ON THE DIVISIBILITY OF h^+ BY THE PRIME 3

STANISLAV JAKUBEC

Introduction. Let l and p be primes such that p = 2l + 1. In the paper [1] it is proved that if 2 is a primitive root modulo l then 2 does not divide class number of real cyclotomic field $\mathbf{Q}(\zeta_p + \zeta_p^{-1})$. In the paper [3] it is proved that the same result holds for arbitrary prime q which is primitive root modulo l. In [2] it is shown that, provided the order of 2 modulo l is (l-1)/2 and 2 is prime in the real subfield of $\mathbf{Q}(\zeta_l)$, then 2 does not divide the class number of real cyclotomic field $\mathbf{Q}(\zeta_p + \zeta_p^{-1})$.

The aim of this paper is to prove the same result for the prime 3.

The following theorem holds.

Theorem. Let l and p be primes such that l > 3, p = 2l + 1, and the order of 3 modulo l is (l-1)/2. Then 3 does not divide the class number h^+ of real cyclotomic field $\mathbf{Q}(\zeta_p + \zeta_p^{-1})$.

Proof. Clearly $l \equiv p \equiv 2 \pmod{3}$. Since the order of 3 modulo l is (l-1)/2 we have (3/l) = 1. If $l \equiv 1 \pmod{4}$, then

$$1 = (3/l) = (l/3) = (2/3) = -1.$$

Hence $l \equiv 3 \pmod{4}$ and it follows that 3 is prime in the real subfield of $\mathbf{Q}(\zeta_l)$.

In [3] it is proved if $3|h^+$ then $3|N_{\mathbf{Q}(\zeta_l)/\mathbf{Q}}(\omega)$, where

$$\omega = \sum_{i \equiv 1 \pmod{3}} \chi(i),$$

and χ is the Dirichlet character modulo p defined by $\chi(x) = \zeta_l^{\operatorname{ind} x}$.

Received by the editors on July 10, 1992, and in revised form on March 18, 1993. AMS Mathematics Subject Classification (1991). Primary 11R29.

It is easy to see that $\omega = 2\tau$, where

$$\tau = \sum_{\substack{i \equiv 1 \pmod{3} \\ i < p/2}} \chi(i).$$

Since the order of 3 modulo l is (l-1)/2 and 3 is prime in the real subfield of $\mathbf{Q}(\zeta_1)$, we have $3|N_{\mathbf{Q}(\zeta_1)/\mathbf{Q}}(\omega)$ if and only if $\tau\bar{\tau}\equiv 0\ (\mathrm{mod}\ 3)$. For a proof of the theorem it is sufficient to prove $\tau\bar{\tau}\not\equiv 0\ (\mathrm{mod}\ 3)$.

Let

(1)
$$\tau \bar{\tau} = a_0 + a_1 \zeta_l + a_2 \zeta_l^2 + \dots + a_{l-1} \zeta^{l-1}.$$

Then $3|\tau\bar{\tau}$ if and only if

$$a_0 \equiv a_1 \equiv \cdots \equiv a_{l-1} \pmod{3}$$
.

The following formula holds

$$\tau\bar{\tau} = \sum_{\substack{i,j \equiv 1 \pmod{3}\\ i,j < p/2}} \chi(ij^{-1}).$$

Clearly

$$a_0 = \#\{i : i \equiv 1 \pmod{3}, i < p/2\} = (p+1)/6.$$

Determine the coefficient a_k from equality (1). $\chi(xy^{-1}) = \zeta_l^k$, so ind $(xy^{-1}) = k$ or ind $(xy^{-1}) = k + l$.

From the above we have

$$xy^{-1} \equiv g^k \pmod{p}$$
 or $xy^{-1} \equiv -g^k \pmod{p}$.

Since $x \equiv 1 \pmod{3}$ if and only if $p - x \equiv 1 \pmod{3}$, it follows that

$$a_k = \# \left\{ y : y \equiv 1 \pmod{3}, \ y < p/2, \ g^k y - p \left[\frac{g^k y}{p} \right] \equiv 1 \pmod{3} \right\}.$$

Let $g^k \equiv 2 \pmod{p}$, then

$$a_k = \#\{y : y \equiv 1 \pmod{3}, \ y < p/2, \ 2y \equiv 1 \pmod{3}\} = 0.$$

To complete the proof it is only necessary to exhibit an index j between 0 and l-1 such that $a_j \not\equiv 0 \pmod{3}$. In the event (p+1)/6 is not divisible by 3,

$$a_0 = (p+1)/6 \not\equiv a_k = 0 \pmod{3},$$

hence we can assume for the remainder of the article that $p+1 \equiv 0 \pmod{9}$.

