MATRIX TRANSFORMATIONS OF CLASSES OF GEOMETRIC SEQUENCES

C.R. SELVARAJ AND SUGUNA SELVARAJ

ABSTRACT. For any fixed t satisfying $0 < t < 1$, let G_t denote the set of all sequences which are dominated by a constant multiple of any sequence $\{r^n\}$ with $r < t$. In this paper we characterize three kinds of matrix transformations: (i) those from G_t to the convergent sequences, (ii) those from G_t to the null sequences, and (iii) those from G_t to the bounded sequences. Also, the classes of three well-known summability methods are investigated as mappings on G_t.

1. Introduction. If u is a complex number sequence and $A = [a_{n,k}]$ is an infinite matrix, then Au is the sequence whose nth term is given by

$$(Au)_n = \sum_{k=0}^{\infty} a_{n,k}u_k.$$

The matrix A is called an $X-Y$ matrix if Au is in the set Y whenever u is in X. In [4] Selvaraj introduced the set G_t for any fixed t satisfying $0 < t < 1$ as

$$G_t = \{ u : u_n = O(r^n) \text{ for some } r \in (0, t) \}$$

and gave the characterization as follows:

Theorem 1.1. The sequence u is in G_t if and only if

$$(1) \quad \limsup_{k} |u_k|^{1/k} < t.$$

In Section 2 we investigate $G_t - c$, $G_t - c_0$, and $G_t - l^\infty$ matrices. The characterizations of such matrices are established in terms of their
rows and columns. Section 3 examines $G_t - c, G_t - c_0$ and $G_t - l^\infty$ mapping properties of the classical summability methods of Euler-Knopp, Nörlund, and Borel matrices.

2. Matrix transformations of G_t into c, c_0 and l^∞. First we will prove the necessary and sufficient conditions for a matrix to be a $G_t - c$ matrix. In order to characterize such a matrix, we need the following preliminary result.

Lemma 2.1. Let x be a complex sequence such that, for any $u \in G_t$, $\sum_{n=0}^{\infty} u_n x_n$ converges. Then for each $\varepsilon > 0$ there exists a constant $B > 0$ such that, for all k, $|x_k| \leq B(1/t + \varepsilon)^k$.

Proof. Suppose the conclusion of the lemma is false. This implies that there is an $\varepsilon > 0$ so that for every $B > 0$ there exists $k = k(B)$ satisfying

$$
|x_k| > B\left(\frac{1}{t} + \varepsilon\right)^k.
$$

We now choose an increasing sequence $\{k(i)\}_{i=0}^\infty$ as follows. Choose $k(0)$ satisfying $|x_{k(0)}| > 0$. After selecting $k(p)$ for all $p < i$, we choose $k(i)$ as follows. For $N = k(i) - 1$, there exists a constant $B = \max_{0 \leq j \leq N} |x_j(t/(1 + \varepsilon t))^j|$ such that

$$
|x_j| \leq B\left(\frac{1}{t} + \varepsilon\right)^j, \quad \text{for } j \leq N.
$$

Let $B' = B + 1$. Now we can find $k(i)$ such that

$$
|x_{k(i)}| > B'\left(\frac{1}{t} + \varepsilon\right)^{k(i)},
$$

using (2). Thus,

$$
|x_{k(i)}| > \left(\frac{1}{t} + \varepsilon\right)^{k(i)}.
$$
This $k(i) > k(i-1)$ because, if not, $k(i) \leq N$ and hence, by (3), $|x| < B(1/t + \varepsilon)^{k(i)}$ which would contradict (4).

