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MONOTONE OPEN IMAGES OF 0-SPACES

BEVERLY DIAMOND

ABSTRACT. A 0-space is a completely regular Hausdorff
space possessing a compactification with zero-dimensional re-
mainder. The class of almost rimcompact spaces is interme-
diate between the class of rimcompact spaces and that of 0-
spaces.

It is known that rimcompactness is preserved under mono-
tone open maps. In this paper it is shown that the properties
of almost rimcompactness and of being a 0-space are preserved
under monotone open maps.

1. Introduction and known results. All spaces considered are
completely regular and Hausdorff. Recall that a space is rimcompact if
it possesses a base of open sets with compact boundaries [8]. Monotone
maps, generally with some additional property, have appeared in the
investigation of the preservation of rimcompactness. For example,
if Y is the image of a rimcompact space under either a monotone
open map or a monotone quotient map for which preimages of points
have compact boundaries, then Y is rimcompact ([6] and [1, 3.4],
respectively). The second result with “rimcompact” replaced either
by “almost rimcompact” or “O-space” was proved in [3]. As mentioned
in the abstract, the result for monotone open maps with “rimcompact”
replaced by either “almost rimcompact” or “0-space” is proved in this
paper.

The main results appear in Section 2. In the remainder of this section,
we present some terminology and known results. A map is a continuous
surjection. A function f : X — Y is closed (open) if whenever F is
closed (open) in X, f[F] is closed (open) in Y, and monotone if f< (y)
is connected for each y € Y.

The maximum compactification of a space X, the Stone-Céch com-
pactification of X, is denoted by SX (where the partial ordering on the
family of compactifications of X is the usual). If KX is a compactifi-
cation of X, then KX\X is the remainder of KX. If f: X - Y isa
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map, the extension of f from SX onto BY will be denoted by f#. The
following is a special case of 4.7 of [4].

Theorem 1.1. Let f : X — Y be a monotone quotient map. Then
fP:BX — BY is monotone.

An open subset U of X is w-open in X if bdxU is compact. A
subset V' of 8X is clopen at infinity, denoted by CI, if V N (BX\X)
is clopen (that is, open and closed) in SX\X. If U is open in X and
KX is a compactification of X, the extension of U in KX, denoted
by ExgxU, is defined to be KX\clgx(X\U). It is easy to verify
that Exg xU is the largest open set of KX whose intersection with
X is U. A compactification KX of X is a perfect compactification of
X if for each open subset U of X, cl xxbdxU = bdgxExgxU. It
follows from Lemma 1 of [8] that SX is a perfect compactification of
X. Then, for U mT-open in X, bdngXQ)(U = Clgxbde = bde,
hence ExgxU N (BX\X) = clgxU N (BX\X) and is clopen in SX\X.

Definition 1.2. The decomposition of X consisting of {{z}:z€ X}

U{C, : Cp is the connected component in SX\X of p € fX\X} is
denoted by C(8X).

A space X is a 0-space, that is, has a compactification with zero-
dimensional remainder, if and only if each connected component of
BX\X is compact and a quasicomponent of 5X\ X, C(8X) is an upper
semicontinuous decomposition of SX, and each element of C(8X)
contained in SX\X has a base of CI open sets of X. If X is a
0-space, then X possesses a maximum compactification FypX having
zero-dimensional remainder; FoX = SX/C(8X). (See [7, 8] for a
justification of these statements.)

If F is closed in X, U is open in X and F C U, then F' is nearly
m-contained in U if there is a compact subset K of F' so that whenever
F' is a closed subset of F' and F' N K = ¢, there is a m-open subset V'
of X with F/ CV CclxV CU. A space X is nearly rimcompact at
x if whenever @ € U, where U is open in X, there is an open set W
of X withx € W C clxW C U and cl xW nearly w-contained in U;
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X is quasi-rimcompact at x if there is a compact set K, of X so that
whenever F' is closed in X and F' N K, = ¢, there is a m-open subset
Vof X withz € V CclxV C X\F. Finally, X is almost rimcompact
at x if X is nearly rimcompact and quasi-rimcompact at x, and almost
rimcompact if X is almost rimcompact at each point. Each rimcompact
space is almost rimcompact, each almost rimcompact space is a 0-space;
neither converse holds [2].

2. The main results. The first result will provide the necessary
clopen at infinity subsets of SY.

Lemma 2.1. Suppose that X is a 0-space and that f : X — Y is a
monotone open map. If U is a CI open set of BX, then fP[U] is a CI
open set of BY .

