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THE RIESZ INTEGRAL AND AN LP — L4
ESTIMATE FOR THE CAUCHY PROBLEM
OF THE WAVE OPERATOR

CHIN-CHENG LIN

ABSTRACT. In 1949, M. Riesz [3] generalized the Riemann-
Liouville integral of one-variable to high dimensional Eu-
clidean spaces and obtained a powerful method now known
as the Riesz integral for studying wave operators. In this pa-
per we apply the Riesz integral to get the global space-time
estimate

lullg < C{llwllp + A=/ (1]l + [V £]1p)}

where 1/qg = 1/p—2/(n+ 1), 1/p+ 1/q = 1, and u is the
solution of the Cauchy problem [u(z,t) = w(z,t) in RTLI,
u(z,0) = f(z), and du(z,0) = g(z).

1. The Riesz distribution. For z = (z1,22,...,2,) € R", we

denote |z| = \/z? + 2% +--- +22. Let R"*! = {(z,t) : 2 € R",t €
R}, and define

P = {@2 —z)M? ift > |a|
0 otherwise.

For ReA > —2, p* is a locally integrable function on R"*! and so
defines a distribution

(o, 8) = /R Pla 0 deds

for ¢ € D(R™!). In spherical coordinates, the above integral can be
written as

A _ * t2_2/\/2n717 drd
(o) /0/0“ P22 1) dr e

Received by the editors on June 22, 1992.

Copyright ©1994 Rocky Mountain Mathematics Consortium

1027



1028 C.-C. LIN

where ¢(r,t) = [q. 1 #(rw,t)do(w) is a C*-function in (r?,t) with
compact support. By the change of variable r = /st

(L1) o= [ TP (1) de
0
where
1 /! _
ea(t) = 5 / (1 )2 =2/26(\/st,1) ds
0

is a holomorphic function in A\ for Re A > —2 and can be extended by
analytic continuation to a meromorphic function in A € C with poles at
A=-2,-4,-6,.... For A # —2,—4,—-6,...,®,(t) is a C*®-function
in ¢t with compact support.

Now let n be odd, A = —n — 2k. Then

§2k—1 _

k— 1t e ne
R A [ V]
0 t=0

l 1
_ _/ (1 5)(n2W)/25(n=2)/2
2 0

2k—1
{ <2k 1) ”28{5(0,0)63’“lj&(o,O)}ds-
=0

J

For j even,
1 . (k)2 nsi-2)/2 g F(%—§k+2)p(n-21-])
/0 (1—s) s 5= —2k+j+2
=)

But in another case, for j odd, 8/¢(0,0) = 0. In other words, ®_,,_ox(t)
has zero derivative of order 2k — 1 at ¢ = 0, and hence

(2k—1)
@ (0)
A —n—2k —
A:IE?LS—2k<p ) = (2k —1)! 0

by (1.1) and Res % = ((—=1)771/(j —1)!)-6U~Y [2, p. 68]. Therefore,
a=—j

p* is a holomorphic function in A for Re A > —2 and can be extended by
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analytic continuation to a meromorphic function in A € C with poles
at

1) { ((f) i — 2 -4,-6,...

=—n—1,-n—-3,—n—5,....

For n even, p* has simple poles at these points; for n odd, it
has simple poles at A = —2,—4,...,—n + 1 and double poles at
A=—n—-1,-n—-3,....

Let the wave operator be denoted by

0? " 92
T2 et 81‘3'

For Re XA > —2, Op*2 = (A +2)(A + n+ 1)p*, and so by iteration for
k=1,2,3,...,

O A 2E = (A42)(A+4) - - - (A+2k) (A+n+ 1)
S A1 43) - (An2k—1)p

that is,

(13) (0% @)

<ka)\+2k,¢>
(A+2)(A+4) - - A+2k) (A +n+ 1) (A+n+3) - (A+n+2k—1)"

By analytic continuation (1.3) holds also for A € C except at the
singularities of (1.2).

The distribution p* can be normalized. Its construction was first
given by M. Riesz [3].

