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1. Introduction. Let Q be a bounded domain in RN with smooth
boundary 02 and T a positive number. Set Qr = Q x (0,T), Sy =
092 x (0,T). Consider the following initial-boundary-value problem:

(1.1a)

(1.1b)

(1.1¢)

(1.1d)

(1.1e)

Here a and b are given positive constants and o(u), k(u) are known
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We may view (1.1) as a model for an incompressible, unidirectional
flow with temperature-dependent viscosity; see [8] and its references.
In this situation, ¢ is the nonzero component of the velocity field of
the flow and u the temperature. The Navier-Stokes equations and the
energy equation reduce to (1.1a) and (1.1b), respectively. Problem (1.1)
also arises in the study of heating in a massive conductor caused by
the eddy currents; see [2] where a long, conducting, and homogeneous
cylinder is considered. An external variable magnetic field induces the
Foucault currents in the cylinder which, in turn, generate the so-called
Joule heating. The question of finding the magnetic field and the
temperature in the cylinder as a consequence of Joule heating leads
to the consideration of problems of type (1.1).

Problem (1.1) is considered to be well-understood in the case N = 1;
see, e.g., [5, 1, 3, 4], where the existence of a classical solution and
the large time behavior of the solution are investigated under various
assumptions on the data. An existence assertion is established for a
problem, which is a slight variation of (1.1), in [8] under the assumption
that o and k are continuous and satisfy

0<m<o(s), k(s) <M on R,

where M and m are two constants. In particular, no restriction on IV,
the space dimension, is imposed in [8].

As pointed out in [8], the main mathematical difficulty in this
situation is due to the quadratic gradient growth in the nonlinearity.
In general, nonlinearities of this nature make it impossible to obtain
the usual energy estimates which are such celebrated and fundamental
properties of equations of parabolic types. Owing to the lack of a
priori estimates, the classical compactness and regularity results are no
longer applicable. This suggests that one has to be able to extract some
extra information from the explicit nonlinear structure of the problem
in order to tackle it successfully. It is observed in [8] that the relation

pdiv (o(u) V) + o (u)|Vel* = div (o (u)pVe)

can be employed in a certain way to eliminate the effect of the quadratic
term, and, as a consequence, an existence theorem is established there.

In this paper we shall consider the case where o and k are only
assumed to be positive. This leaves open the possibility that o(s) and
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k(s) may tend to 0 as |s| — co. A new mathematical difficulty arises
from this. In order to view the system in the sense of distributions, one
should know that ¢ belongs to L?(0,7; W"?(Q)). This information
would be implied by the boundedness of the temperature, u, which
in turn depends upon the regularity of ¢. Existing results on the
regularity of weak solutions to degenerate parabolic equations of type
(1.1b) indicate that there is a gap between the regularity of ¢ obtained
from assuming u is bounded and that needed to yield the boundedness
of w. This gap does not seem to be of a technical nature. Thus, if u
is unbounded on Qr, the system will degenerate on the set {|u| = oo}
where V¢ is not well-defined. This implies that no a priori estimate
for V will be possible. This new phenomenon cannot be incorporated
into the classical weak formulation which we followed in [8]. As a result,
the classical notion of a weak solution is not appropriate in analyzing
(1.1).

The above discussion suggests that we will have to look for a solu-
tion in some LP-space instead of the usual space L2(0,7;W12(Q2)) x
L?(0,T; W&Z(Q)) This gives rise to the possibility that V¢ is only
a distribution. Consequently, our system may involve the multiplica-
tion of distributions. Thus the sense in which the system is satisfied
is an issue. To overcome this difficulty, we first establish the following
lemma.

Lemma 1.1. Assume
(H1) o and k are continuous, positive, and bounded above;
(H2) @€ L=(Qr) NWh(Qr), uo € L*(Q), po € L=(Q).

Then (p,u) is a classical weak solution of (1.1) which can be defined in
an obvious way (see also [8]) if and only if

(1.2a) p—p,  uweL*0,T;Wy*(Q),
(1.2b) ¢ € L™(Qr),

and

(1.2¢) —a/ o€ dr dt +/ o(u)VeVEde dt

—a [ eala)é(,0) da,
Q
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(1.2d)
_/ (ESOQ + bu)ﬁt dz dt-i-/ (o(uw)pVe + k(u)Vu)VE dz dt
Qr \2 T

- / <bu0(x) + gg&%)f(m, 0) dz
Q 2
for all € € HY(0,T; Wy2(R)) such that &(z, T) = 0.

