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SINGULAR PERTURBATIONS IN VISCOELASTICITY
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. We study the singular perturbation for a class
of partial integro-differential equations in viscoelasticity of the
form

t

(@) pub,(t,z) = Eub, (¢, z) +/ a(t — s)ub,(s,x)ds

+pg(t, ) + f(2),
when the density p of the material goes to zero. We will
prove that when p — 0 the solutions of the dynamical systems
(a) (with p > 0) approach the solution of the steady state
obtained from equation (a) with p = 0. The technique of

energy estimates is used. A similar result is also obtained for
a nonlinear equation of the form

t

pugy(t, ) = ¢(ug(t,z))e + / a(t — s)¢(uz (s, z))e ds + pg(t, z).

—0o0

1. Introduction. Consider the following model in viscoelasticity in
the one-dimensional case on the real line, (see [4, 10]),

t
pul (¢, ) = Bul (t,7) + / alt — s)ul, (s, z) ds

+ pg(t,z) + f(;), (t,z) e RT x [0,1],
u”(t,0) = u”(t,1) = 0, teRT,
uf(t,x) = v (¢, ), (t,z) e R™ x [0,1].

Here u is the displacement, pg is the body force, f is the external force,
p > 0 is the density of the material and Rt = [0,00), R~ = (—00,0].
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The singular perturbation in such a case amounts to examining the
behavior of the solutions of (1.1) when the density p — 0.

There are many studies concerning singular perturbations. For ex-
ample, Fattorini [5] studied the abstract equation

(1.2) pPub,(t) +ul (t) = Auf(t) + fP(t
( )

uf(0) = ug, uf(0) = uf,
and

(1.2)’ wi(t) = Aw(t) + f(t), t>0,  w(0)=wy,

in a Banach space U with A the generator of a strongly continuous
cosine family and a Cy semigroup. He proved that for any 7' > 0,
if f# — f in LY([0,T],U) and ufj — wyg, p?uf — 0 as p — 0, then

u”(t) — w(¢t) uniformly for ¢ in [0,7] as p — 0, where u” and w are
solutions of (1.2) and (1.2)’, respectively.

This problem is also related to the quasi-static approximation in
viscoelasticity. For example, MacCamy [15] studied

(13) () = —AO)g(u(t) - / A'(t — 5)g(u(s)) ds + F (),

and

(1.3)' 0=—-A(0)g(w(t)) - /0 A'(t = s)g(w(s)) ds + F (),

in a Hilbert space H with A(t) a bounded linear operator, g a nonlinear
and unbounded operator, and proved that if F(¢) — constant vector

F(o0) as t — oo, then, under appropriate conditions, one has

g(u(t)) = A(co) 1F(c0) weakly in H, t — oo,
g(w(t)) = A(co) 'F(c0) in H, t — oo,

where v and w are solutions of (1.3) and (1.3), respectively. This
result motivates the procedure of using the quasi-static approximation
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in viscoelasticity which drops the “acceleration” term wu;; when t is
large.

Note that the existence and uniqueness of solutions of (1.1) has been
obtained in [1, 3, 6, 9, 11, 13, 14], and we are only interested in
singular perturbations in this paper, so we will assume that (1.1) has a
unique solution u” for each p > 0. For simplicity, we also assume that
E=1.

Next, assume that f € C[0,1] and 1+ [ a(s) ds # 0 and define

-1

) w@ =i+ [Cawa] A0, cepl
0
where
A=9*/02%  D(4) = {y e C*0,1]: y(0) = y(1) = 0}.
It will be proved that w is the unique solution on R of (1.1) with
p = 0. By linearity we see that u” — w satisfies equation (1.1) with

f = 0. Using an energy estimate and a differential inequality, we will
show that if for s <0, p >0, t € R and L? = L*([0,1],R),

1
1070, Mz, [[ef (s, )2, vz (0, ) = wa()llzz,

llg(t,-)||L2 < constant,

(1.5)

then, for every 7" > 0,
(1.6) uf(t,-) = w(-) in L*([0,1],R) as p—0

uniformly for ¢ € [0, 7.

