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FUZZY ALGEBRAIC VARIETIES
JOHN N. MORDESON

ABSTRACT. The concept of a fuzzy algebraic variety is
introduced in order to bring the current knowledge of fuzzy
commutative ring theory to bear on the solution of nonlinear
systems of equations of fuzzy singletons. It is shown for every
finite-valued fuzzy ideal A of a polynomial ring in several
indeterminates over a field with A(0) = 1 that the fuzzy
algebraic variety of A can be expressed as a union of fuzzy
irreducible algebraic varieties, no one of which is contained in
the union of the others.

Introduction. Rosenfeld’s application [12] of the pioneering work
of Zadeh [15] inspired the fuzzification of various algebraic structures.
Liu [2] and Mukherjee and Sen [10] presented some of the earliest work
on the fuzzification of an ideal of a ring. Since then the notions of fuzzy
prime ideal, fuzzy primary ideal, the radical of a fuzzy ideal, and the
fuzzy primary representation of a fuzzy ideal have been introduced and
examined [1,3,4,5,6,7,10,11,13,14,16,17,18,19]. There are several
natural ways to define these concepts, many of which have appeared in
the literature. In the interesting work of Zadehi [16] and Kumbhojkar
and Bapat [1], the various types of fuzzy prime ideals, fuzzy primary
ideals, and the radical of a fuzzy ideal have been compared. In [7] var-
ious types of radicals of fuzzy ideals and fuzzy primary representations
of fuzzy ideals have been compared in order to prepare the way for the
study of nonlinear systems of equations of fuzzy singletons.

Up to this point, the fuzzification of concepts and results of commuta-
tive ring theory have had no apparent application. The purpose of this
paper is to give some meaning to fuzzy commutative ring theory devel-
oped to this point and to put some direction to its further study. We
bring fuzzy commutative ring theory to bear on a natural application
area, namely, the solution of nonlinear systems of equations of fuzzy
singletons. Let R denote the polynomial ring F[z1,... ,2,] where F isa
field and x1, ... ,z, are algebraically independent indeterminants over
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F. Let L be a field containing F'. L may be taken to be the algebraic
closure of F' or an algebraically closed field with infinite transcendence
degree over F. Let L* denote the set of all ordered k-tuples with en-
tries from L, k a positive integer. Our approach is to consider those
fuzzy ideals A of R which are finite-valued and are such that A(0) =1
since these are precisely the fuzzy ideals of R which have fuzzy primary
representations, [6]. We define the fuzzy algebraic variety M(A) of A
and show that, from an irredundant fuzzy primary representation of A,
M(A) is a finite union of irreducible fuzzy algebraic varieties, no one
of which is contained in the union of the others, Theorem 2.7. We then
apply this result to the solution of a nonlinear system of equations
of fuzzy singletons, Example 2.9. We show that there exists a fuzzy
ideal A of R which represents this system and the irredundant primary
representation of v/ A displays the solution of the system in a manner
similar to that of the crisp situation. Hence, we have thus shown that
in this sense the current definitions of fuzzy prime ideal, fuzzy primary
ideal, and radical of a fuzzy ideal have been appropriately defined.

A fuzzy subset of a set Z is a function of Z into the closed interval
[0,1]. If X and Y are fuzzy subsets of Z, then we write X C Y if
X(z) <Y(z) forall z € Z. If {X; | i € I} is a collection of fuzzy
subsets of Z, we define the fuzzy subsets N;c;X; and U;e; X; of Z
by for all z € Z, (NierX;)(z) = inf{X;(2) | i € I} and (UijerX;)(2) =
sup{X;(z) | i € I'}. Let X be a fuzzy subset of Z. We let Im (X') denote
the image of X and |Im (X)| the cardinality of Im (X'). We say that X
is finite-valued if [Im (X)| < co. We let X* = {2z € Z | X(z) > 0}, the
support of X, and Xy ={z € Z | X(t) >t} forallt € [0,1]. If X is a
fuzzy ideal of R [4, Lemma 1.7], then X* is an ideal of R. Also X is
a fuzzy ideal of R if and only if X; is an ideal of R for all ¢ € Im (X)
[14, Theorem 1.2]. For z € Z and t € [0, 1], we let z; denote the fuzzy
subset of Z defined by z;(z) =t and z;(x) = 0 if © # 2. z is called a
fuzzy singleton of Z. If z; and y, are fuzzy singletons of R, we define
zt +ys = (z +y)r and z:ys = (2y), where r = min{¢,s}. If S is a
subset (fuzzy subset) of R, we let (S) denote the ideal (fuzzy ideal) of
R generated by S. We recall that a fuzzy subset A of R is a fuzzy ideal
of R if and only if for all z,y € R, A(z — y) > min{A(z), A(y)} and
A(zy) > max{A(x), A(y)}. If Ais a fuzzy ideal of R, then the radical
of A, v/A, is the intersection of all fuzzy prime ideals of R which contain
A, [5, Definition 4.3, 16, Theorem 3.8].
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1. Fuzzy algebraic varieties. If I is an ideal of R, we let M(I)
denote the algebraic variety of I, [8, page 203]. If Z is a subset of L¥,
we let J(Z) denote the set of all f € R which vanish at all points of
Z. Then J(Z) is an ideal of R, [8, page 203]. We now give definitions
for the fuzzy counterparts of M and J. Let c be a strictly decreasing
function of [0,1] into itself such that ¢(0) = 1, ¢(1) = 0, and for all
t € [0,1], c(c(t)) = t. The following approach has the advantage that
¢ may be changed to fit the application. For example, ¢ may belong
to the Sugeno class of fuzzy complements for one application and the
Yeager class for another.

