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TWO WEIGHTED (L?,L?) ESTIMATES
FOR THE FOURIER TRANSFORM

S. BLOOM, W.B. JURKAT AND G. SAMPSON

0. Introduction and notation. In this paper we continue to
study the two-weight problem for the Fourier transform. The problem
is for given p and g with 1 < p < g < 00, to determine necessary and
sufficient conditions on w and v so that

00 ([ @i dx)p/q <c [ \rowas,

where C is a positive constant independent of f.

In the case where w and 1/v are radial and symmetrically decreasing,
this was completely solved in Theorem 2 of [4]. There the Fourier
transform problem was reduced to the two-weight problem for the
Hardy operator.

In two dimensions (n = 2) for p = ¢ = 2, Kerman and Sawyer solved
the problem when w and 1/v are symmetrically decreasing in each of
their variables. Here they showed that the Fourier transform problem
can be reduced to a two-weight problem for the two-dimensional Hardy
operator, solved by Sawyer in [6], where he also presented these results.

Heinig and Sinnamon in [2] were able to generalize these results of
Kerman and Sawyer to n-dimensions for conjugate exponents, where w
decreases in each of its variables and v has the special form v(z) =
w(1/z)P/4 (note 1/ = (1/xy,1/za,...,1/x,)). Furthermore, the
necessary and sufficient conditions they obtain are quite easy to apply.

We obtain the following results. In Section 2, in n-dimension, for
weights w and 1/v that are symmetrically decreasing in each of their
variables, we reduce the Fourier transform problem to a two-weight
problem for the n-dimensional Hardy operator. Here p < ¢, with ¢ a
positive even integer. We should point out, though, that the Hardy
problem is still open in three or higher dimensions.

Received by the editors on July 25, 1991 and in revised form on September 6,
1991.

Copyright ©1993 Rocky Mountain Mathematics Consortium

451



452 S. BLOOM, W.B. JURKAT AND G. SAMPSON

For = € R", we take z = (y;,y2) with y; € R%, where I; and [y
are nonnegative integers summing up to n. We say that a real-valued
function f(z) defined on R" is symmetrically decreasing in the variables
y1 and yo if

02 {1

f(y1,y2) is radial in each of the variables y;,y2, and
(b) f(ly1l, ly2|) is nonincreasing in each of its variables.

In n-dimensions, when 1 < p < g < o0, with g even, for weights w and
1/v that are symmetrically decreasing in the variables y; and yo, we
reduce the Fourier transform problem to a two-weight problem for the
two-dimensional Hardy operator, and apply Sawyer’s characterization
(in [6]) of such weights. This generalization of the Kerman-Sawyer
work is done in Section 3.

In n-dimensions and for all 1 < p < g < 0o, when v(z) has the specific
form

l l 1-1 1 1 1 r/a
A R

and is increasing in the y;-variables, we solve the Fourier transform
problem. This extends the Heinig-Sinnamon results, and like their
results, the conditions obtained are quite easy to apply. In a similar
fashion, we can solve the Fourier transform problem whenever w and
1/v are symmetrically decreasing in any number of variables y1, ... , yg,
with & < n. This result extends Theorems 4.9 and 4.10 of [2] and
Theorem 3 of [4]. This material is all presented in Section 4.

Finally, in Section 5, we obtain some further special necessary and
sufficient conditions for the Fourier transform problem.

Let f : R® — C. If f is radial, i.e., if f(z) = f(Jz|), and if s > 0
then f‘z|<s f(z) dz is a standard radial integral, meaning that

/zlgs f(z) do = 7 /0 Feryrtdr,

where 7, is the volume of the unit ball in R".

When we suppose that f(z) is radial in each of its variables, as we
do in Section 2, then we write fles f(z) dz to denote | dry -+

|z1|<s1
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flw I<s dz, f(x), where s = (s1, 82,... ,8,) with each s; > 0. We de-
fine f\les f and f|z\§1/s f similarly, where now 1/s = (1/s1,... ,1/8p).

When we deal with functions f(x) radial in the variables (y1,y2) €
R", with each y; € R, we will write f\z|§s f(z)dx for f\yﬂﬁa dyy -
fly2|<52 dys f(z) with these corresponding y; and yo integrals to be
interpreted as the radial integrals described above. This notation will
be used frequently in Sections 1, 3 and 4.

Let f : R® — C and pys(s) = [{z € R" : |f(z)| > s}| be finite for
each s > 0. We let f* denote the usual (one-dimensional) decreasing
rearrangement of |f|. In particular, notice that

pr(s) ={t € (0,00) : f*(t) > s} for all s > 0.
We define the radial (or symmetric) decreasing rearrangement of f by

f(@) = 1" (ynlz™).

Throughout, we note that 1/p + 1/p’ = 1, and c,c,c2, and so
on, will denote positive constants not necessarily the same in each
occurrence. We use P < @ to abbreviate an inequality |P| < ¢|Q],
with ¢ independent of the specified variable quantities, and we use
P x @ to indicate P < @ and Q < P.

