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A CHARACTERIZATION OF SOLUTIONS TO
A PERTURBED LAPLACE EQUATION II

JOHN KELINGOS AND PETER MASSOPUST

1. Introduction. This report is a sequel to work done by P. Staples
and the first author in [12]. Both papers concern the elliptic partial
differential equation

(1.1) div (ograd u) = 0,

which is the model equation for a number of physical situations, e.g.,
steady state temperature distribution without heat sources where o is
the coefficient of heat conduction of the medium; magnetic potential
with o the magnetic permeability of the medium; the potential of the
electric field of a steady current where ¢ is the conductivity of the
medium [2, p. 387].

We are interested in finding a representation for the general solution
to (1.1) in the case of variable o, and where o is not required to be real
analytic in its variables. Asin [12] we consider only the two dimensional
case, where in polar coordinates (r,8) (1.1) becomes

1
(1.2) oAu + opur + —0oeup = 0.
T

Here A is the Laplace operator and subscripts denote partial deriva-
tives. In [12] o was assumed to depend on r only. The method of
separation of variables was then used to find an eigen-function expan-
sion for the general solution to (1.2) in the unit disk, where classical
stability theory for ordinary differential equations was invoked to han-
dle the ensuing r-equation.

In this paper we take the next obvious step and assume o(r,6) =
o1(r)oz(6), in order to examine the f-dependence in the method of
separation of variables. An eigenfunction expansion (see (2.20) and
(4.4)) for the general solution to (1.2) on the unit disk in this case
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follows easily using standard periodic Sturm-Liouville theory for the
ensuing #-equation.

Analyzing the boundary behavior of these solutions in a distributional
sense is more interesting however. In a series of papers culminating in
[10] Lions and Magenes consider elliptic systems of partial differen-
tial equations with analytic coefficients, defined in domains of R™ with
compact analytic boundary. They then establish a linear and topo-
logical isomorphism between the space of solutions to the equations,
provided with the topology of uniform convergence on compact sub-
sets of the domain, and a certain space of distributions defined on the
boundary, the “boundary values” of the solutions. These boundary
values are called analytic functionals or hyperfunctions, and have been
studied in various settings by Gelfand and Silov [6], Sato [11], K&the
[9] and others.

The topology on the test function space for these hyperfunctions
usually appears as the inductive limit of a sequence of normed spaces,
although the choice of the normed spaces differs among the authors.
In [8] Johnson considers the very special case of Laplace’s equation
((1.2) with constant o) in the unit disk of the plane, and presents an
independent description of the topologies for the hyperfunctions on the
boundary and their function test space using sequence spaces of Fourier
coefficients. This approach uses no intermediate normed spaces. It
relies on the fact that every (complex) solution to Laplace’s equation
in the unit disk of the plane has an (eigenfunction) expansion of the
form

o0
(1.3) u(r,0) = Z agr!Flei*?,
k=—oc0
for a unique sequence of (complex) constants ay, satisfying
(1.4) lim sup |ag|Y/* < 1.
|k|—o0

In this paper the eigenfunction expansion for the general solution
to (1.2) in the unit disk with o = o1(r)o2(0) is also shown to have
unique coefficients satisfying (1.4). This enables us to adapt Johnson’s
approach in defining the space of distributional boundary values for
solutions to (1.2). These generalized hyperfunctions are different from,
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but algebraically and topologically equivalent to, the hyperfunctions of
Lions and Magenes. This difference is to be expected since o is not
analytic and therefore the solutions to (1.2) are not analytic. On the
other hand, in [12] ¢ = o(r) was also not analytic, but the solutions
u(r, ) were analytic in 0, and as a result the “boundary values” were
exactly the analytic functionals of Lions and Magenes, an unexpected
result, which comprises a form of stability in that case.

In the final section we discuss extensions of our results to higher
dimensions.

2. The kernel solution. In [12] the case o = o(r) was considered,
hence in this section we consider only o = o(f) > 0, and we assume
o is C%*(R') and 2m-periodic. In Section 4 we will combine these two
cases. Our goal is to find all (real) solutions u(r,6) to (1.2) in the
punctured unit disk, 0 < r < 1, which are bounded in a neighborhood
of the origin. If we set £(0) = o'(0)/o(6), then

2
(2.1) £(9) € C*(RY); / £(0)df =0,
0

and equation (1.2) becomes

e(f) Ou
(22) AU+T—2%—O, O0<r<l1.