We may view (1.2) as the classical weak formulation of the following
problem:

(1.3a) apy = div (o(u) V) in Qp
(1.3b) <g<p2+bu> = div (k(u)Vu)+div (o(u)pV) in Qr,

(1.3¢) Y=, u=0 on Sy,

(1.3d) © = o, U = g on Q x {0}.

Now we are in a position to employ the notion of a capacity solution
developed in [9, 10] to study (1.1). For this purpose, let

B(s) = / k(r)dr,  v=p), A={pcCLR):p(0)=1}.

Definition. By a capacity solution to (1.1), we mean a triplet
(u, ¢, g) such that
(i) weL*(Qr), p€L®(Qr), g€ [L*(Qr)]N, ve L*(0,T; Wy *(Q));
(ii) (1.2c) and (1.2d) hold with o(u)V replaced by g and k(u)Vu
replaced by Vu;
(ili) for each p € A, p(v)p — @ € L*(0,T; Wy*(Q)) and p(v)g =
a(u)(V(p(v)p) — ¢Vp(v)) in L*(Qr).
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Let us analyze (iii) a little bit further. If u is indeed bounded, then we
can choose p € A so that p = 1 on the range of v. Then it immediately
follows from (iii) that ¢ — @ € L2(0,T;W3*(Q)) and g = o(u)Ve.
Thus, in this case, (u,¢) is a classical weak solution. Even if u is
unbounded, we can still recover Vo in the almost everywhere sense.
To see this, set E,, = {(z,t) € Qr : |v(z,t)] < m} for each m > 0.
Select a pp, in A so that p,, = 1 on [—m, m]. Then pn,(v)p = ¢ on
E,,. But pp,(v)p € L2(0,T; W12(Q)), and we can evaluate V (py, (v)p).
Define Vo = V(pm(v)p) for (z,t) € E,,. Then, by (iii), g = o(u)Ve
on E,,. Since Qr\U_, E,, = {(z,t) : |v(z,t)] = oo} is of measure
0, Vo can be defined for almost all (z,t) in Q7. Then g = o(u)Vy in
Q7. Note that V¢ obtained here may only be a measurable function,
and the product g = o(u)V is taken as a product of two measurable
functions. A remarkable possibility is that in this case V¢ in the
sense of distributions may not be a pointwise function, i.e., a pure
distribution. An example situation is that ¢ has a jump discontinuity
across a manifold in Qr and v(z,t) goes to infinity as (z,t) approaches
the manifold. Another point here is that ¢ may not be regular enough
to allow the definition of a trace. That is why the boundary condition
for ¢ is characterized by p(v)p — @ € L2(0,T; Wy *()) for each p € A.
Note that p(v) = 1 on Sr. This enables us to say ¢ = @ on St in
some sense. We shall show that this notion of a capacity solution is
indeed general enough to encompass the new phenomena caused by the
relaxation of assumptions on o and k.

Theorem 1.2. Let the assumptions of Lemma 1.1 be satisfied.
Assume that RgB3, the range of B, = (—00,00) and that there exist two
constants m and M such that 0 < m < o(s)/k(s) < M for all s € R.
Then (1.1) has a capacity solution.

This paper is organized as follows. The proofs of Lemma 1.1 and
Theorem 1.2 are presented in Section 2. In Section 3 we give a proof
of the existence theorem for (1.1) in the case where o and k stay away
from zero, which seems to be simpler than that presented in [8].

Finally, we remark that the situation considered here is also very in-
teresting from the point of view of applications. In the electrical heating
of a conductor such as a thermistor, o(u) represents the temperature-
dependent electric conductivity. As the temperature increases, the con-
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ductivity decreases. A very high temperature essentially leads to the
shut-down of the electric current, i.e., o(u) = 0 if u is “large.” Our
model may be considered as an approximation to this situation.

2. The degenerate case. In this section we first recall some
information on Banach-space-valued functions. Then we proceed to
prove Lemma 1.1 and Theorem 1.2.

Proposition 2.1. Let the Banach space V be dense and contin-
uously embedded in the Hilbert space H; identify H = H' so that
Ve—H<=V'. Then the Banach space Wp(0,T) = {u € LP(0,T;V) :
uy € LP'(0,T;V")} is contained in C([0,T],H). Moreover, if u,v €
Wp(0,T), then (u(-),v(-))u is absolutely continuous on [0,T], and

Here and in what follows we use the convention that p’ is such
that 1/p 4+ 1/p’ = 1, and (-,-) denotes the duality pairing between a
topological vector space V and its dual V'. Next, we cite Lions-Aubin’s
theorem for the reader’s convenience.