1. Local Li-estimates. Throughout this section, we let z =
(y1,92), with the y’s € R%. By f(z) we mean a specific function
that is radial and decreasing in each of the variables y; and ys, defined
as follows. If f; = R; f represents the radial decreasing rearrangement
of f(-,y2) with respect to the first variable, and if fi2 = RyR;f is the
radial decreasing rearrangement of f;(y1,-) with respect to the second
variable, then we denote the function fi2 by f (see, for instance, Section

4 of [2]). Similarly, we denote f2; as f.

We also define (for reasonable functions ¢),

1
1.1 A(pxzi/ o(t) dt,
(L) (@) |y [ ]ya | [t]<|z] Q

where z is, as usual, (y1,y2).
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We recall the well-known Riesz rearrangement theorem and its gen-
eralization to n-dimensions by Sobolev [8] which says: for r, f; and
f2 € LY(R™), with r, f1, and f» > 0 that

(1.2) /n r(z)(f1 * f2)(z)dz < c/ F(x)(f1 * f2)(z) dz

where the bar represents the radial, decreasing rearrangement of the
function in R".

It is easy to see that we obtain from (1.2),

/nr(m)(fl ¥ fox ook f)(z)dr < c/ F(x)(f1 * - * fn) () da.

It follows from these results that
(1.3)

(a) / (@) (frefan o fu) @) dase / F(@) (Frafan -+ o) (@) do

n

(b) /l;{n(fl*f%: cte *fn)2 dm S CA"(fl*f2* cre *fn)z dm
We obtain from (6.1) and (6.5) of [5], that

Proposition 1.1. For u >0 and ¢ > 2, let f € L>*(R™) N LY(R™).

Then
~ q _ 4
/z|§u f(z)idz < c/|z§u </t|§L f(t)dt> dx.

Bl

Here, the bar denotes the radial, decreasing rearrangement, and the
integrals that appear are all standard radial integrals.

Throughout, we let Xg(z) denote the characteristic function of the
measurable set E.

Proposition 1.2. Suppose that ¢ > 2, Xp(z) < X(Jy2| < u2),
Xe(@) < X(ly1| < wi), and let w = (uy,uz) € RE.  Then for

g e L*(R") N LI(R™),
1= [l ds

<e /yS e [ dylch(x)[ /

(1.4) q
i [ o)
S; Rl2

il
1="Ty1]
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Proof.

q
1] ‘Y1 !/
dxle ! hyz (1171)

I:/ dy2 dy1 X g(z)
Ri2 R1 R

)

where h(z]) = hy,(z}) = [gi g(t)ew2v2 dzly, and t = (), z}). Thus
we shall estimate

I— / / Xe(@)lh(y1)| dys dys.
R!2 JR!1

For fixed y2, X(-,y2) is the characteristic function of some set in R",
and so, by Proposition 1.1, it follows that

[ @i <e [ anmoxe)| [

zll‘g;

q
ly1 ]

Rl

We can safely assume that g > 0. In that case,

Rih(z)) < R1</Rl g(z, o) dac'2>
2

Therefore,

q
I< c/ dy, [/ R, (/ gdac'2) dw'l] / dy2 RiXg(z)
RA |z’1\§ﬁ Ri2 Ri2

q
= c/ di [/ R; </ gdac'2> dx'l] / dysXg(x),
RA lef I< Ri2 Ri2

1l

and now, by hypothesis, since Xg(x) = 0, if |y2| > u2,

(1.6)

q

I< c/ dyz/ dylch(x)[/ Rl(/ gdmé) dx'l] .
ly2|<uz R |z S‘%ﬂ R'2

1l
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Fix a set B = By, in R" with measure less than or equal to the
measure of the ball of radius 1/|y;|. Then,

dwiXB(w'l)/ gdméz/ / Xpgdz) dxb
Rl1 Rl2 Rl2 JRU

S/ RiXxp(z))R1g dz| dzf
Rl2 JRU

= Rixp () d) Ryigdz)
Rl Rl2

Z/ R1XB/ g.
RUu Rl2

In other words,

(1.7) / XB(m&)dm'l/ g dzh §/ / gdzy dx',
R Ri2 |z |< 2 JRI2

ly1]

and so (1.4) follows from (1.6) and (1.7).

In order to see (1.5), we obtain instead that

q
(1.8) I< c/ dyy RQXE(CL’)[/ da:'QR2</ gda:'lﬂ ,
RO Ri2 |z’2|§® Rl

but since this time

dzh Ry gdx} ) = sup X5 (zh) g dx'y dxb,
25 <5 R R!2 R

21

where the supremum is over all sets B with RoxXp < X(|z5| < 1/|y2])-

But
/ XB/ 92/ XB/ Ryg
Rl2 Rl1 Rl2 Rl1
=/ / XBngS/ / J,
Rt IR R Sy |<

and putting this estimate into (1.8), we obtain our result. O
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Our next result generalizes Proposition 4.5 of [2] as well as Theorem
1 of [5]. We view it as one of the main results of this paper.

Lemma 1.3. Foru = (u1,us) withu; > 0, and for f € L'NLY(R™),
where ¢ = 2,4,6,..., we have

) U= Fla d fd qd
(19) Slép/R" T Pxe(e)do < c/ac|<u </|t<1/z| d t> o

where the supremum is over all sets E for which Xg(z) < X(|y2| < u2),
Xg(z) < X(Jy1| < w), and |E| < cult -ul?.