Definition 1.1. Let X be a finite-valued fuzzy subset of L*, say
Im (X) = {to,t1,-.. ,tn} where ty < t; < --- < t,. Define the fuzzy
subset J(X) of R as follows:

(tn) if f ER—j(th);
(ti) iffej(Xti-H_j(Xti)ai:]-"--7n_1;
c(ty) if f e T(Xy,).

C
C

J(X)(f) =

If n =0, then we define J(X)(0) = 1.

Definition 1.2. Let A be a finite-valued fuzzy ideal of R, say
Im(A) = {so,$1,...,8m} where s9 < s1 < -+ < $y,. Define the
fuzzy subset M(A) of L* as follows:

c(sm) ifbe LF — M(A,,);
(si) ifbe M(As,,)—-M(Ay,),i=1,..., m—1
(s0)

M(A)(b) =1 ¢
c if b e M(As,).

M(A) is called a fuzzy algebraic variety (of A).

In Definition 1.1, it is possible for J (X, ,) = J(X¢,) or R = J(X4,)-
In this case ¢(t;) ¢ Im (J (X)), i =1,... ,n. Similarly, it is possible for
c(s;) ¢ Im (M(A)) for some i =1,...,m.

Proposition 1.3. Let X be defined as in Definition 1.1. Then
(l) j(X)c(t,) = \7( ti+1) fori=0,1,... ,n—1;
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2) if 0 < s <c(tn), then J(X)s = R;

(
(3) if c(tiv1) < s < c(ty), then J(X)s = JT(Xes)) for i =
(

0,1,... ,n—1;

4) if c(to) < s <1, then J(X)s = @.

Proof. (1) f € J(X)e(,) if and only if J(X)(f) > c(t;) if and only if
f € J(X;,,,) by Definition 1.1.

(2) J(X)s = R since c(t,) < the smallest element in Im (J(X)).

(3) f€ J(X)sif and only if J(X)(f) > s if and only if J(X)(f) >
c(t;) if and only if f € J(X)c,) if and only if f € J(Xy,,,) by (1) if
and only if f € J (X)) since Xy, = Xo(5).

(4) J(X)s = @ since c(tp) is the largest element in Im (J (X)).

[m]

For X as defined in Definition 1.1, 7 (X )c(t,) = J(X4,,,) is an ideal of
Rfori=0,1,... ,n—1. Thus, since Im (X) C {c(t;) | ¢ :0,1,...,n},
J(X) is a fuzzy ideal of R [14, Theorem 1.2].

Proposition 1.4. Let A be defined as in Definition 1.2. Then
(1) M(A)c(si)ZM( S+1) fori=0,1,... ,m—1;
(2) if0<t<c(sm), then M(A)y = L¥;

(3) if c(siy1) < t < c(sy), then M(A)y = M(Acw)) for i =
0,1,... ,m—1;

(4) if c(so) <t <1, then M(A) = 2.

Proof. (1) b € M(A)c(s,) if and only if M(A)(b) > c(s;) if and only
if b € M(As,,,) by Definition 1.2.

(2) M(A); = L* since c(sm) < the smallest element in Im (M(A)).

(3) be M(A), if and only if M(A)(b) > t if and only if M(A)(b) >

c(s;) if and only if b € M(A).(,) if and only if b € M(A4,,,,) by (1) if
and only if b € M(A.q)) since Ag,,, = Acy).-

(4) M(A): = @ since c(sp) is the largest element in Im (M(A)).
O
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Proposition 1.5. Let X and A be as defined in Definitions 1.1 and
1.2, respectively. Then

(1) [im (M(F(X))| = [Im (T (X))};
(2) [m (F(M(A))| = [Im (M(A))].

