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THOMAS’S STRUCTURE BUNDLE FOR CONFORMAL,
PROJECTIVE AND RELATED STRUCTURES

T.N. BAILEY, M.G. EASTWOOD AND A.R. GOVER

1. Introduction and conventions. Local twistors for four-
dimensional conformal spin manifolds were described by Penrose and
others [8, 19, 21] as a means of applying twistor theory to curved
space-times. Numerous authors later realized that the local twistor
bundle is an associated vector bundle (via a spin representation) of the
Cartan conformal connection [18]. We had been using a generalization
of this calculus for some time in connection with various problems
in conformal and projective geometry when C. Fefferman and C.R.
Graham pointed out to us that these methods go back to T.Y. Thomas
([27] for the conformal case and [26] for the projective), who discovered
the “Cartan connections” a little later, but independently of E. Cartan.
Thomas’s treatment is somewhat difficult for the modern reader since
it predates the idea of a vector bundle. His work however is essentially
complete, and thus considerably ahead of its time.

The difference between the Cartan approach and the Thomas ap-
proach is that the former works with a principal bundle, whereas the
latter takes a certain associated vector bundle as the starting point. Of
course, principal bundle methods are very powerful, but on the other
hand we, at least, do not at an intuitive level think of (for example) a
vector field as a function on a principal bundle. We regard Thomas’s
calculus as the “intuitive” version of the Cartan connections. It has the
added advantage that there is a definition of Thomas’s vector bundle
which is quite direct, in contrast to the construction of the principal
bundle for the Cartan connection.

One can perform Thomas’s construction for any structure that has
a “Cartan connection.” Here we treat conformal and projective struc-
tures, and mention paraconformal structures [1] briefly. We wish to
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present this calculus (with some extensions of our own) which, while it
is well known to some, is insufficiently documented. We have recently
used it quite extensively in our investigations of invariant differential
operators and invariants of the structure for both projective and con-
formal structures. This is quite an active area at present, and progress
is occurring on several fronts. It is our intention to present some results
in the near future, and this paper lays the groundwork for this. Cal-
culations with this calculus have also been in the background of other
recent work (e.g., [1, 2]), and we felt this could best be explained in a
self-contained paper on the subject.

There is something of a problem of nomenclature in this area. In the
beginning, the authors referred to sections of Thomas’s bundles as “lo-
cal twistors.” Penrose’s local twistors however are associated to a spin
representation of the Cartan connection, and various persons remarked
that it is inappropriate to use the term “twistor” for something which,
like Thomas’s bundle, has no connection with spin. The name “trac-
tor” was eventually suggested, and we have used this firstly because
of the etymological connections with “vector” and secondly to honor
Tracey Thomas’s pioneering work. We have retained the term “local
twistor” however for the case of paraconformal manifolds, where one is
genuinely dealing with a generalization of Penrose’s construction.

We have presented our results for smooth real manifolds. With minor
modifications, they carry over into the holomorphic category. Similarly,
we consider positive definite Riemannian conformal structures but the
transition to the pseudo-Riemannian case is elementary.

1.1. Conventions. We use the abstract index notation [20]
throughout whereby we attach indices to quantities solely as labels
to indicate the bundle of which they are a section. Thus v* is a section
of the tangent bundle which we denote £ and ¢, a section of &, (the
tensor product of the cotangent bundle with itself), and so on. We
use round brackets to denote the totally symmetric part and square
brackets to denote the totally anti-symmetric part of both bundles and
individual tensors. Thus a 2-form is a section ¢;; of £[;; and satisfies
¢ij = ¢Jij)- The natural contraction between the tangent and cotangent
bundles is written v'w;, this being the abstract index version of the
Einstein summation convention.
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Another convention we adopt is the writing of composition series with
“+” signs as suggested by Buchdahl. A short exact sequence

0-C—-A—-B—=0
is equivalent, in this notation, to writing

A=B+C.

”

Whilst “+” is not “commutative,” it is “associative” and so the expres-
sion

A=B+C+D

is unambiguous. Taking duals of the above we have
and under symmetric tensor product we have, for example

ON¢
O’A=0°B+B®C+ @ +CoD+Q°D.
B®D

A similar formula holds with “A” replacing “©.”
2. Conformal structures.

