = Ng(T). Then T is cyclic of order (¢° — 1)¢, C is cyclic of order
(¢° = 1) and N/C is cyclic of order e.

Proof. Let E = GF(q°) and U the additive group of E. For
0 # A € E, let T, be the mapping u — uA for all u € U, and let
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o be the mapping v — u4. Then {T) | 0 # X € E} is a cyclic subgroup
of order (¢ — 1) in GL.(q) and (o) is a subgroup of order e in GL.(q).
Now

IT] = 1Gle = (¢° = s,

and so we may assume 7' < {T | 0 # A € E'}. Since t does not divide
g* —1for 1 <k < e, C must be isomorphic to the multiplicative group
of E. Hence, C = {T) | 0 # X € E}. Since N must normalize C' and
since, as is well known, the normalizer of {T» | 0 # A € E} in GL.(q)
is (o){T\ | 0 # XA € E}, N = C(o). Therefore, N/C is cyclic of order
€. ]

Theorem 2.6 Let t be an odd prime, and let G = SPs,(q) with
(g,t) = 1. Assume e = e(q,t) and n = e/(e,2). Let T be a Sylow
t-subgroup of G, C = Cq(T) and N = Ng(T). Then T is cyclic, C is
cyclic of order ¢" + (—1)¢, and N/C is cyclic of order 2n. Ift > 3,
then N contains a Sylow 2-subgroup of G if and only if (¢,2) =1 and
e(q,2) =e.

Proof. First assume that e is odd. Then n = e. If J is the matrix

0 —1
I 0
with I the identity of GL,(q), G may be identified with the group of

all 2 € G Lay(q) such that zJz' = J (here z' is the transpose of z). If
A € GL,(q), let A* be the inverse transpose of A. Then

A 0 4 [0 4
0 Ax| —A* 0

belong to G for all A € GL,(q). Now GL,(q) contains an element B

of order (g™ — 1);. If
[B o0
*=lo B

then (z) is a Sylow t-subgroup of G. Hence, we may assume that
T = (z). If V is the vector space of dimension 2n on which G acts,
V = U, @ U; where U; and Uy are irreducible GF(¢)T-modules with x
represented by B on U; and by B* on Us.
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If X\ is an eigenvalue of B, t}21en the othler eigenvalues of B must be
the algebraic conjugates A9, X7 ,... A" . On the other hand, A\~! is
an eigenvalue of B*. If B and B* were similar matrices, we would have

)\qi+1 =1

for some i, 0 < i < n. This would imply that ¢ divides ¢* + 1. Then ¢
divides ¢?* — 1 and so e must divide 2i. Since we are assuming that e
is odd, it follows that e divides i. Then t divides ¢* — 1. Since ¢ > 2,
it is impossible for ¢ to divide both ¢¢ + 1 and ¢* — 1. Thus, B and B*
are not similar matrices. It follows that U; and U, are nonisomorphic
GF(q)T-modules. This implies that C' must fix both U; and Us. Also,
every element of IV either fixes both U; and Us or interchanges them.

We now see that C' consists of all matrices
A 0
0 A*

with A any matrix in GL,,(q) which commutes with B. It follows from
this that C'is cyclic of order ¢" —1. If N; is the subgroup of IV consisting
of those elements which fix U; and Us, then N7 consists of all matrices
of the above form with A any matrix in GL,,(g) which normalizes (B).
It follows that N1/C' is cyclic of order n. Now (B) and (B*) are both
Sylow t-subgroups of GL,(q). Hence, there exists a D € GL,(q) such
that D~'BD = (B*)* for some k with (¢,k) = 1. Then if

[ o D
y_ 7D* 0 ’

y € G, y"lzy = z¥, and y interchanges U; and Us,. Hence, |[N/N;| = 2.
Therefore, |N/C| = 2n. Since N/C is isomorphic to a subgroup of
Aut (T') and T is cyclic, N/C' is cyclic.

If ¢ > 3, then ¢" cannot be 2 (since then |G| = [Sp2(2)] =6 £ 0
(mod t)). Thus, if ¢ is a power of 2, then |G|y = ¢ > 2 = |N|,.
Hence, N does not contain a Sylow 2-subgroup of G if ¢ > 3 and the
characteristic of GF(q) is 2. Assume (g,2) = 1. Then |N|z = 2(¢"—1)2
which equals 4 if ¢ = 3 (mod 4). Since |G|z > 8, we see that N does
not contain a Sylow 2-subgroup of G if ¢ = 3 (mod 4). Assume then
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that ¢ = 1 (mod 4). Then e(g,2) = 1 and |N|s = 2n2(q — 1) while,
from Lemma 2.2,

|Gl2=(¢g—1)5(2-4-6----- 2n)s.