Separating variables in (2.2), we arrive at the following two boundary
value problems in r and 6, respectively:

(2.3) rR"+rR —AR=0;  R(0) finite, R(1) = 1,

(2.4) 0" +¢(0)0'+10 = 0; 0(0) = ©(27), ©'(0) = ©'(27).

The #-problem (2.4) is a periodic eigenvalue problem, and we will show
below that all the eigenvalues Ay are nonnegative. The r-problem
(2.3) is a Cauchy-Euler equation, whose unique solution satisfying the
boundary conditions is

(2.5) Rp(r) =1,  Ek>0.
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If A =0, the general solution to (2.4) is

0 ¢
®=a+b/ exp(/ E(t)dt) de,
0 0

and the periodicity of © implies b = 0, so up to a constant multiple

We put (2.4) into self-adjoint form by multiplying by

(2.6) n(0) = exp (/09 e(t) dt) > 0.

Then (2.1) implies n is C?(R!) and 27-periodic. Also n(0) = n(27) =1
and 7 is bounded away from 0. The eigenvalue problem (2.4) becomes

2.7) (1(0)O) + ()0 =0,  ©(0) = O(2r), O'(0) = O (2n).

Using known results on such boundary value problems (see, e.g., [3,
p. 214, Theorem 3.1 or 5, pp. 19-27]. See also [4, p. 293].) we list the
facts we will need concerning the eigenvalues and eigenfunctions.

All eigenvalues A > 0, and as we saw, A9 = 0 is an eigenvalue
with eigenfucntion ©¢ = 1. The remaining eigenvalues occur in pairs.
Denote the eigenvalues by

(2.8) ={0=X <N, <N <A, <A/ < o0}

The pairs may or may not be double eigenvalues. Corresponding to
each eigenvalue A is a unique eigenfunction ¢y, which due to the pairing
phenomenon we denote by

(29) {w)\} = {00(9)7 01(0)5 Sl(e)v 02(0)5 SZ(e)a s }a

Co(f) = constant. These functions can be chosen to be real and
orthonormal with respect to the weight function n(6),

27

(2.10) wxbndd = {

0

1 ifA=2)
0 if A#A.
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Here X and X refer generically to any Aj, or A} and v refers to the
corresponding C, or Sk.

Furthermore, the {¢»} are complete, and hence the generalized
Fourier coefficients of any periodic function ¢ € L1[0,27] with weight

n

(2.11) o= [ " n(0)6(8) (0) do,

are uniquely determined.

In addition each periodic C?(R!) function ¢ can be expanded

(2.12) 3(6) = S(N¥a(0),

A>0

and the series converges absolutely and uniformly.

In order to obtain asymptotic formulae for the eigenvalues and eigen-
functions for large k, we apply the Liouville transformation

1 0
(2.13) u=0n"?=0exp <§/ e(t) dt>
0
to change the dependent variable in (2.4) and obtain
(2.14) W+ (A—0¢(0))u = 0; u(0) = u(2m), u'(0) = u'(2n),

where

1 1
(2.15) $(6) = 76(6)* + 5'(6).
We see ¢ is continuous and 27-periodic. We conclude that the eigenval-
ues to (2.4) and (2.14) are identical, the eigenfunctions are connected
by (2.13), and the eigenfunctions {ux}x>o to (2.14) are orthonormal
with weight = 1. It follows from Theorem 4.2.3 of [5] that

(2.16) VA =k+o(1) ask— oo,

where \;, refers to A}, or A}.
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Next, using the periodic boundary conditions of (2.14), the methods
of [4, pp. 334-339] can be adapted virtually without change to conclude
that the orthonormal eigenfunctions uy to (2.14) satisfy the following
estimates: |uy| < O, [u}| < OV, |[uY| < CA, where C is some positive
constant independent of A and #. Using (2.13) and the fact that 7(0)
is C?(R!), bounded and bounded away from zero, we have

Lemma 2.1. The orthonormal eigenfunctions (2.9) to the eigenvalue
problem (2.7) satisfy

(2.17) @< C, [Wi(0)] < Cks  [4(0)] < CK?,

k >0, where C is a constant independent of k and 6, and ¥y, refers to
either Cy(6) or Si(6).

Furthermore, for k > 1,

Cr(8) = (7n(0)) /2 cos k + O(1/k),

(2.18) o
Se(0) = (mn(0)) /% sin kb + O(1/k).

