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ON THE STRUCTURE OF
SHIFT-INVARIANT SUBSPACES OF L?(T?, )

R. CHENG

0. Introduction. Suppose that V3 and V; are commuting isometries
on a Hilbert space . In [3] and [6], conditions are given for H to
have four-fold Wold and Halmos decompositions with respect to V;
and V2. These notions are used in [4, 5] to characterize invariant
subspaces M of the Hardy space H?(T?) which are generated by an
inner function. Such M are shown to be those invariant subspaces
on which V; and V; doubly commute, where V; is now multiplication
by the coordinate variable z;, j = 1,2. More generally, [1] describes
the invariant subspaces of L?(T?) on which these V; and V» doubly
commute. In this article we explore these ideas in the case M is an
invariant subspace of the weighted space L?(T?, p).

1. The univariate case. We begin by considering the univariate
analogue. This will shed light on the main problem.

Let pu be a finite nonnegative Borel measure on the unit circle T.
Define the isometry V on L2?(u) by (Vf)(z) = zf(z). A subspace M
of L?(p) is invariant (for V) if VM C M. Following [2], we describe
all of the invariant subspaces of L?(u). This will require the Lebesgue
decomposition

dp = 1lpwdo 4 1pe dA
where o is normalized Lebesgue measure on T, w is a weight function,

and 0 = A(T) = ().

Theorem 1.1. A subspace M of L*(n) satisfies the condition
VM =M if and only if M = 1qL?(u) for some Borel set Q.

The proof is very similar to that of [2, Theorem 2].

Theorem 1.2. A subspace M of L?(u) satisfies the condition
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VM C M if and only if w is positive almost everywhere [o], and
M is of the form

M =sp {"h}5_y ® 1oL* (),

where |h|?> = 1rw™! almost every [o], and o(QNT) = 0. In this case,
h is unique up to a unimodular constant factor.

Proof. Suppose that VM C M. Let h be a unit vectorin M VM.
Then [h(zmh)dp = [|h|?2~™dp = 0 for m = 1,2,.... Taking
complex conjugates, we find that [ |h|?27™ du = 0 for all nonzero m.
Hence 1pch = 0 and |h|?>w = 1y, almost everywhere [o]. This forces w
to be positive, almost everywhere [o].

Now the orthonormal set {z™h}°____ spans a doubly invariant
subspace AN'. By Theorem 1.1, N’ has the structure 1zL?(u) for some
Borel set Z. Since h in N is nonvanishing for z € T', we can take
E to be T itself. Thus, sp{z™h}°___ = 1prL?(u). Note also that
sp {z™h}>_, C M, and sp {z"h},;L . L M.

Next, suppose that g € M © VM. Then lpcg = 0, and |g|?w is
constant almost everywhere [o]. Furthermore, [ hgz™dyp = 0 for all
nonzero m. This shows that g is a constant multiple of A. That is,

MEVM = (h).

Finally, observe that M = Mo ® M o, where M o, =N5°_ V™M,
and Mo = NZ_, & V(M © VM) = sp{z™h}X_, = 1pL%*(p).
Since M , is doubly invariant, there exists a Borel set {2 such that
M o = 1qL?(u). Choose any f € M .. Then f is orthogonal to each
2™h, for the latter is in M ¢ if m > 0, or in M * if m < 0. It follows
that (2 NT) = 0. This demonstrates the necessity assertion and the
uniqueness of h.

Conversely, if w > 0, almost everywhere [o], and |h|? = 1rw 1,
almost everywhere [o], then h € L?(u). With that, and some Borel
subset © of I'¢, the subspace M given by sp {z™h}°_, & 1qL?(u)
is invariant (since Q C TI'°, the sum is indeed orthogonal). For each
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/h(zmh) du:/|h\227mwdo

= /z*m do

=0.

Also, h is orthogonal to 1gL?(u). Thus h L VM, and M must be
simply invariant. The sufficiency part is proved. ]

Thus an invariant subspace M has a Wold decomposition which is
mirrored by the structure of the measure p. We therefore expect four-
fold a decomposition in the two-variable case, also mirrored by the
measure.

2. Preliminaries. Now take p to be a finite nonnegative Borel
measure on the torus, T?. Henceforth, we adopt the following notation.
The torus T? is parameterized by (z1,22). For j = 1,2, let V; be the
isometry f(z1,22) — 2;f(21,22) on L?(n). As suggested in Section
1, we will need to use the explicit structure of p. First, define Borel
measures pq and pg on T by

pm(S) = u(S xT),  pa(S) = u(T x 5).
Establish the Lebesgue decompositions

d/,t = lprd(O' X /,Lz) + 1I‘C d)\R
dp = lAwTd(ul X 0') + 1ac dAp
dp = lpwdo? + 1ge dX.