Now consider the sequence u given by

$$ u_j = \begin{cases} t \cdot \frac{x_j}{x_{j-1}}, & \text{if } j = k(i) \text{ for } i = 1, 2, \ldots, \\ 0, & \text{otherwise.} \end{cases} $$

It is obvious that $u \in G_t$. But, for each positive integer m,

$$ \sum_{j=0}^{k(m)} u_j x_j > m, $$

using (5). Thus, we have a contradiction to the hypothesis.

\begin{proof}

We first assume that A satisfies both the conditions of the theorem and let u be a sequence in G_t, say $|u| \leq M s^k$ for some $s \in (0, t)$. Choose $\varepsilon > 0$ such that $\varepsilon < 1/s - 1/t$. Then we have $|a_{nk}| \leq B(1/t + \varepsilon)^k$ for all n and k. Since, for each k, $\lim_{n} a_{nk} = L_k$, we have $|L_k| \leq B(1/t + \varepsilon)^k$ for all k. Also, we can find a positive integer l satisfying

$$ 2B \sum_{k=l}^{\infty} |u| \left(\frac{1}{k} + \varepsilon \right)^k \leq \frac{\varepsilon}{2}. $$

This is possible because the geometric series $\sum_{k=0}^{\infty} s^k (1/t + \varepsilon)^k$ converges. Also, by condition (i), we can find an N such that for $k = 0, 1, \ldots, l - 1$,

$$ |a_{nk} - L_k| |u_k| \leq \frac{\varepsilon}{2l} \quad \text{for } n > N. $$

\end{proof}
Now, for \(n > N \),

\[
\left| (Au)_n - \sum_{k=0}^{\infty} u_k L_k \right| \leq \sum_{k=0}^{t-1} |a_{nk} - L_k| |u_k| + \sum_{k=t}^{\infty} |a_{nk} - L_k| |u_k| < \varepsilon
\]

using (6) and (7). Thus, we have proved that the sequence \(\{(Au)_n\} \) converges to \(\sum_{k=0}^{\infty} u_k L_k \); this series converges. Hence, \(Au \in c \).

Conversely, if \(A \) is a \(G_t - c \) matrix, then the basis sequences \(\{\delta_n^{(k)}\}_{n=0}^{\infty} \) are mapped into \(c \). Thus, condition (i) holds.

Suppose that condition (ii) does not hold. Then there is an \(\varepsilon > 0 \) so that for every \(B > 0 \) there exist \(n = n(B) \) and \(k = k(B) \) such that

\[
|a_{nk}| > B \left(\frac{1}{t} + \varepsilon \right)^k.
\]

As \(G_t \) is in the domain of the matrix \(A \), by Lemma 2.1, for each \(j \) there exists \(B(j) > 0 \) such that \(|a_{jk}| \leq B(j)(1/t + \varepsilon)^k \) for all \(k \). So, for \(j = 0, 1, \ldots, N \), we can find \(B'(N) > 0 \) satisfying \(|a_{jk}| \leq B'(N)(1/t + \varepsilon)^k \) for all \(k \). Since each column of the matrix \(A \) is bounded, for \(k = 0, 1, \ldots, N \), there exists a constant \(M'(N) \) such that \(|a_{jk}| \leq M'(N)(1/t + \varepsilon)^k \) for all \(j \). Thus, given any \(N \) there exists \(M = M(N) > 1 \) such that

\[
|a_{jk}| \leq M(1/t + \varepsilon)^k, \quad \text{for } j \leq N \text{ or } k \leq N.
\]

Now we choose increasing sequences \(\{u(n)\}_{n=0}^{\infty} \) and \(\{v(n)\}_{n=0}^{\infty} \) as follows. Choose \(u(0) \) and \(v(0) \) such that \(|a_{u(0),v(0)}| > 0 \). After selecting \(u(p) \) and \(v(p) \) for all \(p < i \), we choose \(u(i) \) and \(v(i) \) as follows. For \(N = u(i-1) + v(i-1) \), there exists \(M > 1 \) such that for \(j \leq N \) or \(k \leq N \),

\[
|a_{jk}| \leq M(1/t + \varepsilon)^k
\]

using (9). Let \(H = M + i \). Now we can find \(u(i) \) and \(v(i) \) such that

\[
|a_{u(i),v(i)}| > H(1/t + \varepsilon)^v(i)
\]
using (8). Thus,

\[(12) \quad |a_{u(i),v(i)}| > i(1/t + \varepsilon)^{v(i)}.\]

This \(u(i)\) and \(v(i)\) each exceed \(u(i - 1) + v(i - 1)\) because, if not, either \(u(i) \leq N\) or \(v(i) \leq N\) and hence, by (10), \(|a_{u(i),v(i)}| < M(1/t + \varepsilon)^{v(i)}\) which would contradict (11).