Proof. We first show that
(1.10)

q
U < c{ubt -ub (/ f(z) dm)
lo] <+
q
s [ e [ [ o)
Rl ly2|<uz 25| <55 e |< 2
- 14
Y B [ [, ] dw;fu)]
R!2 ly1|<ua EARS ot | < Lo

4 / F@)i(lyn | ya]2)72 d},
|z|> L

and next we show that the right hand side of (1.10) is below the right
side of (1.9).

For f > 0, we define

fi(z) = {f(x) if |yi| < 1/u; for i =1 and 2,
0 elsewhere
fQ(x)_{f(y1|a|y2|+1/u2) if ly1| < 1/uy
0 elsewhere
fg(w):{f(y1|+u%a|y2|) if ly2] < 1/uq,
0 elsewhere

and ~ ~
fa(@) = f(ly1] + L/ua, [y2| + 1/u2)
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in such a way that f(z) = fi(z)+ fo(z) + f3(z) + fa(z). Then we have

4
[ e < ey [ 1fme)de=1em ey,
" i—1 YR"

First observe that

q q
I<cullul < fi(z) dac) = cultub? </ f(z) dac) .
Rm 2| <5

Next, using Proposition 1.2, where we employ (1.5) for II and (1.4)
for III, we obtain

II+1III < C/ dyr dygiE (w)

ly1]|<u1 R'2

- 1 4
W= dwaf(xa|,|w;|+—)]
EALS <L Uz
+c/ dys / >:<
y2\<uz
- 1 4
Wy dwgf(xa|+—,xg)] .
|2 1< 2 o< L “
Next, to estimate
V= [ @led < [ i)
Rn Rn
:/ (fax fax--x f1)? da,
R’n

where f4 is convolved with itself n-times (¢ = 2n, here is where we need
that ¢ is even). Thus, by (1.3)(b) we get that

V< [ (P [ 10
<o [ E 2 de



TWO WEIGHTED (L?, L?) ESTIMATES 459

where we have iterated the standard inequality due to Hardy-
Littlewood-Paley, namely,

/ G| de < ¢ / g/ da

Thus,

- 1 1 _
Ve fq(|y1| TR —) Iyl lyal)72 de,
R~ (751 U2
or

Ve f @l
z|> %

and now putting these estimate for I, II, ITI and IV together, we obtain
(1.10).

Next, to see that the right side of (1.10) is below the right side of
(1.9), notice that

~ q L l2< 5 >q
/z|§u (/tSLf(t)dt> dz > cui'ugy /t|§%f(t)dt > cI.

&l

_ q
me [ [ e[ anf asiol
R ly2| <z BN~ o | <

= ug
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:/ dyz/ [/
ly2|<uz ly1|<wui |z

+ cultul? </ dz} dzly f ()

< c/|w<u |:/|t<L f(® dtrdm.

lz]

A similar argument gives this same estimate for II. Furthermore,

5 4 £q L L) I la\g
/leu{/usi f(t)dt} dmzc/usuf <|y1|’|yz| (™ o[ )" da

El
>clV.

Putting all these estimates together, we get our result. ]

It follows immediately from Lemma 1.3 that
(L12) U=sw [ f@lde<e [ (AF@) ("l 2 de
BB |z|> 1

where the supremum is taken over the admissible sets E (as described
in the lemma) and this holds for all u € R3.

Let t = (2}, z}). We define X(t; ) to be either zero or one (i.e., for
each fixed ¢, X (¢; z) is a characteristic function), and say it is admissible,
if for each ¢,

() Jx(t:w) do < claf[*[ab]", and
(ii) both X(t;z) < X(Jy2| < |z4]) and X(¢;z) < X(|y1] < |z}]).

Next, consider weights w(z) and w; (z) such that

@) wie) = [ d [ dseoxieo)

b wi\r) = w d



TWO WEIGHTED (L?, L?) ESTIMATES 461

for some w(t) > 0.

Notice that if, for each t, X(t;z) = x(z};y1)x(zh;y2), where
S X(@5yi) dyi < clz;|'t, for i = 1 and 2, then X(t;z) is admissible.

Furthermore, if X(t;z) = X(|ly1| < |21)X(Jyz] < [2h]), then it is
admissible, and in this case, w(z) = wy(z).

We end this section with the following result.

Theorem 1.4. If q is a positive even integer, and if w(z), w(x)
satisfy (1.13), then

f Vet de < [ ATl ol () e

Proof. From (1.13)(a), we have

/n |f(@)|w(z) de = / \f(m)|q/nw(t)x(t;x) dt dx
~ [ o) [ 1f@rxe) dee

This X, of course, is admissible. Thus, by Lemma 1.3 with u = ¢

/n \f(m)|qw(a:)dm < c/"w(t) dt/z|§t| </U|§% f(v) dv)qda:
:c/n dgc</|vgL f(v)dv q~/t|2z|w(t) dt
(

and now we obtain our result. O

2. Necessary and sufficient conditions with weights. In this
setion we generalize the results of Proposition 1 of [6] to n-dimensions
and g even. We will reduce the Fourier transform problem for weights
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w(z) and 1/v(z) decreasing in each of their variables to a two-weight
problem for the n-dimensional Hardy operator.

