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ON THE DIVISIBILITY OF ht BY THE PRIME 3
STANISLAV JAKUBEC

Introduction. Let [ and p be primes such that p = 2[ + 1. In the
paper [1] it is proved that if 2 is a primitive root modulo ! then 2 does
not divide class number of real cyclotomic field Q((, + ¢ D). In the
paper [3] it is proved that the same result holds for arbitrary prime g
which is primitive root modulo I. In [2] it is shown that, provided the
order of 2 modulo [ is (I — 1)/2 and 2 is prime in the real subfield of
Q({;), then 2 does not divide the class number of real cyclotomic field

Q6 + ¢
The aim of this paper is to prove the same result for the prime 3.

The following theorem holds.

Theorem. Let ! and p be primes such thatl > 3, p =2l + 1, and
the order of 3 modulo l is (I — 1)/2. Then 3 does not divide the class
number h* of real cyclotomic field Q({p + C;l).

Proof. Clearly I = p = 2 (mod 3). Since the order of 3 modulo [ is
(I —1)/2 we have (3/1) = 1. If | =1 (mod 4), then

1=(3/1)=(1/3) = (2/3) = 1.

Hence | = 3 (mod4) and it follows that 3 is prime in the real subfield
of Q(¢).
In [3] it is proved if 3|h" then 3|Nq((,),q(w), where

w= Z X(7),

=1 (mod 3)

and X is the Dirichlet character modulo p defined by Xx(z) = ¢i"d=.
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It is easy to see that w = 27, where

T= Z X (4).

t=1 (mod 3)
i<p/2

Since the order of 3 modulo [ is (I — 1)/2 and 3 is prime in the real
subfield of Q((1), we have 3| Nq(,),q(w) if and only if 77 = 0 (mod 3).
For a proof of the theorem it is sufficient to prove 77 # 0 (mod 3).

Let
(1) 7 =ap + a1( + aeCF 4 -+ a1
Then 3|77 if and only if
ag=a; =---=a—; (mod3).

The following formula holds
TT = Z X(i5 7).
4,j=1 (mod 3)

i,j<p/2

Clearly
ap =#{i:i=1(mod3), i <p/2} =(p+1)/6.

Determine the coefficient ay from equality (1). X(zy~') = (F, so
ind (zy~') =k or ind (zy™*) =k + L.
From the above we have
zy ' =g" (modp) or zy '=—gF (modp).

Since = 1 (mod 3) if and only if p — 2 = 1 (mod 3), it follows that

k
ay = #{y cy=1(mod3), y <p/2, ¢y —p[%] =1 (mod3)}.

Let g¥ =2 (modp), then

ar =#{y:y =1 (mod3), y <p/2, 2y =1 (mod3)} = 0.
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To complete the proof it is only necessary to exhibit an index j between
0 and [ — 1 such that a; # 0 (mod3). In the event (p + 1)/6 is not
divisible by 3,

ap=(p+1)/6 # ar =0 (mod3),

hence we can assume for the remainder of the article that p + 1 =
0 (mod?9).

Let I denote the set of all integral numbers =z,

p/3 <z <p/2

If the elements from the set I are multiplied by 3 and then reduced
modulo p, we get the set

{i:i=1(mod3), i <p/2}.

Let N be a positive integer. It is easy to see that the number of
solutions to the following congruence

(2) 3Nz —p[3Nz/p] =1 (mod3); zel,

is equal to some a; from (1).

The congruence
3Nz —p[3Nz/p] =1 (mod3); zel
holds if and only if

[BNz/p] =1 (mod 3); z el

Hence
ap <3Nz < (a+1)p, wherea=1 (mod3);
therefore ( D
ap a+1)p
3N <z < IN

The number of integers in this range is

o]
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Suppose now that N = 4 (mod 6).

Then the number of solutions for convergence (2) is

[v/6]

g Z <[ N+1+3'L) ] [(N;—J\?z)p})

Let p = 3Nt + z, hence

[NV/6]

oo (3]0 B ()

=0

For the number ¢ the following congruence holds

p—2z_p+l—(2+1) _ =z+1

=58 = 3N =3 (wod3).
Hence
()
+[§_:/:] ({(N+3l]\—fk3i)z] - [(N;J\?i)z]) (mod3).

For N = 2 (mod 6), we similarly obtain

=25 )

+[(N§:)/6 ({N+§;3i)z} 3 {(N+32J\;r3z')zD (mod 3).

The prime p is congruent to one of
z=>5+6j; j=0,1,...,((N/2) - 1),

modulo 3N.
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Define the numbers Sy(z) by the following way:

=< (2] )

[NV/6]

N ; <[(N+31N+3i)z] ~ [(N;A?i)zD’
fordN =1 (mod3); N =0 (mod?2), z =5+65; 5 =0,1,...,((N/2) 1)
- =[5 )
+“N;V6] <[(N+3:)>N+ 3i)z] - [(N+32N+ 3i)z]>’

for N =2 (mod3); N =0 (mod2), z = 5+65;j =0,1,...,((N/2)-1).

Lemma 1. Let N =2", n > 2. Then

S2n(3.2"71 — 1) Z0 (mod3).

Proof. Suppose that 2" =1 (mod 3)

San (32771 —1) = —2"1([2"/6] + 1)

2" /6]

N [; ({(2" +1+ ?;')2(3.2"—1 - 1)]

- [(2'1 +3z')3f‘32.3"*1 - l)D'

It is easy to see that:

[(2"+1+3i)(3-2”1 _1)] —on 14 [ﬁ}

3.2n 2
[(2"+3i)(3.2”1 —1)] _f2mt 4 3i/2), for i = 1 (mod 2),
3.2n © | 2nt 4 [3i/2) =1, for i = 0 (mod?2),
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and we get
Son (3.2 — 1) = f —2"1([2"/6] + 1),

where f is the number of even numbers (also zero) from zero to [2"/6].

on B 2n—1 _ 2n—1 )

6] [ 3] 3 7
so f = (2""!'—2)/6 + 1, and we have S2-(3.2"7! — 1) #Z 0 (mod 3).
The proof is similar in the remaining case (2" = 2 (mod 3)). m

Lemma 2. There exists N = 2" such that 3 does not divide the
number of solutions for congruence (2).

Proof. Take s such that p+ 1 # 0 (mod3.2%). Let p = z (mod 3.2°),
so z #3.2°5 — 1.

Generate the sequence z;, i = 1,2,...,s — 3 by the following way
2 =z (mod3.2°7%), 0< 2 <3257

Clearly, p = z; (mod 3.257%).

If Spo-i(2;) #Z 0 (mod3) for some i, then we take N = 2°~% and
Lemma 2 is proved. a

So let
Sos(2) = Sos-1(21) = -+ - = S93(25-3) =0 (mod 3).

By supposition z # 3.2° —1 and, according to Lemma 1, z # 3.2571 —1.
Then 2; # 3.2°"! — 1 and, according to Lemma 2, z; # 3.2°5°2 — 1.
By the induction we get zs_3 # 3.8 — 1. Then by computation it is
easy to see Sg(zs—3) Z 0 (mod3). Lemma 2 is proved. According to
Lemma 2 there exists such a j that coefficient a; # 0 (mod 3). Hence
77 Z 0 (mod 3). The theorem is proved. u]
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