It follows at once that |G|a = |N|z if and only if n = 1. Therefore,
when ¢t > 3 and e is odd, N contains a Sylow 2-subgroup of G if and
only if (¢,2) =1 and e(¢,2) = e = 1.

Now suppose that e is even. Then e = 2n. Let F = GF(q),
E = GF(¢°), U the additive group of E, and p the characteristic of F.
Ifp=2let p=1. If p # 2, let u be an element of order 2(¢"™ — 1) in
the multiplicative group of E. In all cases, therefore, u4" = —p. Now
define [, ] : U x U — F by [u,v] = trace g/p(uuwv?" ). If we regard U
as a vector space of dimension 2n over F, then [, ] is a nonsingular
symplectic form on U. Without loss of generality, we may assume that
[, ] is the form preserved by G. If A is a nonzero element of E, let
T be the mapping of U given by u — u\. Then T € G if and only
if A"+ = 1. Hence, if L = {T | Tx» € G}, L is a cyclic subgroup of
order ¢" + 1 in G. Since (¢* — 1); = 1 for k < 2n,

1Gle = (¢** = 1)e = (¢" — )" + 1)e = (¢" + 1)1 = |L]¢.

Thus, without loss of generality, we may assume 7" < L. The centralizer
of Lin GL(U) is C; = {TA | 0 # X € E}. It follows from this that
C =y NG = L. From Lemma 2.5, the normalizer of T in GL(U) is
C1{o) where ¢ is the map u — u? for all a € U.

Now (42)?" = p? and so pu? € GF(¢"). If ¢ is odd, it follows that
pi=t € GF(g"). This implies that there exists a v € E such that
vt = pa-1 (if p = 2, we simply choose v = 1). Define the mapping
RonU by R:u— vu?. Then C1(c) = C1(R) and so N = GNCi(R).
However, a straightforward calculation reveals that R € G. Hence,
N = (R)(GNC4) = RC. It now follows that N/C is cyclic of order 2n.

Then |[N| = 2n(¢™ 4+ 1). Suppose t > 3. If p = 2 and |G|z = |N|2,
then q"2 = 2ny < 2n, and it follows that ¢ = 2, n = 1 and
|G| = |Sp2(2)] = 6 # 0 (mod t). Thus N does not contain a Sylow
2-subgroup of G if p = 2. Assume then that p > 2. If n is even, then
(g™ +1)2 = 2 and so |N|y = 4ns. Since ¢ = 1 (mod 8), we may use
Lemma 2.2 to conclude that

‘G|2 = (q2 - l)gn!g > 8"ngy > |N|2
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Hence, N does not contain a Sylow 2-subgroup of G if n is even.
Suppose n is odd. Then

|G: Ny =(¢* — 1)z (¢"" % — 1)2(q" — 1)2/2

and it is easy to see that |G : N|y > 1 if n > 3. Suppose finally that
n = 1. Then e = 2 and

|G:N‘2 = (Q71)2/2

Therefore, |G : N|; = 1 if and only if ¢ = 3 (mod 4). Summing up,
we see that IV contains a Sylow 2-subgroup of G if and only if ¢ is odd
and e(g,2) = 2 = e. This finishes the proof of the theorem. O

Lemma 2.7 If z is a real number > 5, then 2% — z2 > 7.

Proof. If f(z) = 2% — 22, then it is straightforward to show that
f"(z) > 0 when z > 5. Then f'(z) > f'(5) > 0. Hence, f(z) > f(5) =
7. O

3. The main results.

Theorem 3.1 Let G be a Chevalley group (normal or twisted), and
let p be the characteristic of the underlying field. Let A be a Hall -
subgroup of G and assume that ™ contains p but not 3. Then G satisfies
Cr and either p =2 or 2 ¢ w. Further, either A = G = a Suzuki group
or A is contained in a Borel subgroup of G.

Proof. If 2 ¢ , the result follows from [8, Theorem 3.2]. Assume
then that 2 € n. If G is a w-group, then G must be a Suzuki group
since 3 ¢ 7 and then the theorem follows immediately. Hence, assume
that G is not a m-group. Since p # 3, G is not of type 2Gb.

Suppose every Hall m-subgroup of G is contained in some Borel
subgroup. Then every pair of Hall m-subgroups have Sylow towers of
the same complexion. It follows that G satisfies C,. Further, if p # 2
and B is a Borel subgroup of G, then it follows from Propositions 8.6.1
and 14.1.3 of [1] that |G : B| = |W| (mod 2) where W is the Weyl
group of G. Since |W/| is divisible by 2 in all cases, it would follow
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that B does not contain a Sylow 2-subgroup of G. Since B contains a
Hall 7-subgroup of G, 2 cannot be contained in 7 if p # 2. Thus, the
theorem is proved if every Hall m-subgroup of G is contained in a Borel
subgroup.