2.1. Conventions for conformal structures. A conformal
Riemannian metric on an n-manifold M (we assume n > 3 throughout)
can be described by a global tensor field g;; with values in a line
bundle which we denote by £[2]. Choose a square root £[1] for this
line bundle. We can thus consider functions and tensors with values in
E[w] for any real w. We say that such objects have conformal weight
w and write £¢w] for £' ® E[w], and so on. The tensor g;; gives a
canonical isomorphism of £‘[w] with &;[w + 2] which is expressed by
writing V; = g;; V7, and so on. We use this isomorphism extensively by
raising and lowering indices without comment.

A conformal scale is a nowhere vanishing local section 7 of £[1]. A
conformal scale defines a metric T*2gij in the conformal class, and
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conversely a metric in the conformal class determines (up to sign) a
unique conformal scale. We work with the Levi-Civita connection of
this chosen metric. After rescaling our chosen metric by multiplying
by a nowhere vanishing smooth function 2, the new connection V is
related to the old one V according to (see, e.g., [20])

Vif =Vif +wTif
(1) VU7 = VU7 + (w+ 1)YU7 — U, Y9 + URY 67
%iw]' = Viwj + (w — 1)Tiw]' — Tjwi + Tkwkgij
where § is the Kronecker delta, T; = Q7!'V,;Q, and the quantities
f, Ut w; are sections of £[w], £[w], &;[w], respectively. We always use
“hats” in this way to denote corresponding quantities after rescaling.
(Our convention here differs slightly from [20, 21] in the treatment of
conformal weights. There, conformally weighted functions are thought
of in terms of components so that they would write f = Q¥ f, whereas

we regard them as sections of a line bundle and write f = f. The effect
is that the factors of Q* do not generally appear in formulae.)

The Riemann curvature is defined by
(V:V; - V;V)U* = R;;*U'

and the totally trace-free part of R;;z; is the conformally invariant Weyl
curvature Cyji;. The Riemann tensor can then be expressed as

Rijii = Cijra + 29, Pjyi + 29115 Pije

where the rho-tensor P;; is a trace-adjusted multiple of the Ricci tensor
R = R

R;j = (n—2)P;; + Pg;; where P = P;".

The rho-tensor appears often in conformal geometry and it has a
relatively simple conformal transformation law:

(2) ﬁij = Pij — VZTJ + TZTJ — %Tkagij.

Two consequences of the Bianchi identity V[iRjk]lm = 0 which we will
need are

(3) Vk,Cij’“l = 2(n - 3)V[in]l, VjPij = ViP.
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(The second of these can be obtained by contracting the former if
n>3.)

2.2. The flat model. Let T denote R™12 equipped with a bilinear
form h of signature (n + 1, 1), with matrix given in block form by

o~ N~
0 o0 1
0 I, 0
10 0

It is well known that the space of generators of the null cone of h is
the n-sphere with its usual flat conformal structure. Let G denote the
identity connected component of O(h). Then G acts on the n-sphere
as the group of all orientation preserving conformal automorphisms. If

we fix a point
0

0
1
on the null cone, then the stabilizer of the corresponding point on the
sphere is the parabolic subgroup P C G consisting of all elements of
the block form
AL 0 0
r m 0
=Arfr/2  —Xrfm A

where » € R” and r! denotes the transpose of 7.

The sphere S™ is identified with the quotient G/P, and G — S™ is a
principal P-bundle. The Maurer-Cartan forms on G give a connection
on this bundle. (Since the forms take values in the Lie algebra of
G rather than P, this is not a P-connection.) This construction
generalizes to an arbitrary conformal n-manifold. One constructs a
principal P-bundle as a sub-bundle of the bundle of 2-frames and there
is a naturally defined form on this bundle taking values in the Lie
algebra of G’ which defines the “Cartan conformal connection.”

Thomas’s approach is instead to construct an analogue of the product
bundle S™ x T — S™. It turns out that over a conformal n-manifold



1196 T.N. BAILEY, M.G. EASTWOOD AND A.R. GOVER

one can define a rank n+ 2 vector bundle carrying a signature (n+1,1)
inner product and a connection which preserves the inner product. Of
course, this vector bundle is an associated bundle of Cartan’s principal
bundle, but it is easier to define it directly.