Let A be the collection of zo € T for which wg(21,22) > 0, almost
everywhere [o(z1)]; B, the collection of z; for which wy(z1,22) > 0
almost everywhere [0(z2)]. Throughout, we identify subsets of T?
whose symmetric difference is p-null.

A subspace M of L?(u) is invariant if ViM C M and VoM C M.
We would like to describe these invariant subspaces M in terms of the
structure of p.
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3. Two special cases. We are now equipped to extend the results
of Section 1 to two special cases in the bivariate picture.

Theorem 3.1. A subspace M of L*(u) satisfies
VM =M, VoM =M

if and only if M = 1qL*(p) for some Borel set Q.
Again, the proof follows [2, Theorem 2.

Theorem 3.2. A subspace M of L*(u) satisfies
ViM C M, VoM =M
if and only if the set A is us-nonnull, and M is of the form
M =sp{z"z5h:m >0, n € Z} & 1oL*(p),

where, for some pg-nonnull Borel subset K of A, the function h satisfies
|h| = 11"0(T><K)w1;1/2, and Q is a Borel subset of I U{T x K°¢).

In this case, h is unique up to a unimodular factor depending only
on zs.

Proof. Let {vg,v1,v2,...} be an orthonormal basis for M ©
ViM. Put fo = vg, and let Qo = sp {25 fo}>>_,. Having defined
{fo, f1,---, fr} and {Qo,Q1,... ,Qk}, let ngy; be the smallest index
such that vy, , does not liein QoV Q1 V- -V Q. Let fyi1 be the com-
ponent of vy, ., in (M EVIM)S(QoVQ1V---VQ4), and let Qry1 =
sp {2 fr+1}22_ - Now put L = sp{z]"28fr : m > 0, n € Z},
k=0,1,2,.... Note that the spaces L are subspaces of M , they are
pairwise orthogonal, and their direct sum includes V" M ®V1m+1./\/l for
each m = 0,1,2,.... Moreover, each L is orthogonal to R ,, where
R oo =NZ_oVi"M . Hence M has the decomposition M = R ¢BR o,
with Ro = 10 ®Lk-

Suppose that j and k are distinct nonnegative integers. Then
[ fifkz25 dp = 0 for all m and n. Hence, if Ay is exactly the set
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on which f; is nonvanishing, £ = 0,1,2,..., then the family {Ax}72,
is pairwise disjoint. Let the fx be rescaled so that || f¢||> = pu(Ax). We
can now define f = Y7 fk, where the convergence is in L?(u).

Fix a nonnegative integer j. Check that if m # 0 and n € Z, then
[ fifz7"2% du = 0. Then Lemma 3.3 below asserts that 1rc|f;|* d\ = 0,
and 1p|f;|?wrd(o x p2) = 1rd(o x€), where £ is the Borel measure on T
defined by £(S) = [, |f;|? dp. Now € < pa, so for some nonnegative
po-integrable function ®;(z2), we have |f;|?wgr = ®;. This forces the
set A to be po-nonnull, and A; to be of the form (T x K;) NT', where
K is a pp-nonnull subset of A. Since this is true for all j, we conclude
that Ro L L%(d)\), |f|?wr is a nonnegative us-integrable function @
of z3 only, and f is nonvanishing exactly on (T x K) NT, K being the
disjoint union U$2K;. Thus R =sp{2{"25f :m > 0, n € Z}. This
remains true with f replaced by h, where h = f@‘l/le(TxK). Note
that |h|?wr = Irn(rx k) as well.

The space sp{z]"z5h : m,n € Z} must be exactly 1pn(ryx)L?(p).
Furthermore, 2*2h L M whenever m < 0. Hence Ro, = 1gLo(p) for
some Borel set Q@ C I'“ U (T x K¢). This proves the necessity of the
representation. Its sufficiency is immediate. u]

Lemma 3.3. Let v be a finite nonnegative Borel measure on
T2. Define the Borel measure vo on T by v2(S) = v(T x S). If
[ 228 dv =0 for allm #0 andn € Z, then v =0 X vs.