Proposition 2.2 (Lions, Aubin). Let By, B, B; be Banach spaces
with By C B C By, and assume that By— B is compact and B— By is

continuous. Let 1 < p < oo, 1 < g < 00, By and By be reflexive, and
define
W ={u e LP(0,T;By) : us € L1(0,T; By)}.

Then the inclusion W< LP(0,T; B) is compact.
Now we are ready to prove Lemma 1.1.

Proof of Lemma 1.1. Let (o, u) be a classical weak solution of (1.1).
Then we only need to prove (1.2d). Tt is sufficient to prove that (1.2d)
holds for all £ € C§°(Q x (—o00,T)). We infer from (1.2c) that

apy = div (o(u) V) in L2(0, T; W=+%(Q)).
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Thus, for any & in C§°(2 X (—o0,T')), we have

(2.1) (agr, p€) = — / o (w) VoV () de dt.

T

Keeping this in mind, we compute

/ o(u)pVeVdzdt :/ o(u)Ve(V(p€) — V) dx dt
(2.2) i i
= —(apt, p€) —/ Eo(u)|Vy|? dz dt.
Qr

The weak formulation of (1.1b) gives

—/ bufidz dt = —/ (k(u)VuVE + o(u)|Ve|*€) dz dt
(2.3) r r

b 0) da.
b [ wo(o)ta,0)da
Combining (2.2) and (2.3) yields

(2.4)

(o(u)pVe + k(w)Vu)VEdz dt = —(apy, p€) + / bu; dz dt
Qr T

+ b/ﬂuo(w)f(x,O) dz.

Thus, to establish (1.2d) it is enough to show

@5 [ Getded+ [ Geee0de = (oo pt)

By Proposition 2.1, we have

L (ap(0) — ap(,1), 9 EC, D)ooy
= (aWt('at) - a@t('at)asa('at)g('at))
+ ((p( )&, 1)es ap(-, ) — ap (-, t)).
Recall that £ € C§°(Q X (—o00,T)). Hence, p:{ makes sense in
L2013 W 12(Q), ie., (i€, ) = (g, €n) for any 1 in L*(0,T; Wy *(2)).

(2.6)
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Then we have that (0€); = Epy + @& in L2(0,T; W~12(Q)). Use this
in (2.6) and integrate the resulting equation over (0,7 to get

—/ apgé(z,0) dw=2(asot,so£)+/ alpp? dx dt.
Q

T

This is equivalent to (2.5).

Since (2.5) holds for any ¢ such that ¢ — @ € L2(0,T; Wy*(Q)) and
or € L2(0,T; W=12(Q)) and € € C§°(Q x (—00,T)), it is easy to see
that (1.2¢) and (1.2d) also imply (2.3). This completes our proof. O

Now we turn our attention to Theorem 1.2. A capacity solution will
be constructed as the limit of a sequence of classical weak solutions of
the approximation problems.

Proof of Theorem 1.2. For each positive integer n set
on(s) =0o(s)+1/n, kn(s) = k(s) + 1/n,

and then consider the following problem:

(2.7a) ap; = div (o, (u) Vo) in Qp

(2.7b) buy = div (kn (u) V) + o, (w) |V |? in Qr
(2.7¢) =0 on Sy

(2.7d) w=0 onSr

(2.7€) U = ug, © = on Q x {0}.

By Theorem 3.1 in the subsequent section, for each n there exists a
classical weak solution (¢p, u,) to (2.7). Let
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and

Then we have
(2.8) apnt = div (o (un)Ven) in L?(0, T; W~ 42(Q)),

ban(vn)t = Avn + O—n(un)|v<pn‘2

(2.9) . 1o
in (L*(0,T; Wy " (2)) N L=(Qr)). B

Lemma 2.1. Let the assumptions of Lemma 1.1 be satisfied. Assume
that RgB = (—00,00). Then {¢,} is precompact in LP(Qr) for each
p>1.

Proof. We infer from (H2) and the weak maximum principle that

(210) esssup [n (e, 1) <max{[|@ i~ spy, eollim@}  forall n.
(z,t)eEQT

Use ¢, — @ as a test function in (2.8) to derive
ad / _\2 / _ —
57 | (pn—@)deta | @ulpn—p)da
22 om0 [ on-)
= —/ on(Un)Vor(Ve, — V@) da.
Q

Integration with respect to t, application of Hoélder’s inequality, and
the inequality that

2 b2
(2.11) ab<® 1+ 7% forallabeR, >0
2e 2
yield
a 9 1 [t 9
2 (on — @) dm+§ on(un)| V| dedr
Q 0 Ja
t
§g/ /((pnfgb)2dacd7'+c.
2Jo Ja
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Here ¢ depends on the W2(Qr)-norm of ¢ and the upper bound M
for 0. By Gronwall’s inequality and our assumptions on @,

(2.12) ess sup/ @2 (x,t) dz + / 0n(un)|Vepn|? dr dt < ¢,
0<t<T JQ T
for all n. Here, and in what follows, ¢, ¢;, 2 = 0,1,. .., represent positive

constants which are independent of n.