2.3. Thomas’s bundle and connection. Recall that the confor-
mal scale 7 defines the metric 7'*29“- with respect to which the Levi-
Civita connection V is defined. Suppose we try to choose a new scale
o for which the metric 0~?g;; is Einstein. Write 0 = Q77 so that the
metric is rescaled by 22 and we may use equation (2) to conclude that
o~ 2g;; is Einstein if and only if

Pij - ViTj + TlTJ

is pure trace. In the scale defined by 7, the section ¢ is represented by
the function Q! whence

ViVjO' = O'(TiTj — VlTJ)

We see that o072g;; is Einstein if and only if ¢ is a solution of the
conformally invariant equation

(4) Trace-free part of (V;V; + P;;)o = 0.

Although the equation (4) generally has no solutions even locally, it
does define a conformally invariant subspace of the space of 2-jets of
sections of £[1] at each point.

Definition 2.1. The tractor bundle E' of a conformal manifold is
the sub-bundle of the 2-jet bundle J2€[1] defined by the equation (4).

We also use the term tractor for tensor powers of this bundle, sections
thereof, etc., by analogy with the use of the term “tensor.” To work
with tractors we need a more concrete description. Observe first that
equation (4) is equivalent to the following pair of equations holding for
some ¢, p, sections of £[—1], £[—1] respectively,

VjO'*,U/j:O

(5) Y i
Vip*+4;'p+ Pi'o = 0.
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It is easy to check that under conformal rescaling the quantities above
transform according to

&. o
(6) it = pi+ Yo
p p—"Tu —T?0/2

This yields the following description of £/ (on which one could alter-
natively base the definition):

Proposition 2.2. For any choice of conformal scale, £ is identified
with the direct sum

Eh=¢g) e €10 €[-1]

and under conformal rescaling o, ut, p are identified with their coun-
terparts &, ji*, p in the new scale according to (6).

If one differentiates the second of equations (5) once more and
contracts a pair of indices, one obtains after a little manipulation that
(5) implies

(7) Vjp— Pjru® =0.

Taken together with (5), this defines a conformally invariant connection
on &L,

Definition 2.3. In a given conformal scale, the tractor connection
V on &' is defined by

(7' 'V]'CT - 127 )
(8) Vil w )= | Vin' +3i'p+ Pj'o
Vip — Pjip'

The conformal invariance follows from the derivation, or it can be
checked directly using (6), (1) and (2).

We use V to denote the Levi-Civita connection on conformally
weighted tensor fields and also the connection on £7. We will also
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use it to denote the induced connection on any tensor product of these
bundles. It is of course only conformally invariant on unweighted tensor
powers of £7.

Definition 2.4. The bundle £ carries a natural, nondegenerate
symmetric form gz, the tractor metric, defined by

g UV = 1iB; + oy + pa

where

g (07
(9) Ul=\p|, VvV=|p
p Y

This metric has signature (n + 1,1). (If the underlying manifold is
pseudo-Riemannian of signature (p,q), then gr; will be of signature
(P+1,9+1))

It is easy to check the conformal invariance of the definition directly.
The metric gr; provides us with an isomorphism of £ with its dual &;
which we will use implicitly by raising and lowering indices. If U7 is as
given by (9) above, then we will write

U=(p p o)

so that gr;U'V’ = U;VY is given by matrix multiplication in the
usual way. The following proposition is proved by straightforward
calculations.

Proposition 2.5. The tractor metric is preserved by the tractor
connection—i.e., Vigry = 0. Thus, raising and lowering indices with
grg commutes with the action of V.

It is clear from the form of the inner product in Definition 2.4,
together with the conformal rescaling formulae (6) that the structure
group of the vector bundle £/ can be reduced to the parabolic subgroup
P discussed in Section 2.2. Note, however, that although V preserves
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917, it does not preserve the P-structure (i.e., it does not preserve the
composition series (10) below). This reflects the fact that the Cartan
conformal connection is not a P-connection.