Proof. Let E and F be open arcs of T. Since 1r(z2) can be estimated
boundedly and pointwise by a polynomial in z, and Z3, we have, for all
nonzero m, [ z"1p(z2)dv = 0. Now if p(z1) is a finite sum Y a,,2}",
then [ np(z1)dv = aov(T x F) = aovp(F). But 1g(z1) can be
estimated boundedly and pointwise by such sums. Thus

V(E x F) = /FXFIE(zl)dI/

:/ 1g(z1) do(z1) - va(z2)
T
:U(E) -I/z(F)-

The equality v = o X vy extends to the Borel sets of T2. o
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4. The four-fold Halmos decomposition. We turn our attention
to a wider class of invariant subspaces. As in [3], we say that M has
a four-fold Halmos decomposition if it is of the form

M=MiyeM;iEM;dM,

where each component space is invariant (for V; and V3); the operators
Vi | Mo, Vo | Mg, Vi | My and Vi | M are pure shifts; and the
operators Vo | M1, Vi | Mo, Vi | M o and V2 | M , are unitary.

If M is an invariant subspace of L%(u), then we can construct a
candidate for this decomposition as follows. Let

Roo= [ VWM, To=[)Ve'M
m=0 n=0

Ro=M O R, To=MOT -
Now consider the orthosum
M'=(RoNTo)D(RoNT ) D(RcNT0) B (RooNT o)

As observed in [3], M has a four-fold Halmos decomposition only if M’
is all of M, and its component spaces are invariant. Let us examine
these issues more closely. Take P(N') to denote the projection of L* ()
onto the subspace N .

Proposition 4.1. The following are equivalent.
(i) The orthosum for M' spans all of M .

(ii) The spaces Roo © R NT o) and T 0o © (R NT ) are
orthogonal.

(iii) The projections P(R ) and P(T ) commute.

Proof. Assume (i). Then R oo = (R oNT 0)B(R oNT ), and T o =
(RoNT )P (R ooNT ) But (R N7 o) L (RoNT ), giving (ii). If
(ii) holds, then [P(R o) — P(R 0o NT 0)|[P(T x0) —P(R 0o NT )] =0,
yielding P(R oo)P(T ) = P(R 0oNT ). Similarly, P(T «)P(R ) =
P(R oo NT ), and (iii) follows. That (iii) implies (i) is [3, Theorem
1.1]. u]
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This result can be made more descriptive by exhibiting the structure
0of R oo and T . (The symbols defined in Section 2 persist.)

Proposition 4.2. There exist subsets K of A, A of B, and Q of
U (T x K°)]N[A°U (A° x T)] such that

R oo =sp{2/"20hp :m € Z, n >0} ® 1qL* (1)
T oo =sp{2"20hg :m >0, n € Z} & 1oL (p),

where |hy| = w;1/2lAm(AxT) and |hg| = wlgl/lem(TxK), Moreover,
Roo ﬂToo == 1QL2(,U,).

Proof. The results of Section 3 show that

R oo =sp{zl"20hr im € Z, n >0} ® 1o, L*(u)
T oo =sp{2]"28hg :m >0, n € Z} ® 1q, L* (1)

with hg and hr as claimed, Qp C A°U(A°XT), and Qr C T°U(TxK°®).
We check that sp{z"20hr : m € Z, n > 0} L 1q,L?*(u), and
sp{2"zfhg : m € Z,n > 0} L 1, L?(u). For if g € 1o, L*(u) and
m > 0, then

[ g dn = [ haler™ ) dn

which vanishes since z; ™ 'z2;"g € M and hg L z; M. Next, note
that R, includes N%_ Vi™"T o = lq, L?(1), and likewise T o, includes
1o, L?(u). This forces Qg = Qr. Dropping the subscripts, we see that
R oo NT oo = 1oL?(p1). This verifies the claims. o

Lemma 4.3. The orthosum for M' spans all of M if and only if
o(K) =0 oro(A) =0, where K and A are as in Proposition 4.2.

Proof. This follows from the equivalence of (i) and (ii) in Proposition
4.1. For (ii) holds if and only if [(2]"23hg)(2{zLhy)du = 0 for all
m>0,n€Z,s € Z, and t > 0. This, in turn, is equivalent to
the condition 1pn(rxk) - lanaxT) = 0, almost everywhere [u]; or
Iaxx = 0, almost everywhere o). o
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With that, the following representations hold.