Now we proceed to obtain a priori estimates for {v,}. For this
purpose, let

0 ifs>9,
Is(s)=<¢ s if|s| <4,
-6 if s < =4,

where 6 > 0. Use l5(v,,) as a test function in (2.9) to get

T
/ (bunt,lg(vn))dt—l—/ |V, |* dz dt
0 {lvnl<8}

2.13 T
(2.13) :/0 /Qan(un)|V<pn|2l5(vn)dxdt

< ¢f.

Here and in what follows ¢,¢;, i = 0,1,..., are also independent of §
unless explicitly indicated otherwise. By the chain rule,

d tn
(bng, ls(vn)) = %/ </ bls(Bn(s)) ds> dz.
2 \Jo
Furthermore,
/ 15(Bn(s))ds >0 almost everywhere on Qr
0

because I5(8,(s)) is an increasing function and I5(5,(0)) = 0. In view
of these, we deduce from (2.13) that

(2.14) / |Vv,|>drdt < c;6+c; for each n and each §>0.
{lvn|<é}
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Claim 1. For each 6 > 0, there exists a positive number c(d) such
that

(2.15) / |V on|? dzdt < c(6) for all n.
{lvn]<6}

Proof of Claim 1. Since

/Oook:(T)dT:oo, /0 k(r) dr = —o0

— 00

by our assumptions,

sup{ay,,(8), —a,(—0)} = A(9)

n>1

is finite for each co > ¢ > 0. Recall that o(s) is strictly positive on R.
For A(d) > 0 there exists a B(d) > 0 such that

on(s) > B(9) on [—A(6), +A(9)]

for all n. We are ready to calculate, using (2.12), that

/ |Vo,|? dedt = / |Vo|? de dt
{lvn|<4} {an(=8)<un<an(d)}

/ |V |? dz dt
{lun|<A(8)}

IA

1 / 9
< — on(un)|Vn|* dz dt
B(6) J{junl<a()}
1 / 9
< 5 on(un)|Von|* dedt
BG) Jg, Ve
C1
< = .
= B) ¢(9) O

Claim 2. For each § > 0 and each § € C = {§ € C*(R) : 6 =
0 on (—00,0], 8 >0, and 8 =1 on [1,00)}, {¥n = ©n(1 —0(Jvn|/d))}
is bounded in L*(0,T; W12(Q)).
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Proof of Claim 2. Clearly, {¢,} is bounded in L*°(Qr). We compute

_(1_gf el ool L
Vi/)n—<1 6’( 5 Von — onb 5 551gn(vn)an.

Note that

1—6(Junl/6) =0 almost everywhere on {|v,| > 4},
0'(|v,|/d) =0 almost everywhere on {|v,| > d}.

Consequently,

1/2
[[Vibn||L2 < (/ |V<pn|2dxdt)
{|vn|<6}

2.16 1/2
(216) + 5(/ |an|2d:cdt>
O\ Sjoni<sy

< ci(9)
due to (2.15) and (2.14). Here we also use the fact that maxscg |6 (s)| <
Co.

Now we are ready to show that
{¢n} is precompact in LP(Q7) for each p > 1.

By (2.12) and (2.8), {¢nt} is bounded in L%(0,T; W ~12(Q)). Take
By=L?(Q), B=B; =W 12(Q). Since the inclusion L?(Q)—W ~1.2(Q2)
is compact, we are in a position to use Lions-Aubin’s theorem to
conclude that {¢,} is precompact in L?(0,T; W~=1%(Q)). Without loss
of generality, assume
(2.17)

¢n — ¢ weakly in L?(Qr) and strongly in L?(0, T; W~ 12(Q)).

For 6 € C, 6 > 0, we calculate

/T(son—cp)sondxdtz/T(gon—cp)gon(l—e(@»dxdt
+/T(<pnga)<pn0(%> dz dt

EIl +12
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We have, using (2.17) and (2.16), that

L] < ‘(%%%(19('”;)) ¢>‘

+ / (on — @)@ dzdt

< |len — <P|L2(0,T;W—1’2(ﬂ)‘

+ / (pn —@)pdzdt
T

< c(9)|len — ‘10||L2(0,T;W*1’2(Q)) + ‘ / (on — so)gada:dt‘ —0
T

as n — oQ.