Let I denote the set of all integral numbers x,

$$p/3 < x < p/2$$
.

If the elements from the set I are multiplied by 3 and then reduced modulo p, we get the set

$$\{i : i \equiv 1 \pmod{3}, i < p/2\}.$$

Let N be a positive integer. It is easy to see that the number of solutions to the following congruence

(2)
$$3Nx - p[3Nx/p] \equiv 1 \pmod{3}; \qquad x \in I,$$

is equal to some a_i from (1).

The congruence

$$3Nx - p[3Nx/p] \equiv 1 \pmod{3}; \quad x \in I$$

holds if and only if

$$[3Nx/p] \equiv 1 \pmod{3}; \qquad x \in I.$$

Hence

$$ap < 3Nx < (a+1)p$$
, where $a \equiv 1 \pmod{3}$;

therefore

$$\frac{ap}{3N} < x < \frac{(a+1)p}{3N}.$$

The number of integers in this range is

$$\left\lceil \frac{(a+1)p}{3N} \right\rceil - \left\lceil \frac{ap}{3N} \right\rceil.$$

Suppose now that $N \equiv 4 \pmod{6}$.

Then the number of solutions for convergence (2) is

$$S = \sum_{i=0}^{[N/6]} \left(\left[\frac{(N+1+3i)p}{3N} \right] - \left[\frac{(N+3i)p}{3N} \right] \right).$$

Let p = 3Nt + z, hence

$$S = t \left(\left\lceil \frac{N}{6} \right\rceil + 1 \right) + \sum_{i=0}^{\lceil N/6 \rceil} \left(\left\lceil \frac{(N+1+3i)z}{3N} \right\rceil - \left\lceil \frac{(N+3i)z}{3N} \right\rceil \right).$$

For the number t the following congruence holds

$$t = \frac{p-z}{3N} \equiv \frac{p+1-(z+1)}{3N} \equiv -\frac{z+1}{3} \pmod{3}.$$

Hence

$$S \equiv -\frac{z+1}{3} \left(\left[\frac{N}{6} \right] + 1 \right)$$

$$+ \sum_{i=0}^{\lfloor N/6 \rfloor} \left(\left[\frac{(N+1+3i)z}{3N} \right] - \left[\frac{(N+3i)z}{3N} \right] \right) \pmod{3}.$$

For $N \equiv 2 \pmod{6}$, we similarly obtain

$$\begin{split} S & \equiv \frac{z+1}{3} \bigg(\left[\frac{N-4}{6} \right] + 1 \bigg) \\ & + \sum_{i=0}^{\left[(N-4)/6 \right]} \bigg(\left[\frac{N+3+3i)z}{3N} \right] - \left[\frac{(N+2+3i)z}{3N} \right] \bigg) \ \ (\text{mod} \ 3). \end{split}$$

The prime p is congruent to one of

$$z = 5 + 6j;$$
 $j = 0, 1, \dots, ((N/2) - 1),$

modulo 3N.

Define the numbers $S_N(z)$ by the following way:

$$S_N(z) = -\frac{z+1}{3} \left(\left[\frac{N}{6} \right] + 1 \right)$$

$$+ \sum_{i=0}^{\lfloor N/6 \rfloor} \left(\left[\frac{(N+1+3i)z}{3N} \right] - \left[\frac{(N+3i)z}{3N} \right] \right),$$

for $N \equiv 1 \pmod{3}$; $N \equiv 0 \pmod{2}$, z = 5 + 6j; $j = 0, 1, \dots, ((N/2) - 1)$

$$\begin{split} S_N(z) &= \frac{z+1}{3} \left(\left[\frac{N-4}{6} \right] + 1 \right) \\ &+ \sum_{i=0}^{\left[(N-4)/6 \right]} \left(\left[\frac{(N+3+3i)z}{3N} \right] - \left[\frac{(N+2+3i)z}{3N} \right] \right), \end{split}$$

for $N \equiv 2 \pmod{3}$; $N \equiv 0 \pmod{2}$, z = 5 + 6j; $j = 0, 1, \dots, ((N/2) - 1)$.