Throughout this section, the weights w(z) and v(z) will be radial in
each of the variables z;, and f(z) will denote a function that is radial
and decreasing in each of its variables,

f(m) = Ran—l ce le(I),

where R;f represents the radial decreasing rearrangement of f in the
xj-variable.

In this section, we define

1
21 Ap(z)= — 1 dtl---/ dto(t)
1] |znl Sy <o) ltn|<|zn]

and set
(2.2) w(z) = / w(t) dt
[t]> ||
for some w > 0. This w(x) corresponds to (the appropriate) wi(x) of
Section 1.

We begin with a generalization of Theorem 2 of [5]:

Theorem 2.1. If1 < q < oo, then for 0 < f € L'(R™) and
s =(s1,...,58n) with each s; > 0,

[, s> [ dy(/ f(t)dt>q,

where ¢ is independent of f and s.

Proof. For f > 0, as in the proof of Theorem 2 of [5], it follows that

where Ay is defined by (2.1).
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Hence,

£(0) dt> :

[ ity = [ dy(/t|<

1
=y

Now by iterating Hardy’s inequality, we get that

/DS(Af(y»qdygc/K f9 de

and this last inequality implies our result. ]

By Theorem 2.1, we get (just as we did in Theorem 1.4) that for
0< feL'nlLy,

@3 [ f@le@deze [ (A7) ),
where w(z) satisfies (2.2) and
(2.4) u(@) = |21+ a | Pw(1/|2]).

In our next result, we obtain a version of Lemma 1.3,

Lemma 2.2. If ¢ > 2 and is even, then for u € R},

/ |f ()| de < c/ [Af(2)]|z1 - - - 2|92 da.
le|<u |o/>1

Proof. Take 1,,(t) = (1/u1)X1(¢) - - - (1/un)Xn(t), where each X; is the
characteristic function of the set {|¢t;| < w;}. If g > 0 and is decreasing
in each of its variables, then g*1,(z) is also decreasing in the variables
x;, and it follows that

(2.5) g * Py () < cAg(x + u).
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Next, since |1, (x)| > ¢ for |z;] < 1/u;, 1 < i < n, we have, for even g,

F(2)|%dx < ¢ Aachuachac
/zlﬁm )7 de < / F@) ()]

n

:c/ (fxpyx % frhy2da
Rn
Sc/ [f %y % -+ - % f x1h,]° da, by (1.3)(b)
—c [ (Frvay s
<cf (Frvlen o,
R%
by the Hardy-Littlewood-Paley inequality in iterated form.

Now, from (2.5), it follows that

/ f@)7de < c / AF (2 + W)tz - ]9 da
lo]<i

R}
<cf (AF@ler-ealrde,
lz[>u

and we get our result simply by replacing 1/u with w. ]
The next result follows immediately from Lemma 2.2.

Proposition 2.3. If ¢ = 2,4,6,..., and if w(z) satisfies (2.2), then
[ @) s < [ (afa)u) de,

where u(x) is defined in (2.4).
Now we are in a position to obtain the main result of this section.

Theorem 2.4. Suppose ¢ = 2,4,6, ..., u(z) is defined in (2.4), w(z)
n (2.2), and 1/v(x) is decreasing in each of its variables. Then

2o ([ wmwe) e[ s@res
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holds if and only if

en ([ e dx)p/q < Ifpu@ds

Proof. That (2.7) implies (2.6) follows immediately from Proposition
2.3. To argue the converse, we note that, by (2.3),

[ i@ ez [ @) d.

and now apply (2.6), which gets our result. Notice that (2.3), and so
this direction, holds for all 1 < ¢ < co. O

The estimates given in Lemma 2.2 can be improved, compare this
with Lemma 1.3, but this will be left to another project. It also should
be noted that, in Theorem 2.4, there is no restriction on p.

3. Estimating the Hardy operator. We continue with the
generalization of Proposition 1 of [6]. In Theorem 2.4, we showed
that the Fourier transform problem can be reduced to a two-weighted
problem for the Hardy operator. In this section we return to the case
when z = (y1,¥2) € R™ and both w(z) and 1/v(x) are decreasing in
the variables y; and y,. We will appeal to Theorem 1.4 (note that the
Hardy operator is defined by (1.1)). Next we apply Sawyer’s result for
the Hardy operator in [6] to complete the result.

Theorem 3.1. Let q be a positive even integer, and let

(3.1) u(@) = (Jy|"[y21)? 2w (1/ly1], 1/1y2)),

w(z) = wi(z) satisfies (1.13), and 1/v is decreasing in the y; variables.
Then

52 ([ e e) s [ e
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if and only if
. p/q .
(3.3) ( / (Af(2))"u(2) da:) <cf fPo)de,
n Rn
where Af is defined in (1.1).
Proof. By Theorem 1.4, we get that
[ i@ e <e [ i@l d.
and now by (3.3) this implies that
R p/q .
([ @) <c [ fened
n R’n
but since f is decreasing in the variables y; and y» and v(z) is increasing

Y1,Y2, we obtain (3.2).