We use Poincaré’s inequality to estimate I5:

T g Lol 2
|I2] < c</ / 92<—n> dxdt)
( (| "|>—51gnvnV1}n
1 1/2
< 03—</ anzdmdt>
CANVI{PRES)!

< c—(cl(5 + 02)1/2.

2 1/2
dx dt>

SOy,

The last step is due to (2.14). Also, note that here ¢,c1,co are
independent of §. Hence,

1
limsup‘/ wndwdt‘ <C(5(Cl(5+62)1/2.
T

n—o0

Here § > 0 is arbitrary. In particular, taking § — oo yields

lim (on — @)ondxdt = 0.

n—roo QT
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/(gan—ga)zdxdt:/ (gan—go)gandxdt—/ (pn — @) pdxdt
—0 as n — oo.

Since {¢,} is also bounded in L*°(Qr), this completes the proof. o

Lemma 2.2. If there exists 0 < m1 < mo such that

<m on R
k(S) =~ 2 )
then

sup / bu? (z,t) d:v—f—/ En(un)|Vu,|* dzdt < c.
0<t<T Jo

T

Proof. By Lemma 1.1, we have

(2.18) (%i + buy,

5 >t = div (kn(un)Vur) + div (on(un)en Ven)

in
L*(0,T; W=12(Q)).
Use (a/2)¢? + bu,, — (1/2)@? as a test function to obtain

1d a o a_22 a , a _o
—— — bu, — = d — bu, — = d
2dt/9<2¢"+ U 230) x—i—/ﬂag@g@t 2tpn+ U 2<p T

— / (kn(un) Vg + 00 (Un)0nVon)(apn Ve + bVu, —apVp) dx
Q

= _ /(; \/ i:gzz)) VEkn (un)Vunapn/on(un)Ve, do

—b/ kn(un)|Vun|2dm—a/Jn(un)gazb|V<pn|2dx
Q Q

[ o B d

+ / (kn(un)Vu, + 0n(un)pn Vor)apV e de.
Q
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Consider the function g(s) = (¢1 + s)/(c2 + s). Compute

, co+s—(c1+3) co —C1
g'(s)= 7 = 5
(c2+5) (c2 + )

Thus g(s) is increasing when ¢y > ¢; and decreasing when ¢; < co.
Taking a note of this, we estimate

kn(s) _ k(s)+1/n _ k(s)+1/n
ou(s) ols)+1/n  k(s)F +1/n

k(s)+1/n
~ myik(s)+1/n
M < M+1 if my > 1
mik(s) +1
= k(s) 1
s

= — ‘f 1-

mik(s) my <
Similarly,

1 mg > 1
ku(s) _ _k(s) +1/n > 2=
on(s) = k(s)ma +1/n — k(s)+1 1 )

k(s)mg +1 ” Mmy+1 ™ <&

With this in mind, apply Holder’s inequality and (2.11) to (2.19) to get
1d 2
Q

24dt |
a a 5\’
§C1/ <§¢i+bun—§<ﬂ2> dz + ca.
Q

Integration with respect to ¢ and applications of Gronwall’s inequality
and the fact that {¢,} is bounded in L*°(Qr) yield the desired result.

It follows from Lemma 2.2 that
/|wﬁma:/kmwwwwMt
T Qr

< (M + 1)/ kn(un)|Vu,|? dz dt < c.
Qr
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Poincaré’s inequality implies that ||vn||p2(g,) < ¢ We may assume
that

(2.20) Up —> U weakly in L*(Qr),
(2.21) vy, = v weakly in L?(0,T; W3 %(Q))
(passing to subsequences if necessary). O

Claim 3. v,, — v strongly in L*(Qr).

Proof of Claim 3. We see from (2.18) and Lemma 2.2 that {((a/2)¢2+
bu,)¢} is bounded in LZ(0,T; W~12(Q)). Once again, we are in a
position to employ Lions-Aubin’s theorem to conclude that {(a/2)p2 +
bu,} is precompact in L?(0,7;W~12(Q2)). In view of Lemma 2.1,
(2.17), and (2.20), we have

a
2

Consequently,

/ [ggai—i—bun <gga2+bu>](vn —v)dzdt
T

_<g<pi+bun—ggp2—bu,vn—v>—>0 as n — 0o,

1
02 + bu,, — 5(,02 + bu strongly in L*(0, T; W~ 52(%2)).

from whence follows

b/ (un—u)(vy,—v) da dt
:/ <g<p$’+bun_g¢2_bu>(Un—v)da:dt—g/ (02 —9*) (v, —v) dx dt

— 0 as n — oo.