2.4. Primary and secondary parts. Given U/ asin (9), o is often
called the primary part of U!. Similarly, u’ is called the secondary part,
and so on. It is clear from the transformation law (6) that the primary
part is conformally invariant, and if this is zero, then the secondary part
is invariant, and so on. In the notation for composition series developed
in the introduction, this is equivalent to the observation that

(10) El =€) + £-1) + &[-1].

We refer to the first nonzero part of a given tractor as the projecting
part.

A similar analysis applies to tractors with several indices. For
example,
Pl [_2]
gXt =gk o  tEF[-2.
£

Thus, given a skew tractor ST, the first non-zero entry above, counting
from the left, is the projecting part. This composition series still holds
if we tensor through by, for example, &};;) to obtain

&g ™[-2]
(11) i M ="+ @ +E&i"[-2]
Elij]

Thus for Qin L which is antisymmetric in both lower and upper case
indices, the projecting part is a tensor in E[ij]k, unless this is zero in
which case the projecting part is in &;;1*1[—2] & &£};;, and so on. We
will see an example of this below.

The map &f — &[1] which takes U! in (9) to o is given by con-
traction with a preferred section of £/[1] that we shall denote by X!
henceforth. Thus, we have o = U! X;. In any choice of conformal scale,
Xr=(1 0 0). The object X' also describes the invariant injection
E[-1] — & according to p — pXI. It is easy to check that X; X = 0.
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2.5. Tractor curvature. The deviation of a conformal structure
from the flat model is measured by the tractor curvature Q of V on 1.
This is defined by

(ViV; = V;V)UE = Q5 LU~

On lower tractor indices, we have (V,;V; — V;V;)Vg = fQinLVK.
Applying this to the tractor metric, since V;gxr = 0, we have
0 = ViVjgkr = —Qjxr)- Thus, Q%% = Q15 and so the
composition series (11) applies. After some calculation, one gets
o 0 0 0 o
(ViVj - VjVi) p,k = QV[in]k Cijkl 0 p,l
P 0 _2V[in]l 0 P

and thus the square matrix represents the curvature in the given scale.
With QUK L represented by this matrix, the anti-symmetry dictates
that the top right entry is zero. The primary part of such an anti-
symmetric tractor appears on the “NW-SE” diagonal immediately
below this and is zero for the curvature. The secondary part appears
on the diagonal below—the projecting part is thus the conformally
invariant Weyl curvature. If n = 3, then the Weyl curvature tensor
necessarily vanishes. Thus, for n = 3 the tertiary part V[ P;, is a
conformal invariant. It is usually known as the Cotton-York tensor.
Given the first of equations (3), we have:

Proposition 2.6. The connection V on &' is flat if and only if
Cijkr =0 forn > 4 or V[; P, = 0 when n = 3.

The conditions in the proposition are exactly the necessary and
sufficient conditions for a conformal manifold to be locally equivalent
to the flat model. In fact, these methods provide a proof of this fact,
as was observed by Penrose [21]. We will only outline the idea here.

If the tractor connection is flat, then £’ can be identified with a
product bundle with fiber R"*? and a signature (1, n+1) inner product.
Fix a point p, and let T denote the fiber of £ at p. The fiber of £1 above
any nearby point can be identified with T by parallel transport. One
can then use X' to map a neighborhood of p to the space of generators
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of the null-cone in T (recall that X X; = 0). One can check that this
provides a conformal equivalence with the flat model.

2.6. The D operator. The D operator, originally described by
Thomas, is a conformally invariant means of differentiating conformally
weighted tractors.

Definition 2.7. The operator Dy : E[w] — Er[w — 1] is defined by

w(n+2w—-2)f
Dif = | (n+2w-2)Vif |,
—(A+wP)f

where A denotes the Laplacian V;V°.