Definition. The Riesz distribution is defined by
pa—n—l

Zo = o T DT (a2 T (0 — n + 1))2)

The constant H(a,n) = 2 7 D/2D(a/2)I'((a — n + 1)/2) is so
determined that

(1.4) (Zo,e "y = 1.
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We note that I'(«/2) has simple poles at a = 0,—-2,—4,..., (i.e.,
a—-n—1=-n-1,-n—-3,—n—-5,...) and I'((e —n+1)/2) has simple
polesat a —n+1=0,-2,—4,..., ie,a—n—-1=-2,—4-6,...).
Hence Z,, is an entire function of o € C and satisfies

UZ0 = Za—2

1.5
(1.5) 0¥ Zo = Zg—on, k=0,1,2,....

By calculating the residues of (p*, #), we have

Zp=96

1.6
(1.6) Z_qp = 0%6, k=0,1,2,....

Moreover, the support of Z,, for all complex o € C, is contained in
the forward cone C = {(z,t) € R"*! : ¢t > |z|}.

Combining (1.5) and (1.6), we obtain easily
(1.7) 0% Zor, = 6, k=0,1,2,....

In particular, (0Zs = §, so Z5 is a fundamental solution of wave operator
(cf. [2, Section 6.2]).

The convolution property of Z, is given by

Theorem 1.8.
Za * Zg = Za+g.

Note. Since Supp (Z,) and Supp (Zg) are contained in the cone
C = {(z,t) € R*"" : t > ||}, Supp(Za * Zp) is concentrated in
the compact set C'N G, where G is the reflection of C' and translated
by some vector on R"*!. That implies the convolution Z, * Zg exists.

Proof. 1t suffices to verify for Re a, Re 3 large enough. For (z,t) €
R™ et

T:/(72,53...f§g)(a7n71>/2
D

((t=7)? = (@1 =&1)% - — (2a—8)7) TV P e ar



THE RIESZ INTEGRAL 1031

where D = {(¢,7) e R . 7 > |¢|,t — 7 > |z — £|}. By a rotation of
the space axes followed by a two-dimensional Lorentz transformation,

T~ / (F =g TR (s =) gl )T de dr
Dy

where s = /t2 —|z]2, D; = {(¢,7) € R*" .7 > |¢],s — 7 > |¢]}.

Thus, we have

T — Qn (7_2_7]2)(0477171)/2((5_7_)2 _ n2)(,67n71)/2nn71 d77 dr

D

where Dy = {(n,7) e R2:0<7-7<350<7+n<s}and Q, is
the hypersurface area of the unit sphere in R™. By the transformation
T+n=wand 7T —1n=uv,

7S // w(@=n=1/2 (5 _ ) (B=n=1)/2,(a=n-1)/2
2 0 J0

n—1
(e (£2) "

= Sa+5inian(aa IB)
where

2,

1 1
Bn(a, ) _ 2_n/0 /0 u(a—n—l)/Q(l _ u)(ﬂ—n—l)/Qv(a—n—l)/Q

(1= 0) B2y — ) dudo
depends only on «, 3, and n. We put e ¢ = e~ (=77 into (1.4), then

H(a,n)H(B,n) = (T,e”") = B,(a, B)H(a + B, )
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and so By, (o, 8) = H(a,n)H(B8,n)/H(a + B,n). For ¢ € D(R™!),

1 2 2\(a—n—1)/2
I S s% = dy ds
T (EAD / &) y

- / (82 = |2[2)B="=D/26(z 4+ y.t + 5) da dt
~

<Zﬁ=kZﬁ,¢>::

1 2 2\(a—n—1)/2
= s — dyds
1¥(aan)£{0170 /CZyl( |y|) Y

—n—1)/2
/ . l((t—s)2—|x—y|2)w 2 42, t) der dt
t—s 2> |z—y

1
= —H(a, WH G /t2z| oz, t) de dt

A ) D(SZ - |y|2)(a7n71)/2
Y,8)E

((t—s8)* —|z—y T yds
2 2\ (B 1)/2d d
_ 1 2 2\ (at+B—n—1)/2
= BB o oz, t)(t° — |z|%) dx dt