Therefore,

b / (tn — 10) (B (1) — B (1)) ez

(2.22) :b/ (unfu)(vnfv)dmdtﬁLb/ (un—u)(v—PBn(u)) dz dt

—0 as n — 0o.
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The second term tends to 0 as n — oo because |5,(s)| < (M + 1)|s]
and limp o0 Bn(s) = [; k(7) dr = B(s) for all s, and thus Lebesgue’s
dominated convergence theorem implies that 8, (u) — S(u) strongly in
L*(Qr). We deduce from (2.22) that

(2.23) 0 < (up—u)(Bn(un)—LBn(u)) = 0 almost everywhere on Qr

(passing to a further subsequence if need be). Recall that 3(s) is strictly
increasing. Then (2.23) implies

(2.24) u, = u almost everywhere on Qr.
Subsequently, we also have
(2.25) v, — v almost everywhere on Qr

since (3, — [ uniformly on bounded subsets of R. Note that
(2.26)

/ Up Uy, da dt = / ((up, — u)(vy, — v) + UpV + vV, — wv) dz dt
Qr

T

:/ (un—u)(vn—v)dmdt—i—/ unv dz dt
T T

+/ unvdmdt—/ uvdr dt

— uv dx dt as n — oo.
Qr
Now for any subset £ C Q1 we have from Fatou’s lemma that
(2.27) liminf | wu,v,dzdt > / uv dz dt.

On the other hand, by (2.26)

(2.28) limsup/ Up Uy, dz dt
E

n—oo

< lim sup / Up VU, dz dt — lim inf / Uy Uy, do dit
T Qr\E

n—00 n—o0

§/ uvdmdt—/ uv dx dt
T Qr\E

= / uv dx dt.
E
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Thus, combining (2.27) and (2.28) yields

lim Up Uy, dx dt = / uv dz dt
E E

n—oo

for each subset E of Q7. Now we can appeal to a result in [6, p. 144] to
conclude that {u, v, } is uniformly integrable. Since |v,| < (M +1)|uy,|,
{v2} is also uniformly integrable. In view of this and (2.25), we may
apply Vitali’s theorem to obtain our desired result.

By virtue of (2.12), we may also assume that

gn = 0n(un)Ve, =g weakly in [L*(Qr)]Y. O

Claim 4. ¢, g satisfy (iii), where ¢ is given as in (2.17).

Proof of Claim 4. For each p € A there exists a § > 0 such that the
support of p is contained in (—d,d). We compute

V(p(vn)en) = p(vn)Ven + 0 (vn) VUnpn.

In view of (2.15) and the fact that p(v,) = 0 on {|v,| > 6}, we obtain
that {p(v,)pn} is bounded in L?(0,T; W12(Q)) for each p in A. Thus,
we may assume, using our claim that {v,} is precompact in L?*(Qr)
and (2.17), that p(v,)en — p(v)p weakly in L%(0,T; W12(Q)). That
is, p(v)p € L2(0,T; W12(2)). Note that p(OQ) = 1. Thus, p(v,) =1 on
Sz. Consequently, p(v)p — ¢ € L%(0,T; Wol’ (€2)). Let us calculate

P(Vn)gn = p(Vn)on(un)Ven
= 0n(un)(V(p(vn)Pn) — ©nVp(vn))-

By virtue of Lemma 2.1 and (2.24), we can take n — oo in this identity
to get the desired result. O

In view of (2.12), lemmas 2.1 and 2.2, we can pass to the limits in
(2.8) and (2.18) to get (i) and (ii). By Claim 3, v = S(u). This,
together with Claim 4, completes the proof of Theorem 1.2. ]

3. The nondegenerate case. The main result of this section is:
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Theorem 3.1. Assume that o and k are continuous and satisfy
O<m<o,k<M onR

for some constants m and M, and assume (H2). Then there exists a
classical weak solution to (1.1).

If the boundary conditions are replaced by ¢ = 0, du/0v =0 on Sr,
then this theorem is proved in [8] via the method of implicit discretiza-
tion in time. The proof presented here entails weaker assumptions on
the initial-boundary data. Set p(z1,...,zNn) = 23 + 23+ --- + 2% for
r = (z1,%2,...,2n5) € RY. For each n define

[, if p(z) >n
Pa(z) = {p(w), if p(z) < n.