One can check that this definition is conformally invariant. Further-
more, it remains invariant if f is actually a conformally weighted section
of any tensor power of £7. (Recall that in this case A will be the trac-
tor Laplacian formed from the tractor connection.) If 2w = 2 —n, then
A+wP is the usual conformally invariant Laplacian (or “Yamabe oper-
ator”). For other values of w, it is in some sense a natural modification
of the Laplacian since it has a simplified conformal transformation law.
In terms of the flat model, Dy is closely related to differentiation with
respect to the coordinates on R™*2,

2.7. Hypersurfaces. Let S C M be a smoothly embedded
hypersurface. (In the pseudo-Riemannian or holomorphic categories,
we assume also that the normal to the hypersurface nowhere has zero
length.) On conformal manifolds, the unit normal N to a hypersurface
is a section over S of £1[—1]. Extend N' to a neighborhood of S so
that it satisfies

N‘N;=1, VN, =0.
Our results will be independent of the choice of extension.

Definition 2.8. The normal tractor is a tractor of zero conformal
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weight defined on S by

0
(12) Nl =|[ N?
-H

where H = (n — 1)7!V;N' is the mean curvature of S.

It is straightforward to check that this definition is conformally
invariant. The normal tractor satisfies N'N; = 1 and, in the case
where M is the flat model, N; provides a map from S to the unit
hyperboloid in R™t2; it is, in fact, the conformal Gauss map described
by Bryant [7].

Proposition 2.9. The normal tractor N' of a hypersurface S is
constant on the hypersurface if and only if S is umbilic.

Proof. Differentiating equation (12), we obtain

—N;
V;N'=| V;N'—Hs;'
~V;H — P;;N'

The primary part vanishes when the “j” index is projected into the
surface and the secondary part becomes the trace-free part of the second
fundamental form IT;;. (Note that this proves the well-known fact that
the trace-free part of IL;; is conformally invariant.) Thus, a necessary
condition for N! to be constant on S is that IL;; = HL;. In other
words, S is umbilic. In fact, this is a sufficient condition since if S is
umbilic the tertiary part of V; N T also vanishes when projected into
the surface, as one can show from Codacci’s equation. o

2.8. Tractors and curves—conformal circles. Throughout this
section, let v denote a smoothly embedded one-dimensional subman-
ifold of M smoothly parametrized by a variable ¢ with nowhere van-
ishing derivative. If we are working in the pseudo-Riemannian or holo-
morphic categories, then we require in addition that the tangent to v
is nowhere of zero length.
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We choose tangent vectors U' along v by requiring that UVt = 1,
and we also define u = v/U;U*. We note that u has conformal weight 1.
For any field Z on « (including those with indices) we write dZ/dt for
U'V,;Z. The acceleration vector of the curve is defined by A7 = dU’ /dt.
Note for future use that du/dt = u=1U"A;.

Definition 2.10. The welocity tractor U! and acceleration tractor
AT of the parametrized curve v are defined by

d duft
Ul = —(u' X' Al = —.
ar ) dt
(Note that X’ has weight 1, and so u=' X’ has weight zero. Thus the

definitions are conformally invariant.) A short calculation immediately
yields

0
UI — u—lUi
—u~?(U; A7)
and
—u
A u"lA* — 2u_3(UjAj)Ui

dAI . ) o
—y 3 <UJW) —u*3AjAJ +3u*5(UjAJ)2 —uilPileU]

Of the obvious scalar invariants,
(13) vlu, =1,  U'A; =0,

and after some calculation,

. i , -
AlAr =3u2A;A7 + 2u*2Uj% —6u*(U;A7)? +2P,;U'UY.

Proposition 2.11. Given a curve vy (with tangent vector of nowhere
zero length), the equation A'Ar = 0, regarded as a condition on the
parametrization, determines a preferred family of parametrizations with
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freedom the projective group of the line. We call such parameters
projective.

Proof. The existence of parameters satisfying A’A; = 0 follows
because the equation is an ODE. Let ¢ be such a parameter, with U®
being a tangent vector with U%V,t = 1 as above. Now let £ = g(t) be
a new parameter for the curve. Then

ﬁa _ g/—an, i = g/_lu, d —1 d

E =g E:
where the “tilde” denotes the corresponding quantities associated with
the new parametrization. Then
~I_d~—11_/—ldl—1 I\ _ g7I r—1 1. —1+1
U'==@ "X )=¢""=[@u " X)=U"+¢"¢"v X
dt dt
and so

~ . d _ _
AI:g/ la(UI“l‘gl lgllu lXI)

d
_ /—lAI /=12 =1 _n —1XI /=2 IIUI.
g +g7 (g g u +977g
Recalling (13) and noting that U/ X; = XX = 0, A'X; = —u, we
get o
AIAI _ gI—QAIAI + 3gl—4glll _ 291—39112‘

The new parameter is thus also projective if and only if it is a solution
of the equation formed by equating the last two terms to zero. This is
essentially the Schwartzian differential equation, with solutions given
by fractional linear transformations, and the result is proved.