Proof. Suppose that p € (BY\Y) N fA[U]. Then f#<(p) C BX\X
and fP<(p) NU # ¢. Since U N (BX\X) is clopen in BX\X
and f# is monotone, fA<(p) C U. Then fA[fP[U] N (BY\Y)] =

U N fP<[BY\Y], thus fA[U] N (BY\Y) is clopen in BY'\Y. Also, since
f# is closed, p € intgy fP[U].

Suppose that p € fA[U] NY. We first show that p € f[U N X]. If
p € [fPIUINY\fIUNX], then f(p) C X\U so that clgx f< (p)NU =
¢. Since U N (BX\X) is clopen in SX\X, there is at least one
connected component C of 3X\X such that C N % (p) # ¢ while
CNeclpxf(p) = ¢. The map f# is monotone, hence F[f** (p)] is a
connected subset of Fy X, where F' : X — FyX is the natural map. On
the other hand, F[f#* (p)]\F[clsx f (p)] is a nonempty open subset
of F[f#<(p)] contained in the zero-dimensional set FoX\X. This
contradiction proves that p € f[U N X].

Choose z € f<(p) NU and W open in BX such that x € W C
clgxW C U. Then f[W N X] is an open neighborhood of p in Y. It
follows that p € intgycl gy f[W N X] Cclgy fIWNX] C fPlelgx W] C
fPU]. Thus, p € intgy fP[U] and fP[U] is open in BY. O

For any space X and p € 8X, let K, = Nn{BX\U : U is CI open
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in BX, p ¢ U}. The next results provide a useful description of the
connected components of the remainder of a 0-space as the sets K, for
p € BX\X.

Lemma 2.2. Forp € fX, K, is a compact connected subset of B.X.
If K, C BX\X, then K, is the quasicomponent of p in BX\X and has
a base of C'I open sets in BX.

Proof. The set K, is clearly compact. Suppose that K, is not con-
nected. There are open sets U;,Us; of [BX such that

ClﬁxUl mclﬁxUz = ¢, Kp g U1 U U2 and Kp N Ui 7é (15, = 1,2. Since
the finite union of C'I open sets is open and CI, by compactness there
is a CT open set W of X with p € BX\W C U; UU,. Assume without
loss of generality that p € Uy, and consider W' = W U Us. Since
bdgx\x [W' N (BX\X)]
C bdsx\ x[W N (BX\X)] Ubdax x[U2 N (8X\X)]
C bdgx\x[U2 N (BX\X)]
CWnN(EX\X) < W' n(BX\X),
W'is CI'in BX. Asp ¢ W', K, C Uy, a contradiction.
If K, C X \X, then
Ky =K,N (BX\X)
=N{BX\U : U is CI open in 8X,p ¢ U} N (BX\X)
=N{(BX\X)\U :U is CI open in X,p ¢ U};
that is, K, is an intersection of clopen sets of SX\X. Thus, the

quasicomponent of p in SX\X is contained in the connected set K,
and therefore equals K.

Suppose that K, C V, where V is open in SX. As above, there is
a CT open set V' of BX with K, C SX\V' C V. Let W be an open
set of BX with W N (BX\X) = (BX\X)\V'. Then W is CI, as is
W' =W nNV. Since K, CW' CV, W is the desired open set. O

The locally compact part of X is denoted by L(X); clgx (BX\X) =
BX\L(X).
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Corollary 2.3. If X is a O-space, then for p € X\X, K, is the
compact connected quasicomponent of p in BX\X.

Proof. Suppose that p € SX\X and z € X. According to the
previous result, it suffices to show that ¢ K,. Without loss of
generality, « ¢ L(X). Since the connected component C, of p in
BX\X is compact, there is an open set W of X with z € W and
CpNclgxW = ¢. Since X is a 0-space, there is a C'I open subset
V of X with C, C V and V NclgxW = ¢. Then [clgx[V N
BX\X)]|N[BX\X] =V, and T = clgx(BX\X)\clgxV is an open
subset of clgx(fX\X) with T'N (BX\X) = (BX\X)\V. There is
a CI open subset V' of X with V' Nclgx(BX\X) = T. Since
zeWnclpx(BX\X)CT,z ¢ K,. o

Lemma 2.4. Suppose that f : X — Y is a monotone open map and
that X is a 0-space. Forp € fY\Y, K, C fY\Y.