Next to argue that (3.2) implies (3.3), we note that, since w(z) =
wi (z) and satisfies (1.13), it follows from Theorem 2.1 (as it applies
here) that

B [ @@z [ A da

and now in (3.4) replace f by f. Next apply (3.2) with f in place of f
to obtain our result. ]

Just as in Theorem 2.4, the f in (3.3) can be replaced by f, to give us
the necessary and sufficient condition for (3.2). Also notice that (3.3)
reduces to

(3.5) / drq / dror ey (—, —>
0 0 Ty T2
T2 1 ~
. [/ dsz/ dslslf_ls?_lf(sl,sz)}q
0 0

o [es) N Q/P
< c{/ d’l"2/ drl(rlflrlf1)pvl(r1,r2)f(r1,7‘2)p}
0 0
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where v(ry, ) = (ri* Ttz 1y, (1), 7o), with v the weight in (3.3).
The characterization of all weights satisfying (3.5), when p < ¢ was
settled in [6]. So we are finished once we identify these weights with
our original weights w and v. We shall write out Sawyer’s result.

Set

[f(ri,r) = /0 1 /0 " Pt t) dt dty

and - e
I*f(Tl, T2) = / / f(tl,tz) dto dty.
1 T2
Given weights a and 3, we set ¢ = ,6’1_”’ and define these three
conditions:
(A) sup (I*a(a,b))9(Io(a,b))/? < oo

a,b>0
(B) Ia(Io)%(a,b) < c?[Io(a,b)]”’P, for all a and b > 0, and
(C) I*[o(I*a)" (a,b) < ¢ [I*a(a,b)]’'/?, for all @ and b > 0.

The elegant central result of [6] is

Theorem 3.2 (Sawyer). Suppose 1 < p < q < 0o and a and 3 are
nonnegative weights on Ry x Ry, with o = f17P". Then

([ [ |If|Qa<w))p/q <c[” [Tirse

if and only if (A), (B) and (C) hold.

Theorem 3.3. Let 1 < p < q < o0 and q = 2,4,6,... . Let u(z)
satisfy (3.1), w = wy satisfy (1.18) and 1/v(z) be decreasing in each of
the variables y1 and yo. Put

a(z) = i thapl =1ty ) )

Blz) = ri e u(ry, ),

and
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Then (3.2) holds if and only if (A), (B) and (C) hold.
Proof. Simply apply Sawyer’s Theorem 3.2 to Theorem 3.1. o

We have now generalized the Kerman-Sawyer Proposition 1 of [6] to
the more general setting of 1 < p < ¢ < oo, and ¢ even.

We close off this section with interpolation results that will prove
useful in the next section.

Proposition 3.4. Suppose qo > 1 and

If1<p<qo andif g= (g0 — 1)p', then
R p/q
(59 ([oiw) <c [ wirvsa
R" R"

When we apply this proposition, v(z) will be (|y;|'*|yz|'2)%0 2

w(1/|y1l, 1/]yz2|), w = w; satisfies (1.13). If

u(®) = (Jya|*yal* )PPV D (w(1 g2, 1/ Ly )P,

then (3.6) simplifies to

(3.7) (/R |qu>,,/,, < /R 17

Proof of the Proposition. Take T,f = w?/%(fv=2/%)"(z), for z =
0 + 1y, where 0 < # < 1 and —o© < y < oo. This generates an
analytic family (taking v > 0 at first), and by analytic interpolation,
(3.6) holds with 1/¢g = 6/qo and 1/p = 6/qo + 1 — 6. Hence 6 = ¢(,/p’
and ¢ = (g0 — 1)p'. o
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Proposition 3.5. Let qg > 2. If

(1) Jan 1 (@) Pwr(z) do < ¢ [q. | f () Poi () da,
and if
(i) Jan [f @) ®ws(z) dz < c [, |f(z)|v2() da,

then we get that
I I L T e
where 1/¢=60/2+ (1 —-0)/qp and 0 < 6 < 1.

Furthermore, if wy = wy = w and v; = w(l/|z|), va = (Jys|"* -
lya|'2)20 2w (1/|z|), then for 2 < q < qu, we get that

69 [ @ ds < [ 170Qnl el ) da.

Proof. Take T, f = wf/zwélfz)/qo(fvfz/zvézfl)/qo), where z = 6+ vy,
—00o <y <ooand 0 <@ < 1. This is an analytic family (assuming
again first that v; > 0). Hence, it follows that

0) [ o P e < e [ g,

where 1/q = 6/2 4+ (1 — 6)/q0, or (¢0 — q)/(q0q) = 1/q — 1/q0 =
(0(q0 — 2))/(2g0). Hence (3.8) follows from (3.10). In order to see
(3.9) simply notice that

(]P0 ") = w(1 /) (el ).
4. A necessary and sufficient condition that applies to a

class of regular weights. In this section we suppose that w = wy, w
satisfies (1.13), and that

() = (Jya|™ y2 )P0 =0 (w(1/ |yl 1/ [yal) )P0
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is nondecreasing. Furthermore, we shall restrict our attention to w’s
satisfying the regularity condition

(a) / w(y1,y2) dyr < cw(s, y2)s'  for a.a. ys,
(b) / w(y1,y2) dya < cw(y1,s)s?  for a.a. y;.
ly2|<s

We will show that (4.1)(a) and (b) is a necessary and sufficient
condition for (0.1) with w and v as above. For some p’s and ¢’s,
obviously if w is decreasing, then v is increasing. The requirement
that v is increasing becomes relevant only when 1/p+1/q > 1.