The equation ATA; = 0 is considered (without any derivation) in [2]
and the result is proved there by direct calculation. ]

Proposition 2.12. The curve 7 is a projective parametrized confor-
mal circle if and only if ATA; =0 and dA!/dt = 0.

Definitions of conformal circle can be found in [30] and [2]; in the
latter, being projectively parametrized is part of the definition.



THOMAS’S STRUCTURE BUNDLE 1205

Proof. When ATA; = 0, the tertiary entry in Al becomes just
A;AT/(2u®). A straightforward calculation of dA!/dt shows that the
primary part vanishes and that the vanishing of the secondary part is,
after some manipulation, equivalent to

dAt
dt

3uT?(U; AN A — 3u=? (A, AN U*
+uw?UI Py — 2U9U* Py U*

which is the conformal circle equation as given in [2]. This proves that
the equation is conformally invariant since it is the vanishing of the
secondary part of a tractor with zero primary part. Note that since
Al Ar = 0, we have by differentiating that A;dA?/dt = 0 and therefore
if the secondary part of dA!/dt is zero, then so must the tertiary part
be, which completes the proof. a

As an application, we give

Proposition 2.13. An umbilic hypersurface S is totally conformally
circular—i.e., a conformal circle whose 2-jet at a point lies in S, lies
entirely in S.

Proof. Fix a point p € S. It suffices to show that if v is a
projectively parametrized conformal circle through p with u U’ N; = 0
and d(u~U'N;)/dt = 0 at p then d?(u—U’N;)/dt> = 0 at p also as
a consequence of the conformal circle equation. (The “u~!" factor is
included for convenience in what follows.) Since the 2-jet of v lies in
S, we have that to second order along v, U'N; = u=1U*N;. We know
that

d(uilUiNi) d(UIN]) I IdN[ I
0= 7 = I _ANI—i—UW_ANI

at p. (The last equality follows because if S is umbilic then N7 is
constant on S by Proposition 2.9.) We now calculate:
(utUN;)  d*(U'Np)

dt? dt?

d*U’ dNy au’ d> Ny
=N ——— f2( L) (= I =
Idt2+<dt><dt> U gz =0
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at p—the first term vanishing as a consequence of the conformal circle
equation and the last two because N’ is constant on S. u]

2.9. The D operator and invariants. The authors were initially
led to “rediscovering” Thomas’s D-operator in their work on confor-
mally invariant differential operators and invariants of conformal struc-
tures. This is an active subject at the moment and it would take us too
far afield to make more than one or two passing remarks. A review of
conformally invariant operators can be found in [6], and an extended
discussion of most of what is now known in [25].

Clearly, a conformally invariant calculus, such as that provided by
tractors and Dy, is a useful tool for writing down conformally invariant
differential operators. For example,

(D1 f)(D'f) = (n+ 2w = 2)((n + 2w — 2)(V' f)(V:f)
— 2wf(V +wP)f)

is a conformally invariant operator on functions of weight w. Invariants
can arise not only as “complete contractions” such as the above (and
linear combinations thereof), but also as the projecting part of a
tractor—for example, on functions f of conformal weight w =1 —n/2,
the projecting part of D'f is the conformally invariant Laplacian
(A+(1—-n/2)P)f.