Proof. Choose p € BY\Y and y € Y. Since f? is monotone,
fP<(p) is a connected compact subset of 3X\X, hence is contained
in some compact connected quasicomponent C' of SX\X. Choose
z € f<(y) N X; Corollary 2.3 implies that there is a CI open subset
V of BX with z € V and CNV = ¢. Then y € fA[V] while
p ¢ fP[V]. According to Lemma 2.1, f#[V] is CI and open in BX,
thus K, C gY'\Y. O

To complete the proof of the main result, we show that C(8Y) (recall
Definition 1.2) is an upper semicontinuous decomposition of SY.

The following definitions will be useful in the proof of this result.

Definitions 2.5. 1) A space X has property (*) if whenever
z € UNX (for U open in BX) there is an open set W of X with z €
W CclgxW C U and such that clgx W\ U{V : V is CI open in X,
V C U} is a compact subset of X.

2) If U is open in BX, let U* =U{d :d € C(BX),d CU}.

Note that U* N X = U N X and that U® is open in X for each
open set U of BX if and only if C(8X) is an upper semicontinuous
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decomposition of 3X.
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Theorem 2.6. Suppose that X is a 0-space and that the map
f: X =Y is monotone and open. Then'Y is a 0-space.

Proof. As mentioned above, it is sufficient to show that C(8Y") is an
upper semi-continuous decomposition of BY, or, equivalently, that for
U open in BY, U® is open in BY. We first show that both X and Y
have property (*).

Suppose that x € U N X, where U is open in 8X. Since U? is open
in X, there is an open set W of BX withxz € W C clgxW C U®. For
p € CgxW\W, C, C U. Thus, there is a CI open set V,, of 83X with
p €V, CU. Then clgxW\U{V : Vis CI openin fX,V C U} C
clgxW\U{V, : p € clgxW\X} C X and is a compact subset of X,
thus X has property (x).

To show that Y has property (x), suppose that U is open in Y with
y € UNY. Choose z € f#~(y) N X; since X has property (), there
is an open set W' of BX with z € W' C clgxW' C f#<[U] and such
that

clgxW'\U{V : V is CT open in X,V C fP[U]}

is a compact subset of X. Since y € f[W N X], which is open in Y,
y € intgyclgy f[W N X], while clgy f[W N X] = fPlclgxW] C U.
Finally,

clgy FIWNX]\U{V':V"is CI open in Y, V' C U}
= Pl gxW\U{V': V" is CT open in BY, V' C U}
C fPlelgx W\ U{fP[V]:V is CI open in BX,V C fP[U]}
C fPlelpxW\U{V : V is CI open in X,V C fP[U]}]

and thus is a compact subset of Y. The set intgycl gy f[W N X] is the
desired neighborhood of y.

Assume that U is open in 8Y; we show that U?® is open in BY. Let
p € U N(BY\Y). According to Lemmas 2.2 and 24, K, C U. It
follows from Lemma 2.2 that there is a CI open set V of BY with
p € K, CV CU. To show that p € intgyU?, it suffices to show that
V C U*. Since VN(BY\Y) is clopen in SY\Y, if ¢ € VN(BY'\Y), then
K, CVN(BY\Y), K, C U and thus ¢ € U®. Hence, VN(BX\X) C U®.
Since VNY CUNY CU®, V CUS.
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Choose y € UNY. Since Y has property (x), there is W open
in BY with y € W C clgyW C U and clgyW\U{V : V is
CI open in fY,V C U} a compact subset of Y. If ¢ € clgyW\Y,
g € V for some CI open set V of BY with V C U, sothat K, CV CU
and ¢ € U®. Since (clgyW)NY CUNY CU?, clgyW C U?®, thus U®
is open in BY. o

A result more general than Theorem 2.6 is possible when working
with rimcompactness or almost rimcompactness (2.9). The next two
results allow us to work with m-open sets.

Lemma 2.7. If f : X — Y is a monotone open map and U is w-open
in X, then f[U] is m-open in'Y and cly f[U] = flcl xU].

Proof. Since f is monotone quotient, it follows from [8] that
bdy f[U] C flbdxU]. Then f[U] is an open subset of Y with com-
pact boundary. Also,

cly f[U] = bdy f[U] U f[U] C flel xU],

while flclxU] C cly f[U] for any continuous function f, so that
Clyf[U] = f[ClXU] O

Lemma 2.8. Suppose that F and U are closed and open in X,
respectively. The set F is nearly w-contained in U if and only if
clgxF\ U{ExgxV : V m-open in X, cl xV C U} is a compact subset
of X. In this case, clgx F' C ExgxU; if f : X = Y is a monotone open
map, then cly f[F] C f[U].