Proof. (1) Suppose that Im (J(X)) = {ro,r1,...,rs} with ry <
ry < --- < r4. Then J(X),,., € J(X),, and so M(J(X)r,,,) D
M(J (X)) from the crisp case and since for r € Im (J (X)), J(X), =
J(X;) for some ¢t € Im (X). Hence, Im (M(J (X)) = {c(ro), c(r1),...,
c(rn)}-

(2) Suppose that Im (M(A)) = {q0,q1,...,¢j} with go < q1 < --- <
4o Then M(A),,,, € M(A), and 0 T(M(A)ger,) > TM(A)y,)
Hence, Im (J(M(4)) = {c(q),c(q),--- ,c(gj)}- B

Proposition 1.6. Let X and A be defined as in Definitions 1.1 and
1.2, respectively. Then

(1) forallte0,1], M(JT (X))t = M(J(Xy));
(2) forall s€[0,1], T(M(A))s = T(M(As)).

Proof. (1) For i =0,1,... ,n — 1, M(J(X¢,,,)) = M(T (X)) by
Proposition 1.3 (1). Suppose that c(t;) € Im(J(X)). Let s,—; =
c(t;) for i = 0,1,...,n. Then M(JT (X)) = M(T(X)s,_,) =
MTX D)o+ 1) = MT(X))r,, Suppose that e(t;) ¢ L (7(X)).
Then by Proposition 1.4 (3), M(J (X)) = M(T(X))e(ers)) =
M(T (X)), = M(T(X))t,,, where the latter equality holds since
c(t;) ¢ Im(J(X)) implies t; = c(c(t;)) ¢ Im(M(J(X))) and so
M(J(X))(b) > t; if and only if M(T(X))(b) > tit1. For 0 < t < to,
M(T (X)) = M(J(LF)) = M({0)) = LF = M(J(X)): since ty is the
smallest value in Im (X'). Suppose that ¢, <t < 1. Then M(J (X)) =
M(T(2)) = M(R) =@ = M(J(X)); since t, is the largest valued in
Im (X). For any other ¢, M(J(X;)) = M(T (X)) = M(T(X)):

(2) Fori = 0,1,...,m — 1, J(M(A,,,,)) = T(M(A)s,)) by
Proposition 1.4 (1). Suppose that c(s;) € Im(M(A)). Let ty,—; =
c(s;) for i = 0,1,... ,m. Then J(M(A)csy)) = TM(A),._,) =
TMA 2y = T(M(A)),... Suppose that c(ts) ¢ Tm (M(4)).
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Then, by Proposition 1.3 (3), J(M(A)cs,)) = T(M(A))e(e(ss)) =
J(M(A))s; = T(M(A))s,,, where the latter equality holds since
c(s;) ¢ Im(M(A)) implies s; = c(c(s;)) ¢ Im(J(M(A))) and so
T (M(A))(f) > s; if and only if T(M(A))(f) > si+1- For 0 < s < sq,
T(M(Ay)) = T(Mo(R)) = J(D) = R = J(M(A))s since sq is the
smallest value in Im (A). Suppose that s, < s < 1. Then J(M(4s)) =
TJ(M(2)) = T(LF) = @ = J(M(A))s since s, is the largest value in
Im (A). For any other s, J(M(A;)) = T(M(A)es)) = T(M(A))s.
O

Proposition 1.7. Let X and A be defined as in Definitions 1.1 and
1.2, respectively. Then

1) FM(T(X))) = T (X);
(2) M(T(M(A))) = M(A).

Proof. By Propositions 1.5 and 1.6 and the crisp case, we have the
following arguments.

(1) TMT(X))ew = TMIT(X)eqry)) = TMIT(X,,1))
J(Xt;y,) = T(X)er,) where i = 0,1,...,n — 1. If c(tiz1) < s

c(ti), then J(M(J(X)))s = TM(T(X)s)) = T(M(T(Xe(5))))

J(Xes)) = J(X)s where i =0,1,...,n—1. For 0 < s < ¢(ty),
TJM(T(X)))s = R = T(X)s. For c(ty) <s <1, T(M(T(X)))s

@ = J(X)s. Thus, J(M(T(X)))s = J(X)s for all s € [0,1].

=1 Al

(2) M(T(M(A)))e(si) = M(j(M(A)c(si))) = M(T(M(4As,.,))) =
M(As,, ) = M(A)e(s,) where i = 0,1,...,m — 1. If ¢(siz1) < t <
c(s:), then M(J(M(A))): = M(T(M(A)r)) = M(T(M(Acr)))) =
M(Acry) = M(A)e. For 0 < t < c(sm), M(T(M(A))): = L’c =

M(A);. For c(sg) <t <1, M(T(M = M(A);. Thus,

(A4)))e =

M(T(M(A))): = M(A), for all t € [0,1]. O

Theorem 1.8. Let M be a fuzzy subset of L*. Then M is a fuzzy

algebraic variety if and only if M is finite-valued and for allt € ITm (M),
M; is an algebraic variety.