Lemma 3.2. For each n there is a weak solution to the following
problem:

apy = div (o(u) V) in Qr

buy = div (k(u)Vu) + o(u)pn (V) in Qp
Y=g, u=20 on St,
© = o, u=1ug on © x {0}.

Proof. Define a nonlinear operator F from L%*(Qr) to L?(Qr) by:
F(u) = v if v is the solution of the following problem:

(3.1a) buy = div (k(v)Vv) + o(uw)pr (V) in Qr,
(3.1b) v=0  on Sr,
(3.1c) v =g on Q x {0},

where ¢ solves the problem:
(3.2a) apy = div (o(u) Vo) in Qr,

(3.2b) =@ on S,
(3.2¢) © = po on Q2 x {0}.
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Standard theory asserts that for any u € L?(Qr), (3.2) has a classical
weak solution ¢ in L2%(0,7; W12(£2)). For such a ¢, we may conclude
the existence of a classical weak solution v in L2(0,T; Wy(2)) to (3.1).
Thus F is well-defined.

Let v, be the solution of the problem:

buy = div (k(v)Vv) in Qr,
v=20 on Sr,
v =y on Q x {0};

and v* the solution of the problem
buy = div (k(v)Vv) + H in Qr,
v=20 on St,
v = ug on Q x {0},

where H = esssupg,. 0(u)pn(Vy) < Mn. Then, for each u € L*(Qr)
and each ¢ € L2(0,7; W12(£2)), the solution v of (3.1) satisfies:

v, <v <v* almost everywhere on Qr

according to the comparison principle. Thus the range of F' is contained
in the set D defined by:

D ={f € L*(Qr) : v« < f < v* almost everywhere on Qr}.

It is easy to see that D is a closed convex bounded subset of L?(Qr).
Claim 5. F is continuous.

Proof of Claim 5. Suppose that {uz} is a sequence in L?(Qr) such
that
up = u in L?(Qr) as n — oo.

For each k, let ¢, be the solution of (3.2) corresponding to ug. Then
we have

(3.3a) apr: = div (o(ug) Vo) in Qr,
(3.3b) pr =@  on Sr,
(3.3¢) Yk = ¥o on Q x {0}.
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Using @i — @ as a test function in (3.3a) yields the usual energy estimate:

esssup/ o1 (z,t) dm—i—/ |Vor|? drdt < c,
o<t<T Ja r

k=1,2,....

Thus, there exists a subsequence {¢x;} C {¢r} which converges to an
element ¢ weakly in L?(0,T; W12(Q)). Passing to the limit in (3.3)
along the subsequence, we obtain that ¢ is a classical weak solution of
(3.2) corresponding to u. However, for each u there is only one solution
to (3.2). Hence, the whole sequence {p} converges to ¢ weakly in
L2(0,T; WH2(€2)). Use pr, — ¢ as a test function in (3.3a) to get

T
/ (anes o1 — ) dt + / o () VoV (5 — ) dizdt = 0.
0 T
Note that
T a
| @owpi—e)at =3 [ (oo T) = ol 1) do
0

T
+/ (ape, pr — @) dt.
0

Thus, we have

| owVior - o) dedt= - [ oluw)VeVio - ¢)dads

T T

T
*/ (apt, pr — ) dt
0

a

-5 | (ore. ) plo 1) do.

This implies
lim |V (pr — ¢)|? dzdt = 0.

k—oco QT

Here we use the fact that

(o(ug) —o(u))V(pr —¢) = 0 weakly in [L2(QT)]N.
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Consequently,
Pu(Ver) = pa(Vep)  strongly in L' (Q7).
For each k let vy, = F(ug). We have

(3.4a) buge = div (k(vk)Vug) + o(uk)pn(Ver),
(3.4b) v, =0  on Sy,
(3.4c) VR = U on Q x {0}.

Similarly, we can show that {v;} is bounded in
W5(0,T) = {v e L*0,T; Wy *(Q)) : v, € L2(0, T; W~H2())}.

Hence, by Lions-Aubin’s theorem, there exists a subsequence {vy,} C
{vr} which converges to v weakly in W5(0,T) and strongly in L?(Qr).
Passing to the limit along the subsequence in (3.4), we see that
v is a solution of (3.1) corresponding to w and ¢. But for each
u € L*(Qr) and each ¢ € L%(0,T; W12(Q)), there is only one solution

). Consequently, the entire sequence converges to v. That is,
v = F(ug) — v = F(u) strongly in L?(Qr). This completes the proof
of Claim 5. o

Since 0 < o(u)pn(Ve) < Mn, the solution of (3.1) is bounded
in W5(0,7T) uniformly in u and ¢. It suffices to recall the compact
imbedding W»(0,T)—L?(Qr) to see that F sends bounded subsets
into relatively compact ones.

