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LINE BUNDLES
AND NON-ALGEBRAICALLY CLOSED FIELDS

E. BALLICO

ABSTRACT. Fix a non-algebraically closed field k, an
algebraic closure K of k, an algebraic scheme X over k and a
line bundle L on X defined over k. Here we relate properties
of k and the order of the restriction of L to a neighborhood
of X (k) in X(K).

Fix a field k and assume that k is not algebraically closed; let K be
an algebraic closure of k. There are at least two very different theories
trying to do algebraic geometry over k. One (the big one: schemes)
includes as a very particular case Serre’s fundamental paper [4], in
which the base field is assumed to be algebraically closed; even if the
base field for a scheme S is k, points with value in K appear as certain
maximal ideals of the defining rings of the affine open subsets of S
and their presence strongly influence the cohomological properties of
S. Another theory, a more naive one, used essentially by some real
algebraic geometers (e.g., see [5, 3]) consists in taking the definition in
Serre’s fundamental paper [4] substituting K with & in the definition of
variety. We will use essentially this approach, but the scheme-oriented
reader will have no trouble about that. Indeed, for what we are doing
here, everything boils down to fixing a reduced algebraic scheme X over
k and consider X (k) as a subset of X(K) (with the Zariski topology).
The aim of this note is to give a good bound for a positive integer ¢
(depending only on n and k) such that for every reduced scheme X of
dimension n over k and every L € Pic(X), L defined over k, there is a
neighborhood U of X (k) in X (K) such that L|®Ut is trivial (see Section
1 for a more precise statement).

Section 1. Fix a field £ and assume that k is not algebraically
closed; let K be the algebraic closure of k.

Definition 1.1. Fix an integer n > 1. Set Ax(n):={t e N:¢t >0,
and there is a homogeneous polynomial p € k[T1, ... ,T,] with no zero
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in k"\{0} and deg(p) = t}. Ar(n) is a semigroup; let Si(n) be the
subgroup of Z generated by Ag(n); let di(n) be the positive generator
of Sk(n).

Note that di(n) > 0 since k is not algebraically closed. If k is
the real number field we have di(n) = 2 for every n. For many
interesting fields k, we have di(n) = 1 for every n. Here we check
that di(n) = 1 for every n if di(2) = 1 (and in particular if % is a finite
field). Take homogeneous polynomials p and g in two variables with no
zero k?\{0} and of coprime degree; set a := deg (p), b := deg (q); set
p1(w1, T2, w3) := p(af,p(z2,x3)) and q1 (w1, 22, x3) := g2}, q(w2, 23));
p1 and ¢ show that di(3) = 1; then continue. As remarked by the
referee, by Definition 1.1 if there exist irreducible polynomials u and
v over k in one variable with deg(u) = 3 and deg(v) = 2, then
homogenizing v and v one gets di(2) = 1; hence, di(n) = 1 for every
n. In particular, this is the case if k is a finite extension either of the
rational number field Q or of a p-adic field Q,.

Here is our result.

Theorem 1.2. Fiz a field k and positive integers n and d. The
following conditions are equivalent:

(i) de Sk(n+1) (i-e., d is a multiple of d(n +1));
(ii) there are homogeneous polynomials p and q in n + 1 variables
with no zero in k"1\{0} and deg (p) — deg (q) = d;

(iii) for every quasi-projective scheme X over k with dim (X) = n

and every L € Pic (X)(k) there is a neighborhood U of X (k) with Ll%d

trivial (both the neighborhood and the trivialization being defined over
k);
(iv) as in (iii) but with “projective” instead of “quasi-projective”,
(v) as in (iii) but just for one pair (X,L): X = P™ and L the line
bundle O(1) of degree 1.

Proof. By definition, (i) and (ii) are equivalent.

(ii) implies (iii) (hence (iv) and (v)). Fix X and L € Pic(X)(k)
as in (iii). The set X (k) has an affine neighborhood U in X (defined
over k) (see, e.g., [3, Lemma 2.3)); fix any such U. Since U is affine,
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Ly is spanned by its global sections. Since U is quasi-compact, one
easily checks the existence of a finite dimensional k-vector subspace
V C H°(U, Lyy) such that V spans Ly .

First assume k is infinite. We claim that L,y is spanned by n + 1
sections si,...,S,41 defined over k. To prove the claim, we may
assume dim (V) > n + 1. Let E be the vector bundle on U which
is the kernel of the natural surjection V ® Oy — L|y. Note that V*
spans E*. Since rank (E*) = dim (V*) — 1 > dim (U), we may apply to
E* and V* a lemma of Serre (see [1, Theorem 2|, whose proof works
if and only if the base field is assumed to be infinite), and prove the
claim. By definition, there are integers u,v € Ag(n) with u — v = d.
Choose homogeneous polynomials p and g, respectively, of degree u and
degree v, p and g never vanishing in £"*1\{0}. As in the proof of [3,
2.4], if p = Xe, T, a multi-index of weight u, we may form a section s’
of L®" substituting formally T; with s; in the expansion of p. In the

|U
same way, q gives a section, s”, of L%”.

q), s’ (respectively, s”) generates Ll%u (respectively Ll%”) at each point

of X (k), hence in a neighborhood of X (k). The section s'/s"” of L%d

By the choice of p (respectively,

induces a trivialization of L®¢ in a neighborhood of X (k).

Now assume £ finite (hence di(m) = 1 for every m). Note that Ly is
spanned by a finite number of sections, say by si,... , Sm, defined over
k. Since di(m) = 1, the proof given for an infinite field works without
any change.

(v) implies (ii). Fix a neighborhood U of P"(k) with O(d)y trivial.
Thus, there is a nowhere vanishing section s of O(d)y. By [3, Lemma
2.3], we may assume that Y := P™\U is a hypersurface. Let ¢ be a
defining equation of Y; set a := deg(g). Hence, ¢ is a homogeneous
polynomial of degree a with no zero in k"*1\{0}. We may see s as a
rational section of O(d) with zeros and poles only on Y. thus, for large
w, ¢“s extends to a section of O(wa + d) (exactly of this line bundle
by the definition of the line bundles on a Proj-scheme (see, e.g., [2, p.
116]) over P™(K) which does not vanish at any point of P"(k)). Hence,
deS(n+1). o

One could call test pair (for the integer n and the field k) a pair (X, L)
which can be used instead of (P™,O(1)) in the statement of 1.2 (v). We
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say that X is a test scheme (or test variety) if there is L € Pic (X)(k)
such that (X, L) is a test pair. One can easily construct test varieties
(for instance as cyclic covers of P™), but not every variety is a test
variety (for example, P¥ x P"~* with 0 < k < n).
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