Therefore, there is no loss of generality in assuming that A is not
contained in any Borel subgroup of GG. Since p € 7, A contains a Sylow
p-subgroup U of G. Let B = Ng(U), and let H be a complement to U
in B. Then B = H(AN B) and so it follows from [18, Proposition 2.5]
that AB = BA > B (since A £ B). Since U < B, the normal closure of

U in AB is contained in A. Since G > A, it now follows that AB # G.

As is shown in [13, p. 288], the normal closure of U in AB must
contain (X,., X ) for some fundamental root r. Let L = (X,, X _,).
Then A > L and AB > LB. It follows from [14, Section 7] and [15,
p. 183] that L is a homomorphic image of one of the groups SLz(q),
SLy(q?), SL2(¢%), SUs(q), or 2Ba(q). Since 3 does not divide |A|,
L =2 2By(q). Since G > A, it follows that G = 2Fy(q), ¢ = 2?"™*! for
some positive integer m, and p = 2. Now 2Fy(q) only contains 2 distinct
proper subgroups which properly contain a given Borel subgroup [1, p.
231]. Hence, A = LB. This implies that |A| divides |L||B]|. Since
|2B2(q)| divides |A|, we conclude that (¢ + 1) divides |A|. Since
(¢% 4+ 1)? divides |G| and since A is a Hall 7-subgroup of G, (¢? + 1)?
must divide |A|. It now follows that (¢® +1)? divides |L||B|. However,
|L| = ¢*(¢ — 1)(¢®> + 1) and |B| = ¢*?(¢ — 1)?>. Hence, (¢® + 1)? does
not divide |L| |B|, and we have a contradiction. O

Theorem 3.2 Let G be a subgroup of GL,(q) with (3q,|G|) =1. If G
contains a Sylow 2-subgroup of SL,(q), then G has an Abelian normal
2-complement.

Proof. Assume that we have a counterexample with |G| minimal.
Let T be a Sylow 2-subgroup of G. If G were solvable, then it follows
from [11, Theorem 4.6] that G would have a normal Abelian Sylow
s-subgroup for every prime s > 3. Since 3 does not divide |G|, G would
have an Abelian normal 2-complement. Hence, G is not solvable.

Now let L be the largest normal solvable subgroup of G, and let
K/L be a minimal normal subgroup of G/L. Then K/L is the direct
product of isomorphic simple nonabelian groups {Kj, ..., K,,}. Since
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3 cannot divide |K;|, K; must be a Suzuki group. If 7; is a Sylow
2-subgroup of K;, then Nk, (T;) is solvable but not 2'-closed [17].
Hence, since (I'NK)L/L is a Sylow 2-subgroup of K/L, Nk ((I'NK)L)
is solvable but not 2'-closed. Since T normalizes Nk ((T' N K)L),
TNg((T N K)L) is a solvable group containing 7' which is not 2'-
closed. Now TNk ((T'NK)L) # G since G is not solvable. On the other
hand, TN ((T'N K)L) satisfies our assumptions for G. Then it follows
from the minimality of our counterexample that TNk ((7'N K)L) has
a normal 2-complement. This contradicts our earlier statement, and so
the proof is complete. o

Theorem 3.3 Let S = A,(q). Assume S satisfies E, with 3 ¢ .
Then S satisfies Cr and a Hall w-subgroup of S has a Sylow tower.
Further, if S < G < Aut (S), then G satisfies C; and a Hall 7-subgroup
of G is solvable.

Proof. 1f 2 ¢ 7, this follows from [9]. If = contains the characteristic
of GF(q), the result follows from Theorem 3.1. Hence, we assume
that 7 contains 2 but not the characteristic of the underlying field.
The previous theorem now implies that a Hall 7-subgroup of S has an
Abelian normal 2-complement. Then every Hall m-subgroup of S has a
Sylow tower of the same complexion, and so S satisfies C;.. Since G/S
is solvable, G/S satisfies Cz. It now follows that G satisfies C, and
every Hall 7-subgroup of G is solvable. o

Theorem 3.4 Let G = GL,(q) with n > 1 and (2,q) = 1. Let
7 Cn(G) with2 € w but 3 ¢ m. Let T =7 — {2}. Then G satisfies E
if and only if all of the following are true:

(i) m does not contain the characteristic of GF(q).
(ii) e(q,t) =e(q,2) for allt € 7.
(i) t>n forallter.