This result will generalize Theorem 3 of [4] as well as Theorems 4.9
and 4.10 of [2]. To see this last generalization, take w decreasing in each
of its variables, with w satisfying (1.13) as it applies here, and replace
(4.1) by the corresponding n conditions in each of the variables,

/ wdzr; < csw(---,8, ).
|w:|<s

We begin with a sufficiency result.

Lemma 4.1. Let w satisfy (1.13) and w = wy. Let ¢ = 2,4,6,...,
and let u(z) satisfy (3.1). Then (4.1)(a) and (b) imply

(4.2) / @) dr < c /R () da.

Proof. We first suppose

1 a1
(4.32) [ / w<y1,—> dyl}
ly1|<t 2]

| [/ du Ve
wal<s ([0 Dw(1/]z])) N
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and

as) | /M% b/l ) e

. |:/ dy2 < .
sl <s ([92]2(@Dw(1/]2]))/ @D | =

for almost all y» and y;, respectively.

Next consider
1= [ e [ et el ek 1/l D (A"
R2 R

with Af as defined by (1.1). Now by (4.3a) we get (this is just an
iterated Hardy’s inequality)

1< [ dn [ el e ), 1))
R R2

" q
-(1/w;|lz/ <,f>
Y2 (ST,

and by (4.3b) and another Hardy, we get that
e i [ (ol ) e ) 1) ().
R'2 R

According to Theorem 3.1, then, (4.3a) and (4.3b) imply (4.2).

So we must derive (4.3) from (4.1). By Theorem 3 of [4], we get that
(4.1a) implies

(@) [ 1) Mot 1/l don
< [ R D1/l 1 ) don
R

but (4.3a) follows from (4.4a) by Theorem 2 of [4].
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Again by Theorem 3 of [4] we get that (4.1b) implies
(@ab) [ 1)/l ve) o
R'2

R!2
< c/ £ (y2) |22 w(1/[y1], 1/ [y2]) dya,

and in the same manner, (4.4b) implies (4.3b). Hence, we obtain our
result. o

Theorem 4.2. Let ¢ > 2 and suppose that w = wy satisfies (1.13).
Then (4.1) implies (4.2).

Proof. By (4.1) we get, by the lemma, that
@s) [ l@mede<e [ |f@)mu@) d,

where u(z) = (|y1|"|y2]2)®~2w(1/|z|) and o is an even integer. For
other ¢’s, we apply (3.9) of Proposition 3.5. O

And now to the main point of this section.

Theorem 4.3. Let1 < p < g < oo and suppose that w = w; satisfies
(1.13). Let

vpa(@) = (g g2 )PEP7D (w(1/ ] 1/ ly2 )P/

and suppose that vy 4 is increasing in the y; variables. Then (4.1) holds
if and only if (0.1) holds with v(z) = vy 4(x).

Proof. Set qo = 1+¢q/p’. Then gy > 1+p/p’ = p, and so we can apply
the interpolation Proposition 3.4. By Theorem 4.2, if (4.1) holds, we
have

/ flow < ¢ / 1050 g0 () dc

(notice that vgo/ffm = vp,q is increasing), and so by that Proposition,

(0.1) holds.
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In order to see the necessity, we begin wtih (0.1) for w and v as in

the hypotheses. Take f(z) = h(y1)g(y2), so that f(z) = h(y1)§(y2),
and (0.1) becomes

p/q
o ([ [ i) )
R
o[ du [ dualh()PloG)Pota).
Ru R!2
In this, take h(y1) = 1 for |y1| < s and zero elsewhere, and hence
(4.7) h(y:) = / eV g,
|z} |<s

From (4.6) and (4.7), it follows that

p/q
( [ st [ dy2|g<y2>|%<x>)
ly1 1<+ R'2

< c/ dy1|y1|l1p(1_pil_qil)
ly1]|<s

/ dysg(y2)|P|yal 2P a7
R!2
(w(1/y1], 1/ lya]))P/4

but, since w is decreasing, this yields

p/q
(/l dy2|g(y2)|*w(1/s, |y2)> glila—1p/q
R!2

—1_ -1
<e / dya g () [Plya 2707 =07
R!2

-1

(W13l 1/|yal) /0 - stri=r o,

or

</mz dy2|9(y2)|*w(1/s, |y2|)>p/q

-1 -1
SC/ dys|g(ys)[Plyz |27 )
Rl2

(w(1/]s],1/ly=]))P/<.
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Appealing once again to Theorem 3 of [4], we see that (4.1b) holds,
and a similar argument yields (4.1a). O

We remark here that when w satisfies (4.1) we obtain necessary
and sufficient conditions for a certain version of the two-dimensional
Hardy operator. This version is much easier to apply than the general
case. Note also that in the case when w is decreasing in k£ variables,
Yi,--- .Yk, With & < n, we obtain simplifications to a k-dimensional
Hardy inequality.