Next, we consider the same problem for a nonlinear equation
puft(ta x) = ¢(ug(ta LL‘));,;

+/ alt — $)6(ul(s,2)), ds + pg(t, @),

(t,z) € R x[0,1],
uf(t,0) = uf(t,1) =0, teRT,
uf(t,x) = v (¢, ), (t,z) e R™ x [0,1],
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where ¢ is nonlinear, ¢(0) = 0, there is ¢ > 0, ¢’ > ¢ on R.

We will prove that zero is the unique solution on R of (1.7) with
p = 0 and that if

92 1 rvP(0,z)
07Ol et el = [ [T () araa,
0 Jo
llg(t,)]|z2 < constant, 5<0,p>0,teR,

then for any T > 0, solutions u” of (1.7) (p > 0) go to zero in L>
uniformly for ¢ € [0,7] as p — 0.

This approach uses the assumption that the history v” satisfies
equation (1.1) (respectively (1.7)) on R™, see [11, 13, 14]. Thus
(1.1) (respectively (1.7)) holds on R and hence we can solve uz, from
(1.1) (respectively (1.7)) in terms of p(uy — g) as in [13, 14]. This
step is very important in obtaining the energy estimate. If we only
assume that v” is a known function on R™, (which may not satisfy
(1.1) (respectively (1.7)) on R™), then with additional conditions on
vf ., we are able to modify the proofs to get the same results.

2. Singular perturbations of equation (1.1) and (1.7). In this
section we examine the behavior of the solutions of equations (1.1) and
(1.7) when p — 0. To this end, we introduce the following assumptions:

1+a(\)#0 for Re X > 0,
a and o’ € L' RT,R), f €Co,1],

where a is the Laplace transform of a.

(2.1)

(2.1) a€ L'(RT,R) and / a(s)ds # -1, fecCio,1].
0
Now we can state and prove

Theorem 2.1. Assume that equation (1.1) has a unique solution
u? on R for each p > 0 with v* satisfying (1.1) on R~. Also, let
assumption (2.1) be satisfied and let w be defined by (1.4). In addition,
assume that there is a constant G such that

1
1070, Mlzz, w7 (s, )llz2, 02(0,) = wa (]2,

llg(t, )l <G, s<0,p>0,teR.

(2.2)
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Then w is the unique solution on R of (1.1) with p =0, and for every
T >0,

(2.3) uf(t,-) = w(-) in L*([0,1,R)  as p — 0,

uniformly for t € [0,T].
Proof. Consider the resolvent kernel r(¢) defined by

r(t) = —a(t) - /Ota(t _)r(s)dseR,  t>0;
r(t) =0, t<0.

(2.4)

We can write this as
(6+7r)*x(6+a) =4,

where * is the convolution on R and 6 x f = f. Now (2.1) implies that
r € LY(R*,R) [16]. Next, ' € L'(R*,R), so by taking a derivative
in (2.4) we obtain r’ € L'(R",R).

Observe that w defined by (1.4) is a solution on R of (1.1) with p = 0.
Next, assume that y satisfies (1.1) on R with p = 0. Then, using the
above convolution notation, we have 0 = (6 + a) * yz, + f. Thus,
Yoe = —(0 +7) % f and hence y = —A71(§ +r) * f. Thus w = y and
hence w is the unique solution on R of (1.1) with p = 0. Next, define

Q°(t,z) = u’(t,z) — w(z), (t,z) € R x [0,1],

then Q” satisfies

t
pQu(t,x) = QL. (Hx) + [ alt —$)Q7.(s,7) ds + py(t, ),

(2.5) (t,z) € R* x 700,01],
Q°(t,0) =Q°(t,1) =0, teRT,
Qf(t,z) = v (t,z) — w(x), (t,z) e R™ x [0,1].

In the following we will use the energy method to show that

(2.6) Q°(t,-) = 0 in L*(0,1],R) as p — 0,
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uniformly for ¢ € [0,T]. Define the energy of (2.5) as

1 1
EP(t) = / (Q°(t,2))? de + / (QF(t,2))? de
1

42 / (Q4(t,2))? da.

Then
Q7 MNNz2)*, QB z2)* < E°(t),  t>0,0<p.
1
(1Q4(BI22)* < ;(\|Q§(t)||L2)2 < E°(b),
£>0,0<p<1.
Observe that (2.2) implies there is a constant J > G such that
1
1Q7 (0|2, [1QF (s)lIz2, 1@z (O)l]z2 < J,

s<0,p>0.