Proof. If G satisfies E, then it follows from Theorem 3.1 that = does
not contain the characteristic of GF(g). Then, by Theorem 3.2, a Hall
m-subgroup of G is solvable. Thus, G would satisfy Eo; forallt € 7. It
now follows from Theorems 2.2.2 and 2.2.4 of [13] that (ii) and (iii) hold.
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Conversely, if (i), (ii) and (iii) are all true, let e = e(q,2), m = [n/e]
and d = n — me. Then GL.(q) contains a subgroup isomorphic to the
multiplicative group of GF(q°) extended by the field automorphisms
of GF(q°) over GF(q). This subgroup contains a Hall m-subgroup T of
GLc(q). Then if Ty is a Sylow 2-subgroup of GL4(q) (either Tp =1 or
e=2,d=1and Ty & Z5) and P is a Sylow 2-subgroup of S,,, then
G contains the direct product of Ty and (T"wr (P, m)). This subgroup
has the right order and so it is a Hall w-subgroup of G. O

Theorem 3.5 Let G be a subgroup of Span(q) with (¢,|G|) = 1.
If G contains a Sylow 2-subgroup of Span(q), then G has a normal
2-complement.

Proof. Assume a counterexample with (|G| + n) minimal. Let
F = GF(q), Q aSylow 2-subgroup of Spz(q) and Py a Sylow 2-subgroup
of Sp. Then Qwr(Py,n) is a Sylow 2-subgroup P of Span(q) [2]. If
V is the symplectic space on which Sps,(q) operates, then V is the
orthogonal direct sum

V=wvl---1V,

where V; is a nonsingular subspace of V' of dimension 2 for 1 < i < n,
P, faithfully permutes the subspaces {V;,...,V,}, and if M is the
base subgroup of P, then M = @1 X --- X @, where Q; is a Sylow
2-subgroup of Sp(V;). Now Spa(q) = SLa(q), and so Q and Q; are
generalized quaternion of order (g2 — 1)2. Then either J(Q) = Q (if
|Q| = 8) or J(Q) is a cyclic subgroup of index 2 in @ (if |Q| > 8). Since
Q; has no noncyclic Abelian subgroups, p4(Q;) = 4. Let z; be the
unique involution in @;. Then Z(M) = (z1,...,2,) = Q1 (M). Note
that z; is represented by —1 on V; and by 1 on Vj if j # ¢. Hence,
V; = kernel (z; + 1). If z is a nonidentity element of @;, then z; € (x)
and so Cy(z) = Cy(z;) = (V;|j # ). We now proceed via a series of
steps.

(1)

a) IfG > H > P, then H has a normal 2-complement.
b) G does not permute the subspaces {V1, ... ,V,yamong themselves.
n > 2.

o,
~

Ng(J(P)) has a normal 2-complement.
Z(P) < Z(G).

—~ o~~~
@ ¢]
~ ~
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Proof. Part (a) follows from the minimality of our counterexample.
Now suppose that G did permute {V3,... ,V,}. The permutation group
induced by G on {Vi,...,V,} would be a 3'-subgroup of S,, and would
contain Py, a full Sylow 2-subgroup of S,,. It would follow from [4] that
this permutation group equals Py. Hence every 2'-element of G would
fix each V;. If K is the subgroup counsisting of all elements of G which
fix each V;, then K < G and G/K is a 2-group. Since G does not have

a normal 2-complement, neither does K. Let K; = Ck(V;). Then K is
the subdirect product of the groups {K/K; | 1 <i < n}. Since K is not
2'-closed, neither is K/ K; for some i. Without loss of generality, we may
assume that K/K; is not 2'-closed. Now K/K; < Sp(Vi) = SLa(q).
Hence, we have a 3'-subgroup of SLy(g) which is not 2’-closed. Since
K/K, contains a Sylow 2-subgroup of SLs(q), we have a contradiction
to Theorem 3.2. Thus, (b) is proved. This immediately implies (c)
since if n = 1, then V = V] and so (b) would have to be true.

By Lemma 2.4, J(P) = J(M) = J(Q1) X -+ X J(Qy). For each 1,
either V; is an irreducible F'J(Q;)-module or it is the sum of 2 faithful
nonisomorphic irreducible FJ(Q;)-modules. Let N = Ng(J(P)).
Certainly N > P and so, by part (a), N has a normal 2-complement
if N # G. Assume then that N = G. Then G must permute
the homogeneous FJ(P)-modules amongst themselves, and so the
homogeneous FJ(P)-modules are not {Vi,...,V,}. It follows that
|Q| > 8 and V; is the direct sum of 2 nonisomorphic faithful irreducible
FJ(Q;)-modules U; and W;, and the homogeneous F'J(P)-modules are
{U;,W; |1 <i < n}. Suppose z € G and 1 < i < n. Then Uiz
must be a U; or a W; for some j. In either case, C;p)(Uix) = L;
where L; = (J(Qx) | 1 <k <n,k # j). Since Cyp)(U;) = L;, we see
that 7 'L;xz = L;. But V; = Cv(L;) and V; = Cy(L;). It follows that
Viz = V. Hence, G permutes {V3,...,V,} after all. This contradiction
proves that V # G, and so N has a normal 2-complement. o

Now if Cg(Z(P)) also had a normal 2-complement, then, since
3 does not divide |G|, G would have a normal 2-complement [5,
Corollary 5] contrary to hypothesis. Hence, Cg(Z(P)) does not have a
normal 2-complement. Since Cg(Z(P)) > P, it follows from (a) that
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Cc(Z(P)) = G. Hence, Z(P) < Z(G).

a) G is a 2,s-group for some prime s > 3.
b) G = PS where S is a Sylow s-subgroup of G.

c) n= 2 for some positive integer t.