If, in (4.6), we select h(y;) = 1, g(y2) = 1 when |y;| < s; and 0

elsewhere, it follows that
(4.8)

r/q
</ dylslllq/ slqu(x)> < c/ dyl/ dysv(z).
\yl\Sﬁ \ZMS% ly1|<s1 ly2|<s2

So, if (0.1) holds, then we get (4.7) for general w and v. If we assume
furthermore that w and 1/v are decreasing in each of the variables y;
and ys, it then follows that

v(s1,82) > (s sl )PP =0 D (w(1/51,1/55))P/a

v(z) > vpq(2).

Thus for a given w, radial and decreasing in each of the variables y;
and ys, the smallest v radial and increasing in each of these y; variables
is the weight v, 4(z) (within constants, of course). We wish to thank
Peter Knopf for pointing this out to us.

It can be shown that w(z) = (|y1]® + |y2|?) ! satisfies (4.1) if both
a and B are below n/2. For a or 8 greater than n/2, Theorem 2.7 of
[1] furnishes a sufficient condition.

5. More necessary and sufficient conditions. Thanks to
Theorem 1 of Sawyer’s celebrated paper [7], we can conclude that for
O<a<nandl<p<2,

oy ([ @rea)" <o [ i
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if and only if both

(5.2) / )

2
dx

/ Xq (@ = t)[t|*/* "o(z — ) P dt

, 2/p
< c(/ v(t) P dt> < oo
Q

pl
/ XQ(act)t|°‘/2”dt‘ o(z) P da

p'/2
< c</ dt> < 00
Q

Even though the weight on the left in (5.1) is very special, namely
|z|~, this allows for general weights v on the right. We begin by
simplifying the two conditions (5.2) and (5.3). In this section we will

use the notation
h h h
/ f(t)dt:/ dtl---/ dt f(8),
0 0 0

/ f(t)dt :/ ft)dty ---dt,.
[t|<u 24412 <u?

(5.3) / )

for every dyadic cube @ in R".

and

Proposition 5.1. Let 0 < o <n and 1 < p < 2. Then (5.1) holds if
and only if both

h h
(5.4) /v(t+a)1’p/dt/ v(s+a)' P |s — t|* " ds
0 0

h , 2/p
< </ v(t+a)t P dt> < oo
0

(5.5) / o(t+a)' P < B ()2
|| <2h
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for all h >0 and a € R™.

Proof. We begin with the integrand in (5.3). Notice that

ath a+h h
/ |x_t|a/27ndt:/ |u_(t_a)|a/27ndt:/ |u_v|oc/27n dv
a a 0

with the variable changes u = x —a and v = t — a. Thus (5.3) becomes

h
(5.6) / / |z — t|*/27 ™ dt
R 0

For |z| < 2h, foh |z — t|*/2=" dt o< h®/?, while for |z| > 2h, it behaves
like |z|®/2 ™h™. So the integrand on the left of (5.6) is completely
under control, and (5.6) is equivalent to

pl
v(z 4 a)' 7P do < b2,

(5.7) / v(@+a) 7 dx+/ v(z+a) P (h/|x|) "D dg
jol <2h

|22k
< h(n—e)p'/2,

(5.7) certainly implies (5.5) and is in fact equivalent to (5.5), for if (5.5)
holds, then

/ v(z + a) 7 (h/|a]) "D da
|z|>2h
x Y[ ulea) (B fal) " de
L Y lz|oc2kh

< Z gk(a/2=n)p’ / v(z + )P da
k \

o|<2F 1R
< h(n—a)p’/Q 22—19711)'/2 < h(n—a)p'/Q'
k
Hence, (5.6), and so (5.3) simplifies to (5.5).
In the same manner, (5.2) reduces to

Je

2
dzr

h , 2/p
< (/ v(t +a)'™? dt> .
0

h
/ o — /2"t 4 )7 dt
0
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But

~/|w>>h

2

h
/ 2z — t[ 2 "yt 4+ a) P dt| do
0

< / |z|* 2" da
|z|>h

h
/ o(t+a) " dt
0

h , 2/p
< (/ v(t +a)'™P dt> ,
0

if (5.5) holds. Thus (5.2) is implied by both (5.5) and

h 2
(5.8) / </ v(t+a)1—P’|x—t|a/2—”dt> do
|z|<h 0
h , 2/p
< (/ v(t +a)t™ P dt) ,
0

and obviously (5.8) follows from (5.2). So we are done if we can simplify
(5.8) to (5.4).
We start by rewriting the left side of (5.8) as

2

h
/ o(t+a) 7 dt
0

2
KL hoT"

h h
/ U(t+a)1—pl dt/ ’U(S‘l‘a)l_p’ dS/ |w—8|a/2_n|w—t|a/2_ndm.
0 0 lz|<h

Now since each t; € [0,h], {z : |z|] < h} C {z : |z — t| < h}, given
appropriate choice of constants in these < inequalities. The inclusion
goes the other way for different choices of constants, and so the left
side of (5.8) can be replaced by

h h
/ v(t—i—a)l*p’dt/ v(s—l—a)l*p’ds/ |z —s|®/? "z —t|*/* " d.
0 0 lz—t|<h
Now

/ o) |z — s|/2 e — ]2 de o |s — ¢|*77,
z—t|<|s—t|/2
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since |z — s| = |(z — t) + (t — 8)| < |s — t|. Furthermore,

/ |m_8|a/2—n|x_t|a/2—n dr
Lt <Ja—t|<2|s—t|

x |s—t|"‘/2_"/ |z — s|*/* " da
|s—t]/2< a—t|<2[s—t]

o |s—t|°‘/2*”/ |2 du o |s — ¢
u| <] s—t|

also.