Next we define the generalized Poisson kernel by

(2.19) Q.(6) = YV ua(8) = Co + Y (rV¥eCr(8) + V¥ S,(6)),

A>0 k>0

where the first series is a generic representation of the second series.
Since the 1,’s are uniformly bounded and the A;’s satisfy (2.16), this
series converges absolutely and uniformly on compact subsets of the
unit disk by the root test. Furthermore, the series can be twice
differentiated with respect to r or 6 because of (2.16), Lemma 2.1
and the root test again. Since each rY*k4hy (0) is a solution to the
differential equation (2.2) (separation of variables), so is Q,(6).

Lemma 2.2. The generalized Poisson kernel defined by (2.19) is a
solution to the differential equation (2.2) in the unit disk r < 1.

We now come to the main result of the paper which characterizes all
solutions to (2.2) in the unit disk in terms of their generalized Fourier
series.
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Theorem 2.3. FEvery real solution u(r,0) of (2.2) in the punctured
unit disk which is bounded in a neighborhood of the origin is continuous
at the origin, and can be written

(2.20) =ap+ Z akr\/_C'k )+ a%kr\/)‘—gSk(H)),

k>0

for some unique set of real constants ag,a},ar, k > 1, satisfying

(2.21) lim sup |az |*/* < 1,

k—o0

where ap, = a}, + ia},. Conversely each set of complex constants with
property (2.21) determines a solution through (2.20).

The proof of the final statement is exactly as the proof of Lemma 2.2.

For the first part, suppose u(r, ) is a solution of (2.2) in 0 < r < 1,
bounded near the origin. By results of partial differential equations
[1, p. 136], since £(f) is C*(R!), (f) is Holder continuous of order «
for each 0 < a < 1, so u(r,f) has Holder continuous second partial
derivatives in the punctured disk. If we define the Fourier coefficients
of u(r,0) = u,(0) as in (2.11),

(2.22) i () = / " n(®)u(r, 0)6x(6) do

where as usual A refers to any A}, or A} and 9,(6) refers to the
corresponding C(6) or Sk(6), then by (2.12)

(2.23) u(r,0) = a,(N)a(6), 0<r<1,
A>0

and the series converges absolutely and uniformly in compact subsets
of the punctured disk. Hence, if we set

0
Lu = Au+ —8(2)149 =0,
T

we have

5 L@ A= 3 [+ Tt s + S| =0

A>0 A>0
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But 9§ + e, = —A¢y, so

1 1
_ ~ 1 ~ -~ =
Lu= )\E>0 |:’U/T + ;’U/r — T‘—z)\’U,T Q,b)\ =0.

By the uniqueness of the Fourier coefficients, each bracketed quantity
is 0, i.e., G,(A) is a solution of the Cauchy-Euler equation (2.3). But
from (2.22), 4,(\) is bounded near r = 0 since u(r,6) is. Therefore,

@,-(\) is a unique constant multiple of rVA
(2.24) i, (A) = axr¥?,

where ay = a}, or a} depending on whether A = X, or A/. We have
proved (2.20), that u(r, ) is continuous at the origin, and we know the
series in (2.20) converges absolutely for each 0 < r < 1 and each 6.
All that is left is to show the constants in (2.20) satisfy (2.21). Again,
from the absolute convergence and the root test, we have

(2.25) lim sup |a;cr\/)‘—;eC'k,(0) + agT\/)‘_gSk(ﬁ)P/k <1,

k—o0

for each 0 < r < 1, @ arbitrary. Using (2.18) we first set § = 0
and then set § = n/2. The result from (2.25) is then, on the one
hand, r(limsupj,_, ., |a,|*/¥) < 1, for each 0 < r < 1, and therefore
limsupy,_, ., |a}|*/* < 1, with a corresponding result on the other hand
for al. So if a, = a}, +ia}, |ak|'/* < 2Y/* max(|a}|'/*, ay|'/*), and
(2.21) follows.

3. Distributional boundary values. In this section we examine
the behavior of solutions u(r, 8) to (2.2) near the boundary of the unit
disk, in a distributional sense. That is to say, if we view u(r, 0) = u, (),
0 < r <1, as a family of functions with Hdélder continuous second
derivatives on the boundary of the unit disk, we want to decide whether
or not u,(f) converges in some distributional sense as r — 1, and if so,
to what distribution does it converge?

The answer lies in Theorem 2.3 which gives a one-to-one correspon-
dence between solutions to (2.2) and their generalized Fourier coef-
ficients, namely real sequences {ag,a},a}}, k > 0, satisfying (2.21).
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Because the coefficient sequences satisfy (2.21), we can utilize all the
results of G. Johnson [8] where he identifies the distributional bound-
ary values of solutions to Laplace’s equation, variously called analytic
functionals or hyperfunctions, as sequences satisfying (2.21).