(2)

~—~ Y~~~

d) V is an absolutely irreducible F P-module.

Proof. First suppose that G is not solvable. Let L be the maximal
normal solvable subgroup of G and let K/L be a minimal normal
subgroup of G/L. Then K/L is the direct product of isomorphic
simple non-Abelian groups Ti,...,T,,. Since |G| # 0 (mod 3), T;
must be a Suzuki group. Then if R; is a Sylow 2-subgroup of Tj,
Nr,(R;) is solvable but is not 2'-closed [17]. It follows from this that
Ng((PNK)L)/L is solvable but is not 2'-closed. Since P normalizes
Nk ((PNK)L), PNg((PNK)L) is a solvable subgroup of G which is
not 2'-closed. From (1la), we conclude that G = PNk ((PN K)L), and
so (G is solvable after all.

Since G is not 2'-closed, |Og22/(G)/O22(G)| > 1. Let s be a prime di-
viding |02122/ (G)/OQ’Q(G)‘ Certainly, s > 3. Now Ogrga/ (G)/OQ!Q(G)
acts faithfully on O22(G) /02 (G) and G = Ng(022(G) N P)O0y (G). If
H is a Hall 2, s-subgroup of Ng(O22(G) N P) containing P (such an H
must exist since G is solvable and P is contained in Ng(O22(G) N P)),
then H cannot be s-closed. Therefore, since H is a 2, s-group, H does
not have a normal 2-complement. Since H > P, it follows from (1la)
that H = G. Hence, G is a 2, s-group.

The permutation group Py is transitive if and only if n is a power
of 2. Assume P, is not transitive. Then, without loss of generality,
we may assume that {Vi,...,V,} is an orbit of Py and k£ < n. Let
U=Vie---@Viand W =V 1 ®:--®V,. Then U and W are
nonsingular symplectic subspaces of V. Let a = 2125 - - - 2; then, since
Py must permute {z1,...,2r}, a € Z(P) < Z(G). But a is represented
by —1 on U and by 1 on W. Hence U = kernel (a+1) and W = Cy (a).
Since a € Z(G), G must fix both U and W. Then G is the subdirect
product of the groups G/Cq(U) and G/Cg(W). Both G/Cs(U) and
G/Cg(W) satisfy the original hypothesis. Since U and W have smaller
dimension than n, it would follow that both G/C¢(U) and G/Cq(W)
have normal 2-complements. Since this would imply that G has a
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normal 2-complement, we would have a contradiction. Hence, Py is
transitive and so n = 2! for some integer ¢ > 1 (since n > 2).

Since dim (V;) = 2 and Q; is non-Abelian, V; is an absolutely irre-
ducible FQ;-module. Furthermore, {V4,...,V,,} are mutually inequiv-
alent nontrivial F'M-modules. Thus, any nonzero subspace of V fixed
by P must contain V; for some ¢. Since P is transitive, such a subspace
must be V itself. Extending the field F' doesn’t affect this argument,
and so V is an absolutely irreducible F'P-module. ]

(3) G is a primitive subgroup of GL(V').

Proof. Suppose this is not the case. Then V = U;®---@U, withr > 1

and G permutes the subspaces {Uy, ... ,U,}. Since P is an irreducible
subgroup of GL(V'), P must permute {Uq,... ,U,}, transitively. Thus,
dim (U;) = - - = dim (U,)) = d for some d and rd = 2n = 2!*1. Hence,

both r and d are powers of 2.

Suppose that Z(M) does not fix each U;. Without loss of generality,
we may assume that Ujz; # U;. Now 21 = a:f for some 1 € Q1.
Then (z1) must permute U in some cycle of length 4. Without loss of
generality, we may assume that

le == Ug, U2$1 = Ug, Ugml = U4, and U4$1 = Ul.
Let u be any nonzero vector in U;. Then, since z? = 1,
ul(zl + ].) c CV(Zl) = Vé 1oL Vn = Cv(ml).

Therefore, uy(z1 + 1)x; = u1(21 +1). However, u; (21 + 1) is a nonzero
element of Uy @ Us while uy(z; + 1)z; € Uz @ U,. This contradiction
shows that Z(M) must fix each U;.