In the flat case, the classification of invariant linear operators is a
straightforward exercise in representation theory. (In the flat case, “in-
variant” means G-equivariant between G-homogeneous bundles, where
G is as in Section 2.2.) An interesting question (the complete answer to
which seems to be unknown at present) is which invariant linear opera-
tors in the flat model have curved analogues—i.e., linear operators with
the same symbol but with the addition of lower order “curvature cor-
rections” which are then conformally invariant on a general conformal
manifold. The paradigm for this is the conformally invariant Lapla-
cian mentioned above. A less trivial example is given by iterating the
Laplacian; A? is conformally invariant in the flat model on functions
f of weight 2 — n/2. One can construct a curved analogue of this op-
erator by taking D'D” f. A somewhat tedious calculation shows that
all except the “last” possible part of this tractor vanish, and so the
projecting part is a conformally invariant operator which turns out to
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be:
A%f + 4P,V f — (n — 2)PAf — (n —6)(VIP)V,f

+(TL—4)<%P2—PijPij— %AP)f

In dimension four, this is the operator described in [10]. There is a
general discussion of the construction of curved analogues in dimension
four using local twistors in [9]. A construction of curved analogues of a
large range of so-called “standard” operators can be found in [13, 14].
The only proof we know of for the nonexistence of a curved analogue
can be found in [15] where it is shown that A%, a conformally invariant
operator in the flat model on functions of weight 3 —n/2, has no curved
analogue in dimension four.

The tractor calculus can also be used to generate invariants of
conformal structures. As an example, we compute a new conformal
invariant of oriented conformal 4-manifolds. This invariant is odd
(meaning that it changes sign under orientation reversal) and is related
to a certain “exceptional invariant” in parabolic invariant theory (see
[3] for parabolic invariant theory and its relationship to conformal
structures, and [4] for the “linearized” version of this invariant). The
invariant is given by

I = DDy (0% Qu” ),

where €2°°? denotes the (conformal weight —4) volume form on the
4-manifold. A somewhat tedious calculation shows that (up to a
constant), I is given by

_abed (A+2P)(CapijCed?) +6VEV;(CjapC o) 12V (C? 0y ViCY o)
—12(V;C%0p) (V10 oq) + 12P*C 0 C ica ‘

2.10. The Fefferman-Graham connection. One can replace
gabed by g2¢gb4 in both equations above. The resulting even invariant is
then up to scale and the addition of a term cubic in the undifferentiated
Weyl curvature, the invariant that Fefferman and Graham obtained in
[12, Proposition 3.4]. In fact,

J = DIDJ(gacgbanbIKchJK)a
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is clearly an invariant in all dimensions and Graham has shown [16]
that for each n

J = (n—8)[(n — 6)FG + constant x Cabdecfgabcdefg]/27

where FG is the Fefferman-Graham invariant.

The relationship between J and the Fefferman-Graham invariant was
established by using the close connection between the tractor calculus
and the geometric machinery developed in [11] to study invariants.
There Fefferman and Graham show how to construct (in the sense of
formal power series extension off of the total space of £[—1]) and n+2-
dimensional pseudo-Riemannian Ricci-flat manifold M from a given
conformal manifold. (This generalizes the fact that the flat model is
the space of generators of the null cone in T.) Riemannian invariants on
M then yield conformal invariants on the original manifold. To relate
their constructions to the tractor calculus it is convenient to view M
as an equivalence class of sections of £[—1]. There is a special mapping
on M which extends Lie dragging up the fibers of £ [-1]. Functions
which are homogeneous with respect to this correspond to densities
on M and, similarly, appropriately homogeneous tangent vectors on
M determine tractors on M. As Graham has pointed out to us, Dy
is closely related to the Levi-Civita connection V; on M. For most
degrees of homogeneity densities and tractors f on M may be extended
harmonically onto M. In this case D;f and Vf agree, up to scale, on
E[—1]. In some sense, therefore, the D-calculus is providing an intrinsic
way of working with the Fefferman-Graham construction. This may
turn out to be important, because in even dimensions the Fefferman-
Graham construction is obstructed at finite order.

3. Projective structures. Our discussion here takes advantage of
the similarity between conformal and projective structures by closely
paralleling our discussion of the former. We will often be a little briefer,
leaving the interested reader to fill in details by analogy.

3.1. Conventions for projective structures. Projective struc-
tures are discussed from our point of view in [24]. A projective structure
on an n-manifold M (we assume n > 2 throughout) is an equivalence
class of torsion-free affine connections which have the same geodesics
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(considered as unparametrized curves). In more concrete terms, the
transformations allowed are precisely those of the form

V.Ul = V,U? + 1,07 + URY 6570

(14) .
Viwj = Viwj — TiUJj — Tjwi

where the 1-form Y; is arbitrary. We use “hats” to denote the
transformed quantities, just as in the conformal case.