Proof. Suppose that M is a fuzzy algebraic variety. Then M = M(A)
for some finite-valued fuzzy ideal A of R. Hence, for all t € Im (M),
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there exists s € Im(A) such that ¢ = c¢(s). Thus, either M; =
M(A)sy = M(As), where s is the successor of s in Im(A) or
M(A) ) = LF = M((0)). Since M(Ay) and M((0)) are algebraic
varieties, M; is an algebraic variety. Conversely, suppose that M
is finite-valued and M; is an algebraic variety for all ¢ € Im(M).
Then M; = M(I®) for some ideal I of R, t € Im(M). Now
MID) = M(TMID))). Thus, M; = M(J®) for some ideal
J® of R such that if ¢, ¢ € Im (M) with ¢ < ¢, then J® c J&),
namely, J® = J(M(IW®)). Let Im (M) = {to,t1,...,tn} where
to < t1 < --+ < tp. Define the fuzzy subset A of R by A(f) = c(t,) if
feR—JW) A(f) = c(t;) if f € JE+) — J&) and A(f) = c(to) if
f € J®). Then A is a fuzzy ideal of R. Now M(A);, = M(A)c(e(ts)) =
M(Ac, 1)) = M(J®) = My, and so M = M(A). Thus, M is a fuzzy
algebraic variety. O

Proposition 1.9. If A is a nonconstant fuzzy prime ideal of R, then

A= J(M(A)).

Proof. Now Im (A) = {s,1} where s < 1 and A; is a prime ideal of
R, [4, 14]. Suppose that A; # (0). Then Im (J(M(A))) = Im (A).
By Proposition 1.6, J(M(A))1 = J(M(A1)) = A; since A; is a prime
ideal of R. Now J(M(J(A)))s = R = A,. Hence, J(M(A)) = A.
Suppose that A; = (0). Then M(A)(b) = ¢(1) = 0if b € Lk —
M(As,) = LF — M((0)) = @ and M(A)(b) = c(s) if b € M(A,,) = L*.
Now JM(A))(f) = clels)) = 5 1 | & R~ T(M(A)iw) = R — {0)
and J(M(0)) =1. o

Theorem 1.10. Suppose that A is defined as in Definition 1.2 and
A(0) = 1. Then M(A) = M(VA).

Proof. Tm(v/A) C Im(A) since A is finite-valued [7, Definition
1.1, Theorems 3.5, 3.10]. Now M(A); = M(A. ) = M(\/Acw)) =
M((VA)esy) [7, Lemma 3.9, Theorem 3.10] = M(VA); if c(siy1) <
t < c(s;) for i = 1,...,m — 1 since Im (M(v/A)) C Im(M(A))
where the latter inclusion follows since M(4,, ,) = M(A,) if and
only if M((\/Z)siﬂ) = M((\/Z)s,) and so c(s;) ¢ Im (M(A)) implies
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c(si) ¢ Im (M(VA)). By Proposition 1.4, M(A).,) = M(As,,,) =
M(\/As,,) = M((VA)s,,,). Let j be the largest nonnegative in-
teger such that j < 4, s; € Im(v/A) and let i* be the smallest
nonnegative integer such that i* > i and s;«y; € Im(v/A). Then
M A1) = M/ A5 ) = M(VA)e(s;) = M(VA)e(s,) Where the
latter equality holds since if s; ¢ Im (v/A), then c(s;) ¢ Im (M(V/A)).
Hence, M(A).,) = M(\/Z)c(s,-)- If j doesn’t exist and i* does, then
(VA)sieyy = R. Thus @ = M(/Ay ) = M(Aspe ) 2 M(As,,) =
M(A)c(si) 2 M(\/Z)c(si) 2 @. Hence, M(A)c(s,-) = M(\/Z)c(sz')'
Suppose that j exists and i* does not. Then i = m and so M(A4)(,,) =
L* = M(VA) (s, Hence, M(A) = M(VA). o

Corollary 1.11. If P is a fuzzy prime ideal of R belonging to the
fuzzy primary ideal Q of R, then M(Q) = M(P).

Proof. \/Q = P, [5]. o

Lemma 1.12. Suppose that A and B are fuzzy ideals of R such
that Im (A) = {so,$1,.-. ,Sm} where sp < s1 < -+» < s, = 1 and
Im (B) = {s,1} where s <1. Then M(AN B) = M(A)U M(B).

Proof. (1) Suppose that s; < s < s;11. Then {sg,s1,...,8;,1} C
Im(ANB) CIm(A)UIm(B).

(1.1) We first show that M(A N B) J) = (M(AUM(B))c(s;) for
all s; € Im(A). Now M(ANB).) = LF = LF U L* = M(A).1) U
M(B)c() = (M(A) UM(B))cn)

(1.1.1) Suppose that 1 > s; > s;41.