Now consider the sequence \(x\) given by

\[x_k = \begin{cases}
\left(\frac{t}{1+\varepsilon t}\right)^{v(i)}, & \text{if } k = v(i) \text{ for } i = 1, 2, \ldots, \\
0, & \text{otherwise.}
\end{cases}\]

It is obvious that \(x \in G_t\). Define a matrix \(A'\) by \(a'_n k = a_{n,k} x_k\). For any \(u \in c\), we have \(x u \in G_t\). Since \(A\) is a \(G_t - c\) matrix, it follows that \(A'\) is a \(c - c\) matrix. But for each positive integer \(m\), we have \(|a'_{u(m),v(m)}| > m\) by (12). This contradicts that \(A'\) is a \(c - c\) matrix. \(\square\)

We state below two theorems on the characterization of \(G_t - c_0\) and \(G_t - l^\infty\) matrices. The proof of Theorem 2.1 can be easily applied to these two theorems.

Theorem 2.2. The matrix \(A\) is a \(G_t - c_0\) matrix if and only if

(i) each column sequence is in \(c_0\) and

(ii) for each \(\varepsilon > 0\) there exists a constant \(B > 0\) such that \(|a_{n,k}| \leq B(1/t + \varepsilon)^k\) for all \(n\) and \(k\).

Theorem 2.3. The matrix \(A\) is a \(G_t - l^\infty\) matrix if and only if for each \(\varepsilon > 0\) there exists a constant \(B > 0\) such that \(|a_{n,k}| \leq B(1/t + \varepsilon)^k\) for all \(n\) and \(k\).

In [2] Jacob derived similar characterizations of the above matrix transformations using the topological properties of the spaces \(G_t\).

3. **Well-known summability mappings on \(G_t\).** In this final section we shall apply the results of Section 2 to find the necessary and
sufficient conditions for some well-known matrix methods to be $G_t - c$, $G_t - c_0$, and $G_t - l^\infty$ matrices.

The Euler-Knopp means [3, p. 54] are given by

$$E_r[n, k] = \begin{cases}
\binom{n}{k} (1 - r)^{n-k} r^k, & \text{if } k \leq n, \\
0, & \text{if } k > n,
\end{cases}$$

where r is any complex number. In the following theorem, we shall consider the Euler matrices E_r with only real values of the parameter r.

Theorem 3.1. The following statements are equivalent:

(i) $r \in [0, 2/(1 + t)]$;

(ii) E_r is a $G_t - c$ matrix;

(iii) E_r is a $G_t - l^\infty$ matrix.

Proof. When $r = 0$, the matrix E_r has all ones in the first column and zeros elsewhere. So, by Theorem 2.1, E_r is a $G_t - c$ matrix. If $0 < r \leq 2/(1 + t)$, then a simple calculation shows that $|1 - r| \leq 1 - rt$. Thus, for any $x \in G_t$, say $|x_k| \leq Mu^k$ where $u \in (0, t)$, we have

$$|(E_r x)_n| \leq M[(1 - r) + ru]^n.$$

Now $|1 - r| + ru \leq 1$ implies that $E_r x \in c_0$ and, hence, E_r is a $G_t - c$ matrix. We have shown that (i) implies (ii).

The fact that (ii) implies (iii) is obvious from the set inclusion $c \subset l^\infty$. Next, to see that $r \in [0, 2/(1 + t)]$ whenever E_r is a $G_t - l^\infty$ matrix, suppose $r < 0$. Then the first column sequence $\{(1 - r)^{n}\}_{n=0}^{\infty}$ is not bounded. Consequently, by Theorem 2.3, E_r is not a $G_t - l^\infty$ matrix. Now, suppose that $r > 2/(1 + t)$. If we choose u satisfying $2t/r(1 + t) < u < t$, then $\{x_k\} = \{(-u)^k\} \in G_t$ and

$$|(E_r x)_n| = \left|(-1)^n \sum_{k=0}^{n} \binom{n}{k} (r - 1)^{n-k} (ru)^k \right|
= |r - 1 + ru|^n.$$
Since $r - 1 + ru > 1$, it follows that E_r is not a $G_t - l^\infty$ matrix. \(\square\)

It is easy to see that the following result is also true.