2.7)

Then E?(0) < J? + J? + J? = 3J%, 0 < p. Next, we have

Doty = 2 /0 Q°(t,2)Q0 (¢, z) da

dt
1
+2 [ QUta)Qh(t) do
0
2 1
+2 / Q4 (t, 2)Q0, (1, ) da
1
_9 /0 Q°(t,2)Q! (t, ) do
1
L2 / QL (t,2) Q0 (t, z) da
1
—% / Q4(t, 2)Q2, (t, @) d

1
< EBP(t)+2 / QP (¢ 2)Q%, (1, 7) da
0

2 1
-2 / Q0 (t, 2)Q2, (t, ) d.
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Now we solve Q”,. from (2.5) in terms of p(Qf, — g). Observe that a
and o’ € L}*(R*,R) imply that a(+o00) = 0, hence [16] one has

-1

r(+00) = —a(+00) (1 + /000 a(s) ds> =0.
Since Q” satisfies (2.5) on R, we may write (2.5) as

p(Qf — 9)(t) = (6 +a) x Q4. (t), tER.
Then we obtain

Qha(t) = (6 + 1) * (p(QF — 9))(t)

—o(@h0) a0+ [ rle (@A) ) as)

(@ - a0+
+ /_ r'(t—s)QF(s)ds — /_ r(t —s)g(s) ds).

Replacing this into (2.8), we have for ¢ > 0, p > 0,
d 1
GEO <0 +2 [ Qltn)Qhta) da

1
-2 [ Qo] Qhta) - g(t.0) + rOQE )
+ /t r'(t —s)QY(s,x)ds
_ /t r(t—s)g(s,x) ds} dx
1 1
() +2 | Qltg(t.e)dz - 20(0) [ (QU(t,0))* do
0 0
1 ¢
- 2/0 Q7 (t,z) /_oo r'(t—s)QF (s, x)dsdx

42 /01 QU (t,2) /_; r(t — 8)g(s, z) ds dz
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< BP(t) + (1+ 2lr0)D Q7 ()] £2)* + (llg(®)l]22)?

+ [ 1= 9)UIQEMDIIL2)* + (1Q7 (s)]]22)*] ds

t

+ [ = )IUQEM®I]z2)* + (llg(s)lL2)*] ds

/.
/

— 00

= B0+ (ol + [ Irte- ool s
s+ [0+ e ds|(ipo )
- et s

<[22+ [T 1O+ @) as] P
# [ a1 i)
+ <1+/Ooo |r(s)|ds>J2

< 221+ [T 1O+ o) as] e

/|r )| E(s ds-l—{1-}-/000(1“(8)|+|r'(s)|)ds}J2

= HE"’(t / |r'(t — 8)|EP(s)ds + K,

where H and K are constants defined in an obvious way.

Now consider

J(t) = Hy(t) /|rtfs>|y()ds+KeR £>0,

(2.10)
y(0) = 3J2.
And, for n > 1,
Hy( (t— ds+ K +1 t>0
ox, VO= 10O+ [l ds k1m0

y(0) = 3J% + 1/n.
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Using standard methods of ordinary differential equations, [12], one
can prove that (2.10) and (2.10),, have unique solutions y and y, on
R, respectively, and

(2.11) E°(t) < yn(t), t>0,n>1, p>0.

(2.12)  y,(t) = y(t), n — oo, uniformly on compact sets of R™.

Therefore,
EP(t) <y(t), t>0, p>0.

Since J, H, and K are independent of p, so is y. Thus, for any T > 0,
there is a constant C = C(T') > J such that

E°(t)<C, tel0,T], p>0.
Therefore, for t € [0,7] and 0 < p < 1,
(2.13) Q7 (®)1L2)?, (11QF (B)]|22)?, (1QE (B)]]22)* < C.
This means that
{@°O)lo.1to<p<r € C(0,T],L%)
is equicontinuous and, for any ty € [0, 1],
{Q(t0)}o<p<1 € Hy([0,1], R)

is bounded. Next the embedding H}([0,1],R) — L%*([0,1],R) is
compact so that

{Q°(to)}o<p<r < L*((0,1], R)

is precompact.

Now we can apply the Arzela-Ascoli theorem [2] to conclude that
there are p — 0 as k — oo and v € C([0,T], L?) such that

(2.14) Q** (), —v inC([0,T],L?) as k — oo.