(1.1.1.1) Suppose that s; ¢ Im(A N B). Then (AN B),, =
(AN B)s,,, since s;1 is the next largest possible element in Im (A N
B). Thus M(AN B)ys;) = M((AN B)s,;) (Proposition 1.4 (3))
= M((Am B)Sj+1) = M(Asj+1 n BS]'+1) = M(AS]+1) ( S]+1)
(crisp case) = M(A)(s,;) U M(B1) (Proposition 1.4 (1) and s;41 > s)
= M(A)c(sj) UM(B)C(S) = M(A)c (s5) UM( )c (s5) (Slnce C(SJ) > 0)
(M(A) UM(B))e(s,)-

(1.1.1.2) Suppose that s; € Im(A N B). Then M(AN B)s,) =
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M((A N B)s,..,) where j* is the smallest integer > j such that
sj~y1 € Im(AN B). Now (AN B)s.,, = (AN B)s,,,. Hence
M(AN B)e(s;) = M((ANB)s;,,) = M() UM(B))c(s;) as just argued

above.

(1.1.2) Suppose now that s; < s;. Then M(AN B).,,) = M((AN
B)s,.,) (since sj, sj11 € Im (ANB)) = M(A,, ,NBs;,,) = M(As;,,)U
M(st+1) = ‘M(A)C(S U M( ) ‘M(A)C(S ) Uug = M(A)C(SJ) U
M(B)(s;y) = (M(A )U M( ))e(s;) since c(s;) > c(s) and c(s) is the
largest element in Im (B).

(1.1.3) We now consider the case s; = s;. Then s; € Im(AN B).

(1.1.3.1) Suppose that s; < s < 8;41.

(1.1.3.1.1) Suppose that s ¢ Im (ANB). Then ¢(s) ¢ Im (M(ANB)).
Thus M(AﬂB)c(si) = M(AHB)C(S) = M((AHB)S) = M(As ﬂBS) =
M(As) U M(Bs) = M(AS +1) U M( ) = M(A)c(sl) U M(R) =
M(A)c(sl) Ug = M(A)c (s4) U M( )c(sl = (M(A) U M(B))c(s,)

(1.1.3.1.2) Suppose that s € Im (AN B). Then M(AN B).s,) =
M((AN B)s) = M(As N By) = M(A,,, NR) = M(As,,,) UM(R) =
M(A)c(s ) Ug = M( ) i) UM( )c(s = (M(A) U M(B))C(Si)'

(1.1.3.2) Suppose that s; = s. Then for i* the smallest integer
greater than or equal to 4 such that s;~;; € Im(A N B), M(AN
B)C(S ) — M((A N B)Si*+1) = M((A N B)Si+1) = M(AS i 1 B, +1) =
M M) =) (50 M8 (51~
M(A)o(s,) UM(B) s,y = (M(A)UM(B))(s,)- Hence we conclude that
M(AﬂB) = (M( ) UM(B))(s,) for all s; € Im (A).

(1.2) We consider s.

(1.2.1) Suppose that s € Im(A N B). Then, for ¢* > ¢ smallest
such that s;<1; € Im (AN B), M(AN B)ys) = M((AN B)s,.,,) =
M((A N B)Si+1) = M(ASH-l n BSi+1) = M(Asz+1) U M( 1+1) =

(1.2.2) Suppose that s ¢ Im(AN B). Then s; < s < 841 and
(AN B)s = (AN B)s,,,- Thus, M(AN B) = M((AN B),) =
M((A n B)Si+1) = M(ASH-l n BSi+1) = M(A5i+1) ( Si+1
M(A)e(ey UM(B1) = M(A)u) UM(B)oe) = (M(A) UM(B))
Thus for all r € Im (A) UIm (B), M(AN B).;) = (M(A)UM(A)
under the assumption that s; < s < s;41.

) =
)CS
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(2) Now assume that s < sg. Then s € Im (AN B).
(2.1) Let s; €Im(A), s; < L.

(2.1.1) Suppose that s; ¢ Im (AN B). Then (ANB)s, = (ANB)s,,,
since sj41 is the next possible largest value in Im (A N B). Thus
M(AN B)es;) = M((AN B)s;) = M((AN B)s,,,) = M(As; ., N
BSj+1) = M( SJ+1) U M( S]+1) = M(A3j+1) U M(Bl) (A)C(SJ) U
M(B)c(s) = M(A)c (s5) U M( )C(Sj) = (M( ) ( ))C(S

(2.1.2) Suppose that s; € Im (AN B). Let j* be the smallest integer
> j such that s;-11 € Im (ANB). Then (ANB),,,, = (ANB),: . Thus
M(AﬂB) ) = M(ANB),,..,) = M((ANB),,,,) = M(A,,,, N

) ( SJ+1) U M(st+1) = M(A5j+1) U M(Bl) = M(A)C(Sj) U

( )c(s (A)c (s5) U M(B)c(sg) = (M(A) U M(B))C(SJ)

(2.2) We now consider s. Let j > 0 be the smallest integer
such that s; € Im(A N B). Then (AN B),, = (AN B)s,. Thus,
M(AN B)esy = M((AN B)s;) = M((AN B)s,) = M(Asy N Bsy) =
M(RN By) = M(B1) = M(B )c (s) = & UM( Jes) = M(A)e(s) U
M(B)os)y = (M(A) UM(B))c(s)- Thus for all r € Im (A) UIm(B),
M(AHB)C(T) = (M( ) ( ))