Theorem 4.4. The invariant subspace M has a four-fold Halmos
decomposition with M = (0) if and only if there exist subsets K of
A, A of B and Q of [I'° U (T x K°)] N[A°U (A° x T)], such that
o(K)-o(A) =0, and

M =sp{hrz"z5 :m >0, n€Z}
@ sp {hrz"zy :meZ, n>0}
D 1QL2('U/)7

where |hg| = w}_zl/zll"m(TxK)’ and |hr| = w;I/ZlAﬂ(AxT)'

Proof. It remains only to check that the component spaces are
invariant, and this is obvious. u]

Theorem 4.5. The invariant subspace M has a four-fold Halmos
decomposition with Mo # (0) if and only if the following conditions
hold:

(i) the weight function w is positive, almost everywhere [0?);
(i) My is a nontrivial proper subspace of L*(wdo?) on which Vi
and Vo are pure shifts;

(iii) There exist subsets K of A, A of B, and Q of [°U (T x K°)|N
[A°U (A x T)], such that o(K) = o(A) = 02(2) =0, and

M =My®sp{z"28hgr:m >0, n€Z}
®sp{z"25hr:m € Z, n>0}
EBIQLZ(/"’)?

where |hg| = w}_gl/z]-l"ﬂ(TxK)’ and |hr| = w;l/QlAﬂ(AXT)'

Proof. Suppose that M has a four-fold Halmos decomposition, and
M # (0). Since NX_ V"M = (0) = N5, Vs’ Mg, it must be that
My C 1gL?(u) = L?>(wdo?). Choose a nonzero f in My © ViM .
Observe that [|f|?z"2fwdo? = 0 whenever m > 1 and n > 0, and
whenever m < 1 and n < 0. Hence there is an F' in the Hardy
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space H'(T?) such that |f(z1,z22)?w(21,22) = Re F(z1,%2), almost
everywhere [02]. Since this is nonnegative, and not identically zero, it
cannot vanish on a set of o2-positive measure. This verifies conditions

(i) and (ii). The pairwise orthogonality of the component spaces forces
o(K) =oc(A) = 0%(2) = 0. The rest of (iii) follows as in Theorem 4.4.

The sufficiency part can be checked by inspection. u]

The condition (ii) in Theorem 4.5 is not very satisfying. However, it
seems that such My do not admit a simple characterization. Hence,
in the next section, we consider invariant subspaces with an additional

property.

5. Invariant subspaces of Beurling type. Extending the
terminology of [1] and [4], we say that an invariant subspace M of
L?(p) is of Beurling type if Vi | M commutes with (Vo | M)*, ie.,
if V3 and V5 are doubly commuting on M. We wish to describe all
such invariant subspaces. This was done for 1 = o2 in [1], and for
M C H?(T?) in [4, 5].

Let an invariant subspace M of L?(u) be given, and let H be the
subspace (M © Vi, M )N (M & VoM).

Theorem 5.1. The invariant subspace M is of Beurling type and
H s trivial, if and only if there exist Borel subsets K of A, A of B,
and Q of T°U (T x K°)|N[A°U (A® x T)], such that o(K)o(A) =0,
and

M =sp{hrz"25 :m >0, n€Z}
@ sp {hrzi'zy :me€Z, n>0}
@ 1oL?(p),
where |hgr| = wgl/lem(TxK), and |hy| = w;I/QlAm(AxT).

Proof. Sufficiency is established by noting that at least one of V}

and V3 is unitary on each component space. Hence, V; and V5 doubly

commute on M . Necessity is immediate from (b) = (c) in [3, Theorem
4.2], followed by Theorem 4.4. o

Theorem 5.2. The invariant subspace M is of Beurling type, and
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H s nontrivial, if and only if the following conditions hold:
(i) the weight function w is positive, almost everywhere [?);

(ii) there exist subsets K of A, A of B and Q of [T°U (T x K°)|N
[A°U (A° x T)], such that o(K) = o(A) = 02() = 0, and such that

M =sp{z"z5h:m, n >0}
@ sp{z"z5hr:m >0, n€Z}
®sp{z"25hr :m € Z, n>0}
& loL* (1),

where |h| = wY?1g, |hg| = w;%lmlrn(TxK), and |hr| =

—1/2
W / 1AFW(A><T)-

Proof. For sufficiency, use unitarity of V3 or V5 on the last three
component spaces; cite (i) = (iv) of [6, Theorem 1] for the first.

To prove necessity, apply (b) = (c) in [3, Theorem 4.2], then Theorem
4.4. This verifies the assertions concerning the last three component
spaces, and gives

Moy = Z ZGBV{”VZ”?{.
m=0n=0

As in the proof of [4, Theorem 2|, we have that % is spanned by a
single unit vector h, and [ |h|?2"28wdo = 0 unless m = n = 0. This
shows that |h| = w™'/21g. O

Remark 5.3. Take p = o2.

(a) Let M = sp{z["28 : m > Oorn > 0}. Then M' = M.
However, RoNT o and R o, NT o fail to be invariant (see [3, p. 187]).

(b) Let M = sp{z"258 : m+n > 0}. Then R, = (0) and
To = (0). Yet, H = sp{z"25™ : m € Z}, which is infinite
dimensional.

So complications arise even in the Lebesgue case.
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