::<ZA+ﬂa¢f

2. The solution of the Cauchy problem and L? — L7 estimate.
As mentioned in the previous section, a fundamental solution of the
wave equation is given by
plfn

E(@t) =% = 5 orrG —n))

which can be used to solve the Cauchy problem

Ou(z,t) = w(z,t) fort >0

(2.1) u(z,0) = f(z)
Oru(z,0) = g(=)

where w is a function on R"*! that vanishes for ¢ < 0, f and
g are functions on R™, all of those are assumed to be sufficiently
differentiable.
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The Riesz distribution can be interpreted as an operator. For any
a € C, any ¢ € D(R"™!) or S(R"*!) with support contained in a
translation of the upper half space ¢ > 0, we define

I°p=Z,x¢

which is known as the Riesz integral. Corresponding to (1.5), (1.6),
(1.7), and Theorem 1.8, the Riesz integral I* has the following prop-
erties:

Ore = Ia—2, Dk]'a — Ia—Qk
I° = identity, 172k =k
I’0 = 0OI? =identity,  I**0% = OFI** = identity
I%[P = [otP
for k=0,1,2,....

For (z,t) e R"", let Q= {({,7) e R*" M 1t —7 > |2 —£[,0 < 7 < t},
then 0Q = {(§,7) e R* T it —7 = |z —£],0 < 7 < tJU{(£,0) € R
|z — €| <t} = By U By. We use Green’s formula

Ov ou
/Q(uDv —o0u)dV = /09 <u8—N - va—N> ds.

Let v = v(&,7) = (1/H(a +2,n))((t — 7)2 — |z — £?)(@="+1/2] Then
Oe,ryv(€,7) = (L/H(a,n))((t — 7)* — & — ) "D/2 Now v = 0,
Ov/ON =0 on B;. Hence

(2.2)
: / (€, 7)((t=7)2 = Je—g?) TV e ar
H(a’ n) t—r>|z—&| and 7>0

I I
H(a+2,n) /t—fzz—fl and 730 Du(&,m)((¢-7)

. 7|x7£|2)(a7n+1)/2 dé.dT

S _lz — g2)@—nt1)/
= Harm) g T ol 0 dg

a—n+l / 2 2\ (@—n—1)/2
+—t =z =) u(&,0) d¢.
Hat2,n) ‘H‘St( |z = £[%) (€,0)
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Let u be the desired solution of (2.1) that vanishes for ¢ < 0, taking
a=0in (2.2),
(2.3)

u(z,t) = Pw(e,t) + ﬁ /| Gl et DAl OLS
I-n 2 7_ 2\(—1-n)/2
+ ! /zm(t - [?) 7€) de
2 1 2 1 e12y(1=n)/2
=Pl 4 g [ @ e e

;i 2 _ . ¢|2\(1=n)/2
T HEm) di /lz_m(t o =€) T2 £(€) de

= (E *(z,t) ’U))(I,t) + (E *(z) g)(m,t) + <88_f *(z) f) (,f’t)

where *(; ) and x(,) denote the convolution with respect to variable
(z,t) or z only.

Moreover, if n is even, g € C("*2/2(R"™), and f € C("t9/2(R"), we
can write

1 2 .. ¢12y(1-n)/2
H(2,n) ~/|m—§§t(t =€) g(§) d§

(n—2)/2
=(2 _"/2<12> n—1 g(w+tf)d
o) t ot ' /|5<1 V1-€2 ¢

and

. g 2 | ¢2\(1-n)/2
H(2,n) 0t /zagt(t o =€) f(€) de

(n—2)/2

1

= (2w)‘"/22<—ﬁ> t"—l/ flattf) dé.
ot\t ot lgl<1 v/ 1—[¢[?