Now suppose that r ¢ Im (A) U Im (B) Then r ¢ Im (AN
so ¢(r) ¢ InM(AN B). Hence M(AN B)e,y = M((AN
M(Ar N By) = M(Ar) UM(B;) = M(A)c(ry UM(B)e(ry = (M(
M(B))c(ry- Thus for all r € [0, 1], M(ANB)ry = (M(A)UM(B)
Let t € [0,1] — ¢([0,1]). Since ¢([0,1]) 2 ¢(Im(A) U Im (B))
¢(Im(A) UIm(B)) and so c(t) ¢ Im(A) UIm(B). Hence, c
Im(A N B). Thus, M(AN B);y = M((AN B)yy) = M(A
Bet)) = M(Aet)) UM(Bery) = M(A)y UM(B)y = (M(A)UM(B)):.
Therefore, M(ANB) = M(A)UM(B). O

Theorem 1.13. If A and B are finite-valued fuzzy ideals of R such
that A(0) = B(0) =1, then M(ANB) = M(A) UM(B).

Proof. Suppose that Im(B) = {ro,r1,...,7q} where 7o < 11 <
. < 1y Define the fuzzy subsets B® of R by B®¥(z) = r; if
z€R-B,,, and BO(z) = lifz € B,,,, for i =0,1,...,¢q— L
Then B = ﬁg;olB(“ and each B is two-valued. Hence M(AN B) =
M(ANBO N...nBla=Y) = M(A) UMBOYU...UM(BUY) =
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MA)UMBON...nBl4"D) = M(A)UM(B) by Lemma 1.12. o

As we can now see, the proofs of the following two results are entirely
similar to the proofs of the preceding two results. Hence, we omit the
proofs for the sake of brevity.

Lemma 1.14. Suppose that M and N are fuzzy algebraic varieties
such that Im (M) = {to,t1,... ,tn} where 0 =ty <ty < --- < t, and
Im (N) = {0,t} where 0 <t. Then J(M UN) =TJ(M)NJ(N).

Theorem 1.15. If M and N are fuzzy algebraic varieties such that
0€Im(A)NIm(B), then J(MUN) =TJ(M)NJ(N).

Irreducible fuzzy algebraic varieties.

Definition 2.1. Let M be a fuzzy algebraic variety. Then M is
irreducible if and only if for all fuzzy algebraic varieties M’ and M"
such that M = M’ U M" either M = M' or M = M"'; otherwise, M is
called reducible.

Theorem 2.2. Let M be a fuzzy algebraic variety. Then M is
irreducible and nonconstant if and only if Im (M) = {0,¢},0 < t, and
M, is irreducible.

Proof. Suppose that M is irreducible. Let Im (M) = {to,t1,... ,tn}
where ty < t; < --- < t, and suppose that n > 2. Define the fuzzy
subsets U and V of L* by U(b) = t,, if b € M, U(b) = (tn—1+tn—2)/2
ifbe My, _, — M, , U(b) = M(b) otherwise and V' (b) = (tn, + tn-1)/2
if b € My, V(b) = M(b) otherwise. Then U and V are fuzzy
algebraic varieties by Theorem 1.8. Now M = U UV and M D U
and M D V. Hence, M is not irreducible, a contradiction. Thus, n =1
and Im (M) = {to,t1}. Suppose that 0 < ty. Define the fuzzy subsets
U and V of L¥ by U(b) = t, if b € My, U(b) = 0 otherwise and
V(b) = (t1 +to)/2 if b € M,, V(b) = to otherwise. Then U and V are
fuzzy algebraic varieties by Theorem 1.8. Now M =UUV and M D U
and M D V. Hence, M is not irreducible, a contradiction. Thus tg =0
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and Im (M) = {0,¢1}. Suppose that M;, = G U H where G and H
are algebraic varieties such that My, D G and M;, D H. Define the
fuzzy subsets U and V of L¥ by U(b) = t, if b € G, U(b) = 0 otherwise
and V(b) =t if b € H, V(b) = 0 otherwise. Then U and V are fuzzy
algebraic varieties and M = U U V. However, this contradicts the
irreduciblity of M since M D U and M D V. Thus, M, is irreducible.
Conversely, suppose that Im (M) = {0,t}, 0 < ¢, and M; is irreducible.
Suppose that M = U UV where U and V are fuzzy algebraic varieties.
Then My = (UU V), = Uy UV; and Uy, V; are algebraic varieties by
Theorem 1.8. Since M, is irreducible, either Uy = M, or V; = My, say
U; = M;. Now t is the largest value M takes on and M O U. Thus
forall b € Uy, U(b) =t = M(b). Let b € L*¥ — M; = L¥ — U;. Then
0= M(b) >U(b) > 0. Hence, M = U. Thus, M is irreducible. o

Theorem 2.3. Let A be a nonconstant finite-valued fuzzy ideal of
R. Then J(M(A)) is prime if and only if M(A) is irreducible.