Corollary 3.1. E_r is a $G_t - c_0$ matrix if and only if $r \in (0, 2/(1+t)]$.

The Nörlund mean Np is represented by a lower triangular matrix in which

$$Np[n, k] = p_{n-k}/P_n \quad \text{if } k \leq n,$$

where $P_n = \sum_{k=0}^{n} p_k$ and p is a nonnegative sequence such that $p_0 > 0$.

Theorem 3.2. Let Np be a Nörlund matrix.

(i) Np is a $G_t - c_0$ matrix if and only if $\lim_{n} p_n/P_n = 0$;

(ii) Np is a $G_t - c$ matrix if and only if each column sequence converges;

(iii) Np is a $G_t - l^\infty$ matrix for all p.

Proof (i) If $\lim_{n} p_n/P_n = 0$, then Np is a regular matrix and thereby maps G_t into c_0. Conversely, if Np is a $G_t - c_0$ matrix, then by Theorem 2.2, the first column is a null sequence.

(ii) Since the absolute row sums of the matrix Np are equal to 1 and $1/t > 1$, the second condition of Theorem 2.1 is always true. Hence, the result follows.

(iii) It is obvious that the condition of Theorem 2.3 is satisfied by Np matrices. \(\square\)

Fricke and Fridy [1] introduced the extended form of Borel matrix by the following definition. For any real number δ,

$$B_\delta[n, k] = e^{-n^\delta} (n^\delta)^k/k!$$

for $k = 0, 1, \ldots$, and $n = 0, 1, \ldots$. When $\delta = 0$, the matrix is defined by

$$B_0[n, k] = e^{-1}/k!, \quad \text{for all } n \text{ and } k.$$
Theorem 3.3. The matrix \(B_\delta \) is a \(G_t - c_0 \) matrix if and only if \(\delta > 0 \); also, \(B_\delta \) is a \(G_t - c \) matrix for all \(\delta \).

Proof. It is known [4, Table 3.2, Theorem 3] that if \(\delta > 0 \) then \(B_\delta \) is a \(G_t - l^1 \) matrix, whence \(B_\delta \) is a \(G_t - c_0 \) matrix. Conversely, suppose that \(\delta \leq 0 \). In the case of \(\delta < 0 \), we have \(B_\delta[n,0] = e^{-n^\delta} \) converging to 1 as \(n \to \infty \). Thus, the first column of \(B_\delta \) is not in \(c_0 \). Therefore, \(B_\delta \) cannot be a \(G_t - c_0 \) matrix. Similarly, if \(\delta = 0 \) then the first column converges to \(1/e \) so that \(B_\delta \) is not a \(G_t - c_0 \) matrix.

Now, in order to show that \(B_\delta \) is a \(G_t - c \) matrix for all \(\delta \), it is enough to consider the cases \(\delta \leq 0 \). When \(\delta \leq 0 \), the preceding argument shows that the first column of \(B_\delta \) is in \(c \). When \(\delta = 0 \), for each \(k \geq 1 \), \(B_\delta[n,k] \) converges to \(1/(k!e) \) as \(n \to \infty \) and, when \(\delta < 0 \), for each \(k \geq 1 \), \(B_\delta[n,k] \) converges to zero as \(n \to \infty \). So, in both cases, \(B_\delta[n,k] < (1/t + \varepsilon)^k \) for any \(\varepsilon > 0 \). Thus, both conditions of Theorem 2.1 are true. Hence, \(B_\delta \) is a \(G_t - c \) matrix. \(\Box \)

REFERENCES

Department of Mathematics, Penn State University – Shenango, Sharon, PA 16146

Department of Mathematics, Penn State University – Shenango, Sharon, PA 16146