We begin with the description of the test space G of functions defined
on the unit circle. The space of distributions which comprise the
boundary values of real solutions to (2.2) will then be the dual G,
the real continuous linear functionals defined on G.

In order to avoid notational confusion, let us denote the generalized
Fourier coefficients of a function ¢ € L'[0,27] by

bob) = [ n@sOCO®, k>0
(3.1) 0

bs(k) = / n(0)6(0)S:(6) db, k> 1.

Set ¢5(0) = 0 and write

(3:2) d(k) = po(k) +igs(k),  k=0.

Define G to be the linear space of all real functions ¢

(3.3) $(0) = ao + Y _(akCi(0) + ajSk(0)),

k>1
where ar = a}, + ia} satisfies

(3.4) limsup |ag|'/* < 1.
k—o0

The space G depends of course on the perturbation coefficient function
() in (2.2), and therefore on the weight function () given by (2.6).
If e = 0, then G is just (the real subspace of) the space of test functions
‘H described in [8], and the coefficients a}, and @}/ in (3.3) are the usual
Fourier cosine and sine coefficients. Of course, the coefficients in (3.3)
are the generalized Fourier coefficients of ¢ given in (3.1). Hence, we
may identify G with the set I' of all complex sequences {ay, = a}, +1ia},
ag real}, satisfying (3.4), the correspondence being given by (3.3).
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The correspondence is one-to-one since the eigenfunctions (2.9) form a
complete orthonormal system.

Following Johnson [8] we put a topology on G (or equivalently I') as
follows. Denote by A all real sequences oo = {a }, k > 0, which satisfy

o > agq1 > 0, k>0,

(3.5)
apr1 /o = 1, as k — oo.

The collection of sets

Vie) ={0 €G:[o(k)| < ax, k =0}

for all & € A is a base for the neighborhood system of the origin
for the desired topology on G. Johnson [8] then proves that I', and
therefore G, is a locally convex topological vector space which is a
nonmetrizable, complete Montel space. He further shows on page 379
that the Fourier series (3.3) for each ¢ € G converges to ¢ in G. In
addition, [8, Proposition 5], the collection of sets

E(a,p) ={p € G : |p(k)| < ap”, k >0}

for all @ > 0 and p < 1 is a fundamental system of bounded sets for G.
Each E(a,p) is compact.

Denote by G’ the dual space of real continuous functionals on G, and
define the (generalized) Fourier coefficients of f € G’ by

(36) fC(k) = <fa Ck>7 fS(k) = <f7 Sk>7 k> 0)

where we set f5(0) = 0, and write f = fo+ifs. We identify an element
of G’ with the sequence of its Fourier coefficients as follows:

Theorem 3.1. If f €', then

(3.7) limsup | f(k)|*/* < 1,

k—o0

and

(38) (f,0) = (dc(k)fo(k) + ds(k) fs(k)) = Y Re(d(k)f (k).

k>0 k>0
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The series is absolutely convergent. Conversely, any compler sequence
{ar = a}, + ta}, agAreal} satisfying limsup |ax|/* < 1 determines a
unique f € G' with f(k) = a.

This is Theorem 2, page 379 of [8], and the proof there goes through
without change. The completeness of the eigenfunctions (2.9) is used
again to show the uniqueness in the above theorem.

As a corollary we see from (3.4) that G C G'. In particular, if g € G,
2m

define Ay : G — R by (Ay, ¢) = [7 gndf. Then Ay(k) = (Ay)c (k) +
i(Rg)s(k) = (Mg, Ci) +i(Ag, Sk) = [;™ gCknd0+i [5 " gSkndf = g(k).
Hence §(k) and therefore A4(k) satisfies (3.4) and therefore (3.7). By
Theorem 3.1, A; € G'.

We endow G’ with the strong topology, which is the topology of
uniform convergence on the bounded subsets of G. Define a class B
of sequences 8 = {8k}, k > 0, which satisfy

0 < Br < Br+1, k>0

(39) Br+1/Br — 1, as k — oo.

Lemma 3.2. The sets
V'(a,p) = {f €G": |f(k)| < ap*, k >0}

for alle >0 and p > 1 form a base for the neighborhood system at the
origin for the strong topology on G'. The sets

F'(B)={f€¢ :|f(k)| < B, k >0}

for all B € B is a fundamental system of bounded sets for G'. Finally,
G’ is a Montel space whose strong dual is G.