Finally,
/ |$_S‘a/2—n|x_t|a/2—n dz
2|s—t|<|z—t|<2h
<</ ‘u|a—2n du < |8 _ t‘a—n,
2]s—t|<u
and this lets us replace (5.8) with (5.4). o

We can use this Proposition to obtain necessary and sufficient condi-
tions for

69) [ f@Pnlde<e [ |f@)Puln) de,
R™ Rn
where z = (y1,92), v;: € R%, and 0 < o < [.

Proposition 5.2. Let 0 < a <l and a,s and t € R"*. Then (5.9)
holds if and only if both

h h h
dt d dt
(5.10) / / > |s —t[*™1 < c/ — < 00,
o v(t+a)lo v(s+a) o v(t+a)

and

dt
(5.11) / < chhi«
tj<2n V(t + a)
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hold for all h > 0 and a € R,

Proof. To see the sufficiency,

[ Af@Pl o= [ dus [ 7@l d
R” Ri2 RU
SC/ dyz/ | fos (w2)*0(31) dyn
Ri2 RO

by Proposition 5.1
e[ wdn [ 7P
R Rz

To see the necessity, take f(z) = h(y1)g(y2). Hence,

/ dyo / dyn | 219 (52) Pl |
R!2 Rl1
<e / dys / dyn [h(2) Plg () Po(wn).
R!2 Rl1

But this implies that

[ anlh)Plnl < [ dnlhw)Po)
Ru Ru
and now (5.10) and (5.11) follow from Proposition 5.1. O

Now we have some principles in place to generate necessary and
sufficient conditions for the Fourier transform problem. When the
weights factor, the corresponding conditions on the lower dimensional
spaces combine as expected, that is:

Proposition 5.3. Let 1 < q < 0o, = = (y1,y2) with y; € R, and
Iy + 12 = n, and suppose the weights w;(y;) are not identically zero. If
we have found conditions (A;) where

/ | ) s (s) s < e / £ o) 0 (52)
R Rl
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holds if and only if (A;) holds, then

[ @) de < c [ 17 (m)v(m) do

n

holds if and only if both conditions (A1) and (As) are satisfied.

Proof. If both conditions are satisfied, then by iterating the Fourier
transform, we get

/ dylwl(yl)/ dys| f (z)|ws (y2)

Rl1 Rl2
< C/Rl1 dylwl(yl)/Rlz dys| fyo (1) |02 (y2)
< d d g
_C/Rl2 Z/zvz(w)/w1 yilf(z)|v1(y1)

by (Az) and then by (A;).
For necessity, take h(z) = f(y1)g9(y2), and if we know that

[l tunmyeate) de < e [ it @) da,

/ 19/ - / |f|Qw1gc/ 9]0 - / flon.
Rl2 R!1 R!2 Rl1

Now take any appropriately nice g with § nonzero somewhere on the
support of ws, to obtain

/ Flows < e / |l
Rl1 Rl1

with this ¢ depending on g but independent of f. This implies that
(A1) holds, and an identical argument establishes (Az). O

we get

We can, for example, apply this to Proposition 5.2 when ¢ = 2 and
w; = |y;|~* to obtain necessary and sufficient conditions for weights
of the form

I

w(zr) = |y~ |ye
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Proposition 5.4. Suppose that for ¢ = 1 and 2, we have found
conditions (A;) where

| 0P de<e [ 1f@) o) de

holds if and only if (A;) holds, then if v;(a;) = 0 and if v; is continuous
at a;, for some a; € RY, then

/n f(@)P[wi(y1) + wa(y2)] dz < C/Rn £ [v1(y1) + v2(y2)] dz

holds if and only if both conditions (A1) and (As) are satisfied.

Proof. The sufficiency is trivial. For the necessity, take f =
9=(y1)h(y2), to get

612 [ lacw)Puatn) [ e
[ e+ [ b))
<e [ amPot) [ 1hw)
[ e [ ) PG,

Now since v;(a;) is zero at a;, and continuous there, given ¢ > 0,
there is a § > 0 such that if |y; — a1] < §, then vy(y;1) < e. Take
ge =€~ 1/26711/2 for |y; — a1| < & and zero elsewhere. Therefore,

/ 192 () 2o (1) g < 1

while

/|96(y1)‘2dy1 =1/e.

Hence, if we multiply (5.12) by € and let € — 0, we get

/ () Po(n) < / () o) g,
R!2

Rl2
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which implies that (A;) holds.

This time, using Propositions 5.2 and 5.4, we get necessary and
sufficient conditions for weights of the form

w(z) = |y1|~** + |y2| .

Notice that when a1 = a, we can dispense with the extra continuity
condition on the v;. ]
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