Next suppose d = 1. Then r = 2n. Since (s,7) = 1 (since s is a
prime > 3 and 7 is a power of 2), S, a Sylow s-subgroup of G, must fix
some U;. Without loss of generality, we may assume that U5 = Uj.
Since Cy(Z(M)) = {0} (since V is an irreducible F'P-module), there
must be some ¢, 1 < ¢ < n, such that z; does not act trivially on Uj.
Relabelling, if necessary, we may assume that z; does not act trivially
on U;. Since z; has order 2 and since d = 1, we see that uz; = —u for
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all v € U;. Now z; must be represented by 1 or —1 on each U; and
dim (kernel (27 4+ 1)) = dim (V1) = 2. It follows that z; is represented
by —1 on exactly one U; with 2 < i < n. There is no loss of generality
in assuming that z; is represented by —1 on U; and by 1 on Uy for
3 <k <r. Then

U1 D U2 = kernel (21 = l) = Vl,

and also
U3®"'®UTZCV(Z1):‘/269"'69Vn-

Then U; is orthogonal to U; for all j € {1,3,4,...,r}. It follows that
U; cannot be orthogonal to Uy. Thus U; @Us @ - - - @ U, is the subspace
of all vectors in V' orthogonal to U;. Since S fixes Uy, S must fix
UoUs®---®U,. Since S permutes {Uy,...,U,}, we see that S must
fix Us. But then S fixes U; ® Uy = V;. Then the images of V; under
G = SP are just the images of V; under P, i.e., the images of V; under
G are {V4,...,V,}. This contradicts (1b) and so d > 1.

Now assume M does not fix each U;. Then @; cannot fix each U;
since M is the normal closure of (J; in P. Pick z; to be an element
of smallest order in 1 which does not fix each U;. Without loss of
generality, we may assume that Uyz; = Us. From Cy(z1) = Cy(zy),
we conclude that Cy, (z1) = {0}. It follows from this that u12z; = —uy
for all u; € Uy. Now Usxy # Us, and so a similar argument shows that
usz = —us for all us € Us. But then

Uy ® Uy C kernel (21 + 1) = V7.

Since dim (V1) = 2 and dim (U;®Uz) = 2d > 2, we have a contradiction.
Hence, M fixes each U;.

Now Vi,...,V, are mutually inequivalent irreducible F'M-modules.
Therefore, these are the only irreducible F'M-submodules of V. Since
M fixes Uy, U; must be the sum of a subset of {V1,...,V,}. Without
loss of generality, we may assume that U; = Vi®--- @V, with 1 < k < n.
If k = 1, then U; = V; and it follows that G permutes {V1,...,V,}
in contradiction to (1b). Thus, £ > 1. Then d = dim (U;) = 2k and
2n = dr = 2kr. Since P transitively permutes {U;,...,U,} and since
M fixes each U;, Py must transitively permute {Ui,...,U,}. Since
U0=Vi®---@dV,and V=U,8---0U, =V ®---®V,, it follows
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that {V1,...,Vi} must be a block of imprimitivity for Py. Since P, is
a Sylow 2-subgroup of S,,, we conclude that Py = Pywr (Ps,r), where
P, is a Sylow 2-subgroup of Sy, P» is a Sylow 2-subgroup of S,., and
P, is the group of permutations induced by Py on {Uy,...,U,}.

Therefore, the group of all permutations of {Uy, ... ,U,} induced by
G contains a full Sylow 2-subgroup of S,. Since |G| Z 0 (mod 3), it
follows from [4] that this permutation group is a 2-group. Hence, S
fixes each U;. Since U is a direct sum of some of the V;’s, each U; is a
nonsingular symplectic subspace of V.

Let L = Ng(Ui)N---N Ng(U,). Then L <G and G/L is a 2-group.
Since G does not have a normal 2-complement, neither does L. But L
is the subdirect product of the groups.

{L/C(Ui) [1<i<r}

Thus, for some i, L/CL(U;) does not have a normal 2-complement.
Now Q;...QrP: is a Sylow 2-subgroup of Sp(U;). It follows that
L/CL(U;) is a subgroup of Sp(U;) and L/CL(U;) contains a full Sylow
2-subgroup of Sp(U;). Since dim (U;) < dim (V'), the minimality of our
counterexample implies that L/Cp(U;) has a normal 2-complement for
all 5. This contradiction finishes the proof of step 3. a

(4) S| = s.

Proof. Let T be a maximal solvable subgroup of GLa,(g) such that
T > @. Since G is primitive, so is T. Certainly, T > Z = Z(GL2,(q)).
Let A be a maximal normal Abelian subgroup of T and let C' = Cr(A).
Then there are positive integers m and d such that md = 2n = 2¢+1,
A is cyclic of order ¢™ — 1, T'/C' is cyclic of order dividing m, and C is
isomorphic to a subgroup of GL4(¢™) [16, Chapter V].