By the Schauder fixed point theorem, there is a w in D such that
Fu = u. By the definition of F', this implies the conclusion of our
lemma.

Proof of Theorem 3.1. For each n there exists a weak solution (¢, un)
to the following problem:

(3.5a)

apnt = div (o(un)Ven) in Qp
(3.5b)

bun: = div (k(un)Vun) + 0(un)pn(Ven) in Qr
(3.5¢) On = @, u, =0 on St,

(3.5d)
¥n = ¥0; Up, = UQ on Q x {0}.
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We can easily show that
(3.6) {¢on — @} is bounded in W5(0,T) and L*°(Qr).

Since o (un)pn(Vn) < o(un)|Vnl?, we use the proof of Lemma 1.2
to obtain

57 <g¢§ + bun> < div (k(un) Vun)
+ div (pno(un)Ven) in D'(Qr).

Set,
Dy (t) = {(w,t) €Qr: gcpi(w,t) + bun(z,) — g¢2(x,t) > 0}.

Use ((a/2)p2 + bu, — (a/2)@?)T as a test function in (3.7) to get

ad a o a _, 2 / a o 1, +
i - n—— d - b, — = d
2dt/Q [(2<pn+bu 5 > } r+ Qanpgat 2g0n+ Un =59 x

< / (k(un)Vun +0n0(un) Vo) (apn Vo, +bVu, —apV @) dz.
Dy (t)

This implies
(3.8)

12
esssup/ [(gapi—i—bun—ggf) ] dx+/ Uo<t<t D (t)|Vu,|? de dt < c.
o<t<T Jo [\ 2 2 -

Set
My = esssup gQEZ(:v,t) - ggai(:v,t) .
o1l |2 2
(z,t)EQT

Since {¢,} is bounded in L*°(Qr), M; is finite. We infer from (3.8)
that

(3.9) / |Vun|?dzdt < c.
{unZMl}

We have from (3.5b) that

bups > div (k(u,)Vuy) in D'(Qr)-



1578 X. XU

Use (un + M)~ as a test function to get

un (z,T)
OZb// (s + M;)" dsdz
QJ0

UuQ
z/ k(un)|un|2dwdt+b// (s + M)~ dsdz,
{un<—M;} QJO

from whence follows
(3.10) / E(un)|Vug|? dedt < c.
{ung*Ml}

Note that {o(u,)pn(Ven)} is bounded in L'(Qr). By a calculation
similar to (2.13), we also get

(3.11) / u? dx dt +/ |Vu,|? < ei My + co.
{lun|<M} {lunl<Mi}

Combining (3.9), (3.10), and (3.11) yields

(3.12) / |Vu,|? dzdt < c.

T

For 0 < h < T define up(z,t) = u(z,t + h) for u € L2(Qr). Integrate
(3.5b) with respect to ¢ over (¢,t + h) to get

t+h
(3.13) b(upp — uy) > div / k(un)Vuy, dr.
t

Using (unn — un)~ as a test function in (3.13), by a calculation similar
to that in [11, p. 129] we get

T—h
(3.14) / /[(unh —up) P dwdt < ch'/2.

0 Q
Here, and in what follows, c¢ is also independent of h. It follows from
(3.7) that
@

2

a
@ih + bunh - 5903; - bun

t+h
< div / (k(un)Vup + ©no(un)Vey) dr.
t

(3.15)
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Using

+
a o a _o a o a _o
Z bu, — — — —@? —bu, + =
[<2s0n+ U 5 ¥ )h 5 Pn — 0U +2s0

as a test function in (3.15), after a calculation in which we use the fact
that

(s1+s2)T < sf + s; for all s1,s2 € R,

3.16 T—h
( ) / /(‘pnh - ‘pn)z dz dt S Ch1/27
0 Q

and
T—h
/ /(@h — @) dzdt < ch'/?,
0 Q

we arrive at

T—h
(3.17) / / [(tnh — un) ] ddt < ch'/?.
0 Q

Here (3.16) is due to (3.6). In view of (3.14), (3.17) and (3.12), we may
invoke a result in [7] to conclude that {u,} is precompact in L?(Qr).
Once we have this result, we can proceed as in the proof of Claim 5 to
show that {¢,} is precompact in L?(0,T; W12(Q2)). We are ready to
pass to the limits in (3.5) to conclude our proof. o
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