Proof. Suppose that J(M(A)) is prime. Then Im (J(M(A4))) =
{s,1} where s < 1. Hence Im (M (A)) = {0, c(s)} since M (T (M(A))) =
M(A). Now M(T(M(A)))es) = M(T(M(A))1) by Proposition 1.4.
Since J(M(A)); is a prime ideal of R, M(A).) = M(T(M(A)))c(s)
is irreducible. Thus, M(A) is irreducible by Theorem 2.2. Con-
versely, suppose that M(A) is irreducible. Then Im (M(A)) = {0,¢}
where 0 < t. Hence Im(J(M(A))) = {e(t),1}. Now M(A4), =
M(T(M(A)))c(eryy = M(T(M(A))1). Since M(A); is irreducible,
J(M(A))1 is prime. Thus, J(M(A)) is prime. o

Theorem 2.4. Let A be a finite-valued fuzzy ideal of R with
A(0) = 1. Then J(M(A)) = VA.

Proof. For all s € [0,1], (VA)s = VA, = J(M(A5)) = T(M(A))s
by Proposition 1.6. u]

Corollary 2.5. Let A and B be finite-valued fuzzy ideals of R such
that A(0) = B(0) = 1. Then M(A) C M(B) if and only if VA D> v/B.
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Proof. By Theorem 2.4, M(A) C M(B) if and only if VA =
J(M(A)) D J(M(B)) = VB where strict containment is preserved
by Proposition 1.7. u]

Theorem 2.6. There exists a one-to-one correspondence between
fuzzy algebraic varieties M with 0 € Im (M) and fuzzy radical ideals.

Proof. Let M be a fuzzy algebraic variety. Then there exists a fuzzy
ideal A of R such that M = M(A). Then A(0) = 1. Consider the
correspondence M = M(A) — +/A. By Corollary 2.5, M(A) = M(B)
if and only if v/A = v/B. Hence, the correspondence is single-valued
and one-to-one. Given v/A, M(A) — v/A and so the correspondence
is onto. O

Theorem 2.7. FEvery fuzzy algebraic variety M with 0 € Im (M)
can be uniquely expressed as the union of a finite number of irreducible
algebraic varieties no one of which is contained in the union of the
others.

Proof. Now M = M(A) for some finite-valued fuzzy ideal A of R with
A(0) = 1. Now J(M(A)) = VA and VA has a unique irredundant
primary fuzzy representation J(M(A)) = VA =P/ N---NP, where P,
is a fuzzy prime ideal of R, i = 1,...,r, [6]. Thus, by Theorem 1.13,
M(A) = M(T(M(A) = MPNn---NP)=M(P)U---UM(P,)
where M(P;) is irreducible, ¢ = 1,...,r. If M(P;) = U{M(F;) |
J = L....rj # i}, then P, = J(M(P)) = J(M(P)) | § =
Lo orid £ 3) = C{TMPY) |5 = 1,0 yrig £} = 4Py | ] =
1,...,r;j # i} contradicting the irredundancy of VA=PN---NP,.
Now suppose that M = M; U --- U M,, where M; is an irreducible
fuzzy algebraic variety and no M; is contained in the union of the
others, i = 1,... ,w. Then J(M;) is a fuzzy prime ideal and the
representation J(M(A)) = VA = J(My) N ---N J(M,) must be
irredundant. Thus r = w and P, = J(M;), ¢ = 1,...,r. Hence,

Given a finite-valued fuzzy ideal A of R with A(0) = 1, let VA =
PiN---NP, be a fuzzy irredundant primary representation. Then the P;
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are the minimal fuzzy prime ideals belonging to A, [6, Theorem 3.17].
We thus may obtain M (A) as the union of fuzzy algebraic varieties of
the minimal fuzzy prime ideals among the fuzzy prime ideals belonging
to the fuzzy primary ideals in an irredundant primary representation
of A.

Theorem 2.8 [9]. Let S be a fuzzy subset of R. Then for all
z € R, (S)(z) = sup{(3iL, (ri)1(@i)e,) (@) | i, @ € R, ti < S(wi),
i=1,...,n;n € N} where N denotes the positive integers.

Example 2.9. Let R = F[z,y,z] where F is the field of complex
numbers and z,y, z are algebraically independent indeterminants over
F. Define the fuzzy subset A of R by A(0) = 1, A(f) = 1/2 if
f € (2%2)—(0), A(f) = 1/4if f € (2®+y*—1,2%2)—(2?z),and A(f) =0
if f € R— (2% +y?—1,2%2). Then A is a fuzzy ideal of R. Now V4 is
such that VA(0) = 1, VA(f) = 1/2if f € (zz) — (0), VA(f) = 1/4 if
fe(@?+y?—1,22)— (x2), and VA(f) = 0if f € R— (22 +y* —1,22).
Hence,

Ay=R, +/Ag=R
A1/4:<m2+y2—1,w2z>, ,/A1/4:<m2+y2—1,xz>

Aijp=(@%), A= (@2)

Since F* = M((0)),

c(1/2)  ifb e M((0)) - M({zz)),
M(A)(b) = { c(1/4)  ifbe M((z2)) — M((2% + 32 — 1,22)),
c(0)=1 ifbe M((z*+y* —1,zz)).