Next we prove that v(t) = 0 in L%([0,1],R), t € [0, T].
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Note that the boundary condition in (2.5) implies that

.15 Q@2 < Q2o
and
[ @ e=- [ e

So, for 7 € [0, T] fixed, we have from (2.15) and (2.9),
(2.16)

/OT(|Qp(t)|L2)2dt</T(||Qp(t)||L2)2dt

/ QF (t,z)QP . (t, z) dx dt

thw )| @) atta)
+r(0)Q(t ) + /m (t = )@ (s, ) ds
_ /;r(t— $)g(s,2) ds] da dt|.
Next, from (2.13), one has
-| [ [ertmmi
QU (0,0)Q(0,2)

- [(@tta)? i) as

< (1Q°(7)llz2)* + (1Q7 ()] z2)?
+(1Q°(0)]]2)* + (11Q7 (0)] =)

//Qttw dz dt

<(4+r1)C

1,7
/ Qp(t,x)th(t’m) dt dx
0 0

Q”tw twdwdt‘ /[(mﬂ()||Lz)2+<|g<t>||m>2 at
<27C,
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0)Q’ (¢, z)Q% (t, ) dwdt‘

0) / [(IIQ” M) + (17 01527

< 27|r(0)

; Q*(t,x) /t r'(t — s)Q% (s, ) dsdxdt‘
< [ - Q@1 + (e ds
s2rc/0 #(5)] ds,

‘/OT/OlQ”(t,:c)/t r(t—s)g(s,x)dmdt‘

<[]t 0Oz + a2 s

<27'C’/ s)| ds.

Now let p = pi in (2.16) and let & — oo; by (2.14) and the above

estimates we have .

/0 (Ulo(®)l|22)? dt = 0.

Note that this is true for arbitrary 7 € [0,T]; thus ||v(¢)||L2 = 0, a.e.,
on [0,T]. But ||v(¢)||r2 is continuous in ¢, so ||[v(t)||z = 0 for ¢ € [0, T.
Since (2.14) with v = 0 is true for every sequence pg — 0, it is true for
p — 0. This completes the proof. u]

Next let us consider the singular perturbation for

t

put(t2) = (w2t ) + [ alt = )olul(s, ). ds

— 00

(2.17) +pg(t,z),  (t,z) eRT x[0,1],
uf(t,0) = uP(¢t,1) =0, te RT,
uf(t,x) = v°(t, o), (t,z) e R™ x [0,1],
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where ¢ is nonlinear and satisfies

(2.18) #(0) =0, thereise >0,¢' >¢ onR.

We recall that by assuming that v” satisfies (2.17) on R, [11, 13,
14], proved the existence and uniqueness of solutions for (2.17). So we
may assume that (2.17) has a unique solution u” on R for each p > 0.

In order to use the energy estimate, we define

1 1
B0 = [ (w(t2)do+ / (uf (¢, 7))

uf (t,z)
/ / 7)drdz.
Then, for ¢ > 0 and 0 < p < 1, one has from (2.18), (see [13]),
1 2 1 u’;(taﬂ”)
/ (uf(t,z))* dx < —/ / () dr dx
0
tz)
S / / T)drdz

g—Ef’ t>0,0<p<l.

Next, one has

1 1
| eonpas < 2 [ otust. o)t o do
0 0

Similar to (2.9), one obtains
(0. = o[ (1) - g(0) + r(O)ut(0)
- /_ r(t —s)g(s)ds + /_ r'(t — s)uf(s)ds|.

Therefore, with the same proof as in Theorem 2.1, we have
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Theorem 2.2. Assume that equation (2.17) has a unique solution
u” on R for each p > 0 with v satisfying (2.17) on R™. Also,
let assumption (2.1) be satisfied. In addition, assume that there is a
constant G such that for s <0, p>0,t € R,

v(Ow
102 (0, )2, 108 (5, )| 2 // o) dr d,

lg(t, )L < G-

Then zero is the unique solution on R of (2.17) with p = 0, and for
every T > 0,

uf(t,) =0 in L*([0,1,R)  asp—0,
uniformly for t € [0,T].
Theorem 2.1 was proved under the assumption that v” satisfies (1.1)
on R™. If we only assume that v” is known on R™, (which may not

satisfy (1.1) on R™), then with additional conditions on the history v£,
we can write equation (1.1) as

puby(t, ) = ubl, (¢, ) -l-/o a(t — s)uf (s, z)ds

+ / alt — )2, (s,2) ds + pa(t,2) + f(2)