Lemma 1. Let $N = 2^n$, n > 2. Then

$$S_{2^n}(3.2^{n-1}-1) \not\equiv 0 \pmod{3}.$$

Proof. Suppose that $2^n \equiv 1 \pmod{3}$

$$S_{2^{n}}(3.2^{n-1} - 1) = -2^{n-1}([2^{n}/6] + 1)$$

$$+ \sum_{i=0}^{\lfloor 2^{n}/6 \rfloor} \left(\left[\frac{(2^{n} + 1 + 3i)(3.2^{n-1} - 1)}{3.2^{n}} \right] - \left[\frac{(2^{n} + 3i)(3.2^{n-1} - 1)}{3.2^{n}} \right] \right).$$

It is easy to see that:

$$\label{eq:continuous} \begin{split} \left[\frac{(2^n+1+3i)(3.2^{n-1}-1)}{3.2^n}\right] &= 2^{n-1} + \left[\frac{3i}{2}\right], \\ \left[\frac{(2^n+3i)(3.2^{n-1}-1)}{3.2^n}\right] &= \begin{cases} 2^{n-1} + [3i/2], & \text{for } i \equiv 1 \pmod{2}, \\ 2^{n-1} + [3i/2] - 1, & \text{for } i \equiv 0 \pmod{2}, \end{cases} \end{split}$$

and we get

$$S_{2^n}(3.2^{n-1}-1) = f - 2^{n-1}([2^n/6]+1),$$

where f is the number of even numbers (also zero) from zero to $[2^n/6]$.

$$\left[\frac{2^n}{6}\right] = \left[\frac{2^{n-1}}{3}\right] = \frac{2^{n-1} - 2}{3},$$

so $f = (2^{n-1} - 2)/6 + 1$, and we have $S_{2^n}(3.2^{n-1} - 1) \not\equiv 0 \pmod{3}$. The proof is similar in the remaining case $(2^n \equiv 2 \pmod{3})$.

Lemma 2. There exists $N = 2^n$ such that 3 does not divide the number of solutions for congruence (2).

Proof. Take s such that $p+1 \not\equiv 0 \pmod{3.2^s}$. Let $p \equiv z \pmod{3.2^s}$, so $z \neq 3.2^s - 1$.

Generate the sequence z_i , $i = 1, 2, \ldots, s - 3$ by the following way

$$z_i \equiv z \pmod{3.2^{s-i}}, \qquad 0 < z_i < 3.2^{s-i}.$$

Clearly, $p \equiv z_i \pmod{3.2^{s-i}}$.

If $S_{2^{s-i}}(z_i) \not\equiv 0 \pmod{3}$ for some i, then we take $N=2^{s-i}$ and Lemma 2 is proved. \square

So let

$$S_{2^s}(z) \equiv S_{2^{s-1}}(z_1) \equiv \cdots \equiv S_{2^3}(z_{s-3}) \equiv 0 \pmod{3}.$$

By supposition $z \neq 3.2^s - 1$ and, according to Lemma 1, $z \neq 3.2^{s-1} - 1$. Then $z_1 \neq 3.2^{s-1} - 1$ and, according to Lemma 2, $z_1 \neq 3.2^{s-2} - 1$. By the induction we get $z_{s-3} \neq 3.8 - 1$. Then by computation it is easy to see $S_8(z_{s-3}) \not\equiv 0 \pmod 3$. Lemma 2 is proved. According to Lemma 2 there exists such a j that coefficient $a_j \not\equiv 0 \pmod 3$. Hence $\tau \bar{\tau} \not\equiv 0 \pmod 3$. The theorem is proved.

REFERENCES

- 1. D. Davis, Computing the number of totally positive circular units which are squares, J. Number Theory 10 (1978), 1–9.
- $\bf 2.~\rm D.R.~Estes,~\it On~the~parity~of~the~class~number~of~the~field~of~q-th~roots~of~unity,~Rocky~Mountain~J.~Math.~\bf 19~(1989),~675–681.$
- 3. S. Jakubec, On divisibility of class number of real abelian fields of prime conductor, Abh. Math. Sem. Univ. Hamburg 63 (1993), 67–86.

Matematický ústav SAV, Štefánikova 49, 814 73 Bratislava, Czechoslovakia