Now T cannot be 2'-closed since G isn’t. Since T'/C is a 2-group, it
follows that C' is not 2’-closed. Certainly then C' is not Abelian and so
d > 1. Since P < T, Lemma 2.4(c) yields

ma(T) > ma(P) = nma(Q) = n.
On the other hand, since ¢ is odd,

ma(C) < ma(GLg(q™)) = d.
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Since T'/C is cyclic, m2(T) < d+ 1. Thus,
d+1>n=md/2.

If m > 4, this would imply that d + 1 > 2d contrary to d > 1. Since m
is a power of 2, m =1 or 2.

Suppose m = 2. Then d = n, |T/C| < 2, and since ¢> = 1 (mod 4),
we can use Lemma 2.2 to obtain

|Cl2 < |GLn(d?)|2 = (¢° — 1)5nly = |Qwr (Po,n)| = |P|.

Also |Z(C)| > |A] = ¢ —1 > g—1. Since P is an absolutely irreducible
subgroup of GL2,(q),

1C612,q(P)| = ¢ = 1.

Therefore, P is not contained in C. Since P < T and |T/C| < 2, we
see that T'= PC and |T/C| = 2. Then

|PNC|=|P|/2=|GLa(q*)|2/2.

If D is a cyclic group of order (¢> — 1), then a Sylow 2-subgroup
of GL,(q?) is isomorphic to Dwr (Pp,n) [2] and it has an Abelian
subgroup of order (¢ — 1)3. Since C is isomorphic to a subgroup
of GL,(q?), it follows that P N C has an Abelian subgroup of order
> (1/2)(¢% — 1)3. Since an Abelian subgroup of @ has order at most
(¢ — 1)2/2, we can use Lemma 2.4(b) to conclude that an Abelian
subgroup of P has order at most

e (P) = wp|(@)" <27"(¢* — 1)5.

It follows that n < 1 which contradicts (1c). Hence, m = 1. Then
d=2n =2t+1,
Therefore, T = C and A = Z. By [16, Chapter V], T has a normal

series
1<Z<B<T

where B/Z is Abelian of order (2n)? and 7/B is isomorphic to a
subgroup of Spy(;41)(2). Since the intersection of Z and Spz,(q) has
order 2, and since B/Z is a 2-group, we see that S is isomorphic to a
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subgroup of Spy(;41)(2). Since s > 3 while [Sps(2)] = 2* - 3% -5 and
|Sps(2)] = 2°-3%.5-7, we conclude that |S| = s if t < 2.

Assume then that ¢t > 2. Now |T/Bl; < 2(t+1)* while |B|, =
(2n)%(q — 1)y = 22(t+1)(q — 1)3. Hence, |T]s < 2(t2+4t+3)(q — 1)
On the other hand,

]2 > |Pl2 = (¢* — 1)znla.

Since n = 2¢, nly = 2"~1, We now obtain

an—1(g? — 1)1 < 2(t2+4t+3)(q —1),.
Let (¢ — 1)y = 2. Then k > 3 and (g — 1)2 < 28~1. Therefore

n—1+nk<t*+4t+3+k— L
Then

t+2)?*>n-1)(k+1)+2>4(n—-1)+2=4n -2 =212 2,

Since t+2 > 5, it follows from Lemma 2.7 that 2:+2 — (¢ +2)% > 7, and
we have a contradiction. Thus, |S| = s. (The reader may have noticed
that we also have shown that t = 1 or 2, i.e., n = 2 or 4. However, this

doesn’t appear to lead to any simplifications in the rest of the proof.)
O

(5) Z(M)«G.

Proof. Since G is not s-closed and |S| = s, we see that Os(G) = 1.
Also, O3 5(G) = 02(G)S. Then P/O,(QG) is isomorphic to a subgroup
of the automorphism groups of S. Hence, P/O2(G) is cyclic. In
particular, Q;/(Q; N O3(G)) is cyclic. This implies that Q; N Oz(G)
must contain some element x; of order 4. Then (z; | 1 < i < n) is an
Abelian group of exponent 4 and order 4" contained in O2(G). Now
let

K=(A]|A<0:(G), A =1, |A|=4", 2* =1 for all z € A).
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Then z; € K. Since pu4(Q;) = 4, Lemma 2.4(b) yields ps(P) = 4™.
Then another use of Lemma 2.4(b) implies that if A is an Abelian
sugroup of P such that |P| = 4" and z* = 1 for all z € A, then
A < M. Therefore, K < M. Clearly, K <G and so Q;(K) <G. Now
z; € (x;); hence, z; € Q1 (K). Since K < M and Q1 (M) = (21,... , zn),
it follows that Z(M) = (z1,... ,2,) = Q1(K) < G. O

(6) Contradiction.