— 00

= (6 + a)*ul,(t,x)

+ / alt — ), (s,2) ds + pa(t, 2) + f(z),

— 00

and hence

)= 675 (ot~ )~ 7= [alt=optao)as) ),

where, in this case, the integral in convolution % is from 0 to t. With
essentially the same proof as in Theorem 2.1, we have

Theorem 2.3. Assume that equation (1.1) has a unique solution uP
on R for each p > 0 with v* given on R™. Also, let assumption (2.1)’
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be satisfied and let w be defined by (1.4). In addition, assume that there
is a constant G such that

1
[0, )] L2, [[v7 (0, )] L2, ;Hv!i(O, ) = wa ()2,

1
;Hva’v)z(sa')*wzz(')HL? <G, s<0,p>0.

(2.2)

Then w 1is the unique solution on R of (1.1) with p =0, and for every
T >0,
uf(t,-) — w(-) in L*([0,1],R) as p — 0,

uniformly for t € [0,T).
For equation (2.17) we can do similar things and get

Theorem 2.4. Assume that (2.17) has a unique solution u” on R
for each p > 0 with v* given on R™. Also, let assumption (2.1)" be
satisfied. In addition, assume that there is a constant G such that

2 1 ,uf(0,x)
070,z 100, V22, / / o(r) dr de,

1
o0els, Jollez <G 5 <0,p>0.

Then zero is the unique solution on R of (2.17) with p = 0, and for
every T > 0,

uf(t,-) — 0 in L*([0,1],R) as p — 0,

uniformly for t € [0,T].

REFERENCES

1. C.M. Dafermos, An abstract Volterra equation with applications to linear
viscoelasticity, J. Differential Equations 7 (1970), 544-569.

2. J. Dieudonne, Foundations of modern analysis, Academic Press, New York,
1969.



SINGULAR PERTURBATIONS IN VISCOELASTICITY 75

3. C.M. Dafermos and J.A. Nohel, A nonlinear hyperbolic Volterra equation in
viscoelasticity, Amer. J. Math. Suppl. (1981), 87-116.

4. , A nonlinear hyperbolic Volterra equation in viscoelasticity, Contribu-
tions to analysis and geometry, The Johns Hopkins University Press, 1981, 87-116.

5. H.O. Fattorini, Second order linear differential equations in Banach spaces,
North-Holland, 1985, 165-222.

6. R. Grimmer and J.H. Liu, Integrated semigroups and integrodifferential equa-
tions, to appear in Semigroup Forum.

7. , Integrodifferential equations with non-densely defined operators, in
Differential equations with appplications in biology, physics and engineering, J.
Goldstein, F. Kappel and W. Schappacher (eds.), Marcel Dekker, New York, 1991,
185-199.

8. R. Grimmer and E. Sinestrari, Mazimum norm in one-dimensional hyperbolic
problems, J. Differential Integral Equations 5 (1992), 421-432.

9. M.L. Heard, A class of hyperbolic Volterra integrodifferential equations, Non-
linear Anal. 8 (1984), 79-93.

10. J. Hudson, The ezcitation and propagation of elastic waves, Cambridge
University Press, 1980, 188-219.

11. W.J. Hrusa and M. Renardy, On a class of quasilinear partial integrodiffer-
ential equations with singular kernels, J. Differential Equations 64 (1986), 195-220.

12. V. Lakshmikantham and S. Leela, Differential and integral inequalities,
Academic Press, New York, 1969.

13. R.C. MacCamy, An integro-differential equation with application in heat flow,
Quart. Appl. Math. 35 (1977), 1-19.

14. , A model for one-dimensional, nonlinear viscoelasticity, Quart. Appl.
Math. 35 (1977), 21-33.

15. , Approzimations for a class of functional differential equtions, STAM
J. Appl. Math. 23 (1972), 70-83.

16. R.K. Miller, Nonlinear Volterra integral equations, W.A. Benjamin Inc., 1971,
189-233.

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE,
ILLiNoOIS 62901

DEPARTMENT OF MATHEMATICS, JAMES MADISON UNIVERSITY, HARRISBURG,
VIRGINIA 62901