If n is odd and n > 3, g € C"*Y/2(R™) and f € C"+3)/2(R™), then

we have

1
H(2,n) ~/|z§§t(t2 — [e—¢?) 7 2g(¢) dg

L sy (10N
= 5(2m) F t /|5=19(“t§) do (€)
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and

S Iy
H(zn)at/ﬁgt(tz @ =€) d

1 9/18 (n—3)/2
_1 (1—n)/2_<__> g1 + t€) do(£).
(2m) =22 (22 [RCESES

If also w(x,t) belongs to C*/2+1(R**1) that vanishes for ¢ < 0, then
(2.3) is the classical solution of the Cauchy problem (2.1).

For the case n = 0, the Riesz integral has the form

19 f(z) = ﬁ [ -0 s a

which is also called Riemann-Liowville integral. Hardy-Littlewood [1]
has proved that I{ is of type (p,q) with

1/¢g=1/p— a, 0<a<l1/p, p>1.
We expect the Riesz integral with oo = 2

PPg(a,t) = Zo * (x,t)

1

=TT — — |z — (1-n)/
- H(2,n) /t‘rZzﬁl((t 7')2 & €|2) ' 2¢(£a7-) d¢dr

has similar property for 1/¢=1/p—2/(n+1) and 1/p+1/q = 1.
By Stein-Weiss [4, p. 171, Theorem 4.15],

F(A— |2)2)(€) = @)™ 222D (A + 1)J€| 2T 00y 2 (€])
and so
Fol(® = |2)Y2)(€) = O Fu(b-1 (1 — |22))(€)
= MG FL (1 - 220 (€)
= 475, ((2m)"/222/20 (A2 + 1)

ECATI2 0 (€D)

/

n é‘ (=A—n)/2
— (2m)"/22V2 T (M\/2+41)| 3 Tovemy2(12€])
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where F f(£) = [qn € " f(2) dz denotes the Fourier transform,

Fe0(t) = ¢(§ t) the Fourier transform with respect to z, .7-'{1 the
inverse Fourier transform with respect to £, and &, f(z) = f(tz). Hence

1

sin |¢[t
2 -y

€]

E(,t) = — |z {2 ) =

and so by (2.3)

ae.)= [ Blet—s)ls)ds+ Smg'f't (&) + cos et - 7€)
= [ R D sy ds + L )+ coslele- o)
0 el q

Strichartz [5] has proved that

7 (2o )1 < ol

17 H(cos €] £(€))lg < Cal [Vl

for1/p+1/¢g=1and 1/¢=1/p—2/(n+1), n 2 2. Hence the solution
u(z,t) of problem (2.1) with w = 0 satisfies that

lully < |17 (S‘j‘gf“ <>)||q+|af5 (coslelt- 7(6))]s

— ! (Smg'f'tt-"g@)) I,

+ |t Fet (cos [€ft- £ F(€)) llg

n _ sin n .
= e (T g )l

€
(2.4) +||t"]—'§_16t(cos|£| t‘"f%—lf(f))\lg
gt (S01EL )
— |[t5, - Fr ( 59l

+||5t,1}'£’1(cos|§| 5t ())Hq

— (19| F7 1<ST£||£|& 3 )>||q
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+ 9| Fe (cos [¢] -5;}(6))”(1

< Oy V9 [5,g] , + Cot™ |V (6.5,
_ Clt1+(n/q)_(n/p)”g||p + 02t1+("/‘1)—(”/")|wf||p.

On the other hand, let f = g = 0 in problem (2.1), by Jensen’s
inequality and (2.4)

a0l = 17" [ %w(s, ) dsll,

/ o (Pt )y

§C3/ (=) /O, )l de
0

The last integral is exactly the Riemann-Liouville integral
2/(n+1

L/ (|w(, )lp) when 1+ n/q —n/p = 1 - (2n)/(n+1) = (1 -

n)/(n+1). Now we take L?-norm with respect to the time variable ¢,

then

(2.5) llully < Cal[17 TV (Jw (-, 8)]1p) g < Callw]l

since 112/("+1) is of type (p,q) with 1/¢g=1/p—2/(n+1).

Combining (2.4) and (2.5) we obtain the global space-time estimate
for the Cauchy problem (2.1)

llullg < C(llwllp + 4= (||g]|, + 19 £11,)

where 1/g=1/p—2/(n+1) and 1/p+1/q = 1.
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