Proof. Z(M) is elementary Abelian of order 2" > 2 and so Z(M) is
not cyclic. But, since G is primitive, any normal Abelian subgroup of
G must be cyclic. ]

Theorem 3.6 Let H be a Hall w-subgroup of Spay(q) with (¢,2) = 1.
Assume that 2 € m, 3 ¢ ©m, 1 C 7(Sp2n(q)), and let 7 = m — {2}.
Then 7 does not contain the characteristic of GF(q), all T-subgroups of
Span(q) are Abelian, Span(q) satisfies D, Span(q) satisfies Cr, and H
is solvable with an Abelian normal 2-complement. Also, e(q,t) = e(q,2)
andt >n for allt € 7.

Proof. By Theorem 3.1, m does not contain the characteristic of
GF(q) and so (q,|H|) = 1. Then Theorem 3.5 implies that H has
a normal 2-complement K. Hence, H is solvable and K is a Hall 7-
subgroup of Spa,(q). Let F = GF(q), G = SP2,(q) and let V be the
symplectic space on which G acts. If 7 = {2}, the theorem is trivial;
hence, we assume that 7 is nonempty.

Let ¢ be any prime in 7. Then H contains a Hal 2, t-subgroup L of
G. Since H has a normal 2-complement, it follows that L has a normal
Sylow t-subgroup T'. Certainly, then Ng(J(T')) contains L. Now let
e = e(q,t), k = ¢e/(e,2), m = [n/k], and d = n — km. The Sylow
t-subgroups of G are described in [20]. If T is a Sylow t-subgroup of
Spar(q) and T; is a Sylow t-subgroup of S,,, then T is isomorphic to
Towr (Ty,m). It now follows from Lemmas 2.6 and 2.4 that J(T') is the
base subgroup of Tywr (77, m). The obvious imbedding of Towr (T7, m)
into Spa,(q) shows that V is the orthogonal direct sum

V=Vi®&---®dV,®W

where V; is a nonsingular symplectic subspace of dimension 2k for
1 <i<m, Vy is a nonsingular symplectic subspace of dimension 2d, T
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acts trivially on Vg, T permutes {Vi,...,Vn} and J(T) fixes each V;.
Then it is not difficult to show that Ng(J(T')) fixes Vy and permutes
{V1,...,Vin}, Therefore, L is isomorphic to a Hall 2,¢-subgroup of
(Sp2k(q)wr (Sm,m)) X Spaq(q). (Here if d = 0, we interpret Spaq(q)
to be the identity.) This implies that Spak(g) contains a t-closed Hall
2,t-subgroup and S, satisfies Ey ;.

Using Lemma 2.6, we see that e(q,2) = e (in order for Spsr(q) to
have a t-closed Hall 2, t-subgroup). Then e = 1 or 2. This implies that
k =1 and m = n. Now S, never satisfies Fy, if 2 and ¢ both divide
|Sn| [12, Theorem A4]. Hence, ¢t does not divide |S,|; thus, t > n.

We now see that e(q,t) = e(q,2) and ¢ > n for all t € 7. It now
follows that Sps(q) contains an Abelian Hall 7-subgroup. Since G
contains the direct product of n copies of Spz(q), G contains an Abelian
subgroup of order (g2 — 1)?. This is the right order and so G contains
an Abelian Hall 7-subgroup. Then G satisfies D, [21]. This implies
that every 7-subgroup of G is contained in a Hall 7-subgroup; hence,
every T-subgroup of G is Abelian. Then H has an Abelian normal 2-
complement. It now follows that every pair of Hall w-subgroups of G
have Sylow towers of the same complexion. Hence, by Lemma 2.3, G
satisfies C;. a

Theorem 3.7 Let S = C,(q). Assume S satisfies E, with 3 ¢ .
Then S satisfies Cr and a Hall w-subgroup of S has a Sylow tower.
Further, if S < G < Aut (S), then G satisfies C; and a Hall 7-subgroup
of G is solvable.

Proof. If 2 ¢ m, this follows from [9], and if 7 contains the character-
istic of GF(q), we obtain the conclusion from Theorem 3.1. Finally, if
7 contains 2 but not the characteristic of GF(q), then the result is a
consequence of the previous theorem. a

Note that Theorems 3.3 and 3.7 together yield the proposition stated
in the introduction.

Theorem 3.8 Let G = Spa,(q) with (¢,2) = 1. Let 1 C n(G) with
2embut3 ¢m. Let 7 =m— {2}. Then G satisfies E; if and only if
all of the following are true:
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(i) 7 does not contain the characteristic of GF(q).
(ii) e(gq,t) =e(q,2) forallteT.
(i) t>n forallterT.

Proof. 1If G satisfies E,, then the result follows from Theorem 3.6.
Assume therefore that (i), (ii) and (iii) all hold. Let e = e(q,2); then
e =1 or 2. It follows from Lemma 2.6 that Sp2(q) contains a Hall
m-subgroup 7. If P is a Sylow 2-subgroup of S, then P is a Hall 7-
subgroup of S,,. Then it is straightforward to verify that T wr (P, n) is
a Hall m-subgroup of G. Hence, G satisfies E . ]
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