Proof. Suppose that the compact subset K of F' witnesses the fact
that F is nearly m-contained in U. For p € clgx F\F, there is a closed
subset F), of F' with p € clgxF}, and F, N K = ¢. Choose V,, to be
m-open in X with F, C V, C clxV, C U. Then clgxF, C clgxVp;
since ExgxV, N (BX\X) = clgxV, N (BX\X), p € clgx F, C Exg, V).
It follows that

clgxF\U{ExgxV : Vmopenin X,clxV C U}
CeclgxF\U{ExgxV, :p € clgxF\F} C X,
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hence is a compact subset of X.

Conversely, suppose that clgxF\ U {ExgxV : V m-open in X,
clxV C U} is a compact subset K of X. If F' is closed in F with
F'NK = ¢, then clgx F' C U{ExgxV : V m-open in X, cl xV C U}.
Compactness and the fact that a finite union of 7m-open sets is m-open
yield a m-open set V with F/ CV CclxV C U. Since V C U implies
that ExgxV C ExgxU, clgxF C ExgxU. If V is m-open in U and
cdxV C U, then f8[Exsx V]NY C fPlcl sxV]NY = (clgy fV])NY =
cly f[V] = (by Lemma 2.7) f[cl xV] C f[U]. Hence,

Ay fIF] = (py fIF) NY = Pl px F]NY
= (fIF]U fP[dpx F\F) NY
C (flUIU fP[U{ExpxV : Vm-open in X,cl xV C U}])
nNY C flU]l. o

Theorem 2.9. Suppose that f : X — Y is a monotone open
map and that, for each y € Y, f<(y) contains a point x at which
X is almost rimcompact (rimcompact). Then'Y is almost rimcompact
(rimcompact).

Proof. Let y € Y and choose z € f“ (y) at which X is almost
rimcompact. If K, witnesses the fact that X is quasi-rimcompact at
z, let K, = f[K;]. The set K, is compact. If F is closed in ¥ and
FNf[K;] = ¢, then f<[F]is a closed subset of X with f< [F|NK, = ¢.
Choose V m-open in X with z € V C clxV C X\f<[F]. Then
y € flV] Cclyf[V] = (by Lemma 2.7) flclxV] C Y\F. Since f[V] is
m-open in Y, K, witnesses the fact that Y is quasi-rimcompact at y.

If X is rimcompact at x, then we can choose K, = {z}, in which case
K, = {y} and Y is rimcompact at y.

Ify € U openin Y, and z is as above, € f< [U]. Choose W open in
X with x € W and cl xW nearly w-contained in f [U]. The set f[W]
is an open neighborhood of y; according to Lemma 2.8, cly f[W] C U.
If V is m-open in X, then

Exgy fIVI N (BY\Y) = clgy f[V] N (BY\Y) (by 2.7)
= fPlelpxVIN (BY\Y)
~ FP[Exsx V] N (BY\Y).
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Since

FPlelpx W\ U {fP[ExpxV]: Vr-open in X,clxV C U}
C fPlelgxW\ U {ExgxV : Vr-open in X,clxV C U}]
cfPIXlcy

(with the second inclusion following from Lemma 2.8),

clgy FIW\ U{Exgy V' : V'm-open in Y,cl xV' C U}

[clgx W\ U{Exgy V' : V'm-open in Y,cl xV' C U}
[

(X

clﬂxW]\ U {Exgy f[V]: Vm-open in X,clxV C f[U]}

fﬁ
fﬁ
FPIX) =

N 1N

and thus is a compact subset of Y. Then cly f[W] is nearly 7-contained
in Y, and Y is quasi-rimcompact, thus almost rimcompact at y. ]

It is reasonably easy to build a nonrimcompact space X and a mono-
tone open map onto a rimcompact space Y satisfying the hypotheses
of Theorem 2.9. (For instance, if Z is a connected space which is not
rimcompact but has points of rimcompactness and Y is locally compact
and zero-dimensional, then the projection map from Z XY onto Y will
have the desired properties. The space Z can be constructed by taking
the square of a connected rimcompact space which is neither locally
compact nor nowhere locally compact (see 2.3 of [5]).) Thus, Theorem
2.9 is stronger than the rimcompact version of Theorem 2.6.

Any completely regular space X can be written as the perfect image
of a zero-dimensional (in fact, extremally disconnected) space [9], so
that the perfect image of a rimcompact space need not be rimcompact.
Also, in 3.4 of [3], a rimcompact space X, nonrimcompact space Y
and monotone closed map f : X — Y are constructed. Thus, the
hypotheses of monotone open in the above theorems cannot be replaced
by either perfect or monotone closed.
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