Consider the fuzzy subsets W, X,Y of R defined by W(f) = 1 if
f e (x?+y? —1,2%2), W(f) = 0 otherwise; X (f) = 1 if f € (z22),
X(f) = 1/4 otherwise; Y(f) = 1if f € (0), Y(f) = 1/2 otherwise.
Then W, X,Y are fuzzy ideals of R and A = W N X NY. Define the
fuzzy subsets Q) of R, i =1,...,6 by QU(f) =1if f € (2%,y — 1),
QW (f) = 0 otherwise; Q) (f) = 1if f € (x2,y + 1), QP(f) =0
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otherwise; Q) (f) = 1if f € (x2 +4? — 1,2), QB (f) = 0 otherwise;
QW(f) = 1if f € (2?), QW = 1/4 otherwise; Q) (f) = 1 if f € (2),
Q®(f) = 1/4 otherwise, Q©)(f) = L if f € (0), QU(f) = 1/2
otherwise. Then Q) is a fuzzy ideal of R, i = 1,...,6, such that
W = QM nQ® nQ® since (z? + y?> — 1,2%2) = (x2,y — 1) N
(@, y+1)N (2% + 3% — 1,2), X = QW NQ® since (z?2) = (z?) N (2),
Y =Q©, Thus A = ﬂ?le(i) and in fact this is an irredundant fuzzy
primary representation of A. Now \/Q(l)(f) =1if f € (z,y — 1),
\/Q(l)(f) =0 otherwise; \/Qm)(f) =1if f e (z,y—1), \/Q(z)(f) =0
otherwise; \/_(3) \/—(4)( ) =1if f € (x), \/—(4)( f) =
otherwise; \/Q Q(5) \/—(6 = . Hence VA =n¢_ PO Where
PO = \/Q(i is a fuzzy prime 1deal of R, i =1,...,6. We have the
following fuzzy algebraic varieties:

M(PD)(b) =1 if b € M((z,y — 1)),
M(PW)(b) = 0 otherwise;
M(P@)(b) =1 if b e M((z,y + 1)),
M(PP@(b) = 0 otherwise;
M(P®)(b) =1, if be M((a®+y* —1,2)),
(P(3 )(b) = 0 otherwise;
M(P(4))(b) =c(1/4) if b € M((z)), M(P(4)(b) = 0 otherwise;
M(PO)(b) =c(1/4) if be M((z)), M(P®)(b) =0 otherwise;
( M(P©®))(b) = ¢(1/2), Vbe LF.

Then M(A) = US_; M(P®) and in fact M(P®) is irreducible and no
M(P®) is contalned in the union of the others, ¢ =1,...,6.

Consider the nonlinear system of equations of fuzzy singletons,

(zs)* + (ye)? — 11/a = O1/4,
(z5)%2, = 01/2-

Then a solution is given by ¢t > 1/4 and min{s,u} = 1/2 and
the solution of 22 + y> — 1 = 0 and z?2z = 0. Note also that
A= ((2® + y* — 1)1/4, (z%2)1/2) by Theorem 2.8. If we let ¢(0) = 1,
c(1/4) = 1/2, ¢(1/2) = 1/4, ¢(1) = 0, then the above representation
of M(A) seems to better represent the solution of the above nonlinear
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system of equations of fuzzy singletons. The M(P®) for i = 1,2,3,
yield the crisp part of the solution while the M(P®) for i = 4,5,6
yield the fuzzy part.

Proposition 2.10. Let S be a fuzzy subset of R. Then (S)* = (S*).

Proof. (S) 2 S. Thus (S)* 2 S* and so (S)* D (S*). Let f € (S)*.
Then (S)(f) > 0 and so, by Theorem 2.8, f = >  r;f; for r; € R
and f; € S*. Thus f € (S*). Hence, (S)* C (S*). O

Corollary 2.11. Let S be a fuzzy subset of R. Then b € LF is a zero
of S* if and only if b is a zero of (S)*.

Proof. f(b) =0 for all f € S* if and only if f(b) =0 for all f € (S*)
(from the crisp case) = (S)*. O

Let W be a finite subset of S* such that (W) = (S*) where S is a
fuzzy subset of R. Define the fuzzy subset T of R by T'(b) = S(b) if
b€ W and T'(b) = 0 otherwise. Then T* = W. Hence, (T)* = (T*) =
(S*) = (S)*. Thus b is a zero of (S)* if and only if b is a zero of (T)*.
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