This is Propositions 9 and 10 and Theorem 3 of [8]. In addition,
since the eigenfunctions (2.9) are complete, they are total in G. Hence,
[9] boundedness in G’ and convergence of Fourier coefficients imply
strong convergence. In particular, the Fourier series of each f € G’
converges to f in G'. Finally, weak convergence in G or G’ implies
strong convergence to the same limit [9, p. 370].
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Next we define a convolution operation in G and G’ in the usual way
by pointwise multiplication of Fourier coeflicients:

(f % 9)(6) =D _(fo(k)go(k)Cr(6) + fs(k)gs (k)Sk(6))

(3.10) B0
= > FNaN¥a),

the last being a generic representation of the first. The mapping
f — f % g is continuous for each g € G’. Note that G’ is now a
convolution algebra with (unique) identity

(3.11) A(0) = Co(6) + D _(Ck(8) + Sk(6) = > ¥a(6).

E>1 A>0

We now recast Theorem 2.3 in the setting of distributions as devel-
oped in this section and obtain a generalized Poisson integral represen-
tation for all solutions to (2.2).

Theorem 3.3. A function u(r,8) in the unit disk is a solution to
(2.2) if and only if there is a generalized function f in G' such that

for each 0 < r < 1. Furthermore, v, — f in G asr — 1 and
consequently f is uniquely determined.

Proof. If u(r,0) is a solution to (2.2), then by Theorem 2.3, u can
be represented by (2.20) with unique real constants {ao, a},,a} }, k > 0,
satisfying (2.21). Hence, if we define

£(0) = a0+ > (a4Ck(8) + ailSk(6)),

Theorem 3.1 implies f € G, and (2.20) is equivalent to (3.12). Taking
8 = {1,1,...} € B, Lemma 3.2 implies the family of functions
Q, € G C G is bounded in G’, since 0 < QT()\k) = VA <1, Hence,
Q, — Ain G asr — 1. Therefore, u, = Q. *x f — A* f = fin G, by
the continuity of convolution. This completes the proof. ]
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To show the consistency with the classical solution of the Dirichlet
problem for (2.2), suppose f is continuous on the boundary of the unit
disk and v(r, ) = v,.(0) is the unique solution to (2.2) in the open disk,
continuous in the closed disk and equal to f on the boundary [7, p.
176]. Then v, — f uniformly as 7 — 1 and therefore v, — f in G’. By
the uniqueness part of Theorem 3.3, v, = u, = @, * f.

4. Generalizations. The results of this paper can, of course, be
combined with the results of [12] to completely solve equation (1.2) in
the case

(4.1) o(r,8) = o1(r)o2(0).

The variables will still separate in this case.

If one defines €1 (r) = ro(r)/o1(r) asin [12], and e2(0) = 05(0)/0=2(0)
as in Section 2, and imposes the conditions on £1(r) given in (2.3a) and
(2.3b) of [12], and assumes e2(8) satisfies (2.1), then the two boundary
value problems that result after separating variables in (1.2) are (2.4)
for the #-problem, whereas the r-problem becomes

14e(r) Ak

R+ R - “ER=0,
r

(4.2) r
R;(0) finite, R(1) =1, k >0,

where A, refers to Aj, or A}. Because of (2.16), the results of [12] carry
through, namely, for each k& > 0 there exists a unique pair of solutions
Ry, (r) and Ryr(r) to (4.2) satisfying the estimates (2.4)—(2.6) of [12].

In summary, every solution to

ei(r) Ou | ex(r) du _
(4.3) Au + — % 2 5p = 0

in the punctured unit disk which is bounded near the origin, is contin-
uous at the origin and can be represented by

(4.4) u(r,0) = ap + Z(a;cRAL (r)Ci(8) + ag Ry (7)Sk(0)).-
k>0

The constants are unique and satisfy (2.21) as before.
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The distributional boundary values remain G’ in this case, and
Theorem 3.3 is still valid where, of course, the new generalized Poisson
kernel Q,. () is given by (2.19) with »V** replaced by Ry, (7).

The results of this paper, as well as [12], can be extended to n-
dimensions. In order to accomplish this one first needs to extend
Johnson’s results [8] on harmonic functions to higher dimensions. Much
of the necessary background for this task is already in print from 1966.
What appears to be missing is a definitive representation of harmonic
functions in the n-ball using vector coefficients which satisfy some form
of (2.21). In a forthcoming paper the present authors will present these
details, in addition to solving the perturbed cases, both in the radial
and angular components.
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