We calculate by choosing a particular connection in the projective
class. The curvature of this chosen connection is defined by

(V:V; - V;V)U* = R;;},U!
and it can be written uniquely as
Ri* = Cij*1 + 26, Py + Bijo*

where the Weyl tensor C,-jkl is trace free and B;; is skew. The
Bianchi symmetry kal] = 0 dictates that 2P};;; = —8;;. The tensor
P,;; is a modification of the (not necessarily symmetric) Ricci tensor
le == Rijll:

(n —1)P;; = Rij + By

and thus (n + 1),8ij = _2R[ij}-
Under change of connection, Ci]-kl is invariant and the other parts
transform according to

(15) .ﬁij = Pij — va] + TZTJ and Bij = Bij + 2V[ZTJ]

The Bianchi identity V[iRjk]lm = 0 yields two results that we will need
later:

(16) VkCijkl = 2(n — Q)V[in]l and V[iﬂjk] =0.

We note that (3;; considered as a 2-form is closed, and therefore given
(15), we can always cause it to vanish locally by a change of connection
generated by an appropriately chosen Y,;. We will assume henceforth
that we are always using a connection with 5;; = 0. The remaining
freedom is to transform by T; satisfying V[;T;; = 0 just as in the
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conformal case. A helpful consequence of this is that P;; is always
symmetric.

Choose a line bundle £(1) such that its (—n — 1)5* power £(—n — 1)
is identified with the canonical bundle of M. We can now consider
tensor fields with projective weights, e.g., sections of £ (w) = £'®E (w).
The bundles £(w) have an induced connection which behaves under
transformation according to

Vif = Vif +wYif.

The connection induced on £(w) is flat (since for a general connection
in the projective class its curvature would be wp;;). Just as for
conformal structures, one can associate to every nowhere vanishing
section 7 of £(1) a connection in the projective class in which that
section is constant. We refer to this as a choice of projective scale.
Using Q17 as projective scale corresponds to a change of connection
generated by T; = Q71V,;Q again paralleling the conformal case.

3.2. The tractor bundle and connection. One can proceed
by analogy with the conformal case, starting with the projectively
invariant equation (V;V; + P;j)o = 0 on o, a section of £(1). In
the interests of brevity, we will not take that approach here. We will
begin by defining the dual of the tractor bundle.

Definition 3.1. The co-tractor vector bundle &5 is J1£(1), the first
jet bundle of £(1).

This immediately leads to the description:

Proposition 3.2. For any choice of projetive scale, the co-tractor
vector bundle E; — M is identified with the direct sum &;(1)®E(1), and,
under change of scale, pairs (i, o) are identified with their counterparts
(fi;,5) in the new scale according to

(17) (i 6)=(pi+Tioc o).

We see that £ has composition series
Er=E(1)+&(1).
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Definition 3.3. The tractor connection V on &1 is given by
(18) Vi(pi o)=(Vjpi+Pjo Vio—p).

Since there is no natural inner product on the tractors in the projective
case, & is not isomorphic to its dual. Instead we have the tractor bundle

EL=¢&(-1)+&(-1),

where the splitting changes under change of scale according to

(3)=(-1)

The connection on &7 is easily computed to give
\vo v - iji‘i'p‘sjik )
T\p Vip — Prjv

3.3. Primary and secondary parts. We use the terminology of
primary and secondary parts exactly as for the conformal case. The
projection & — £(1) and injection £(—1) — &’ can be expressed in
terms of a preferred section X' of £7(1), according to

oc=XU; and p— pXI,

respectively. In a chosen scale, X! is represented by

XI:G).

There is another preferred object Ylj , a section of 5}(—1), which
defines the projection £/ — £¥(—1) and the injection &(1) — &7 in

)
the obvious way. In a chosen scale it is represented as (J;/ 0) and
Xy} =o.

3.4. Curvature and that flat model. The flat model of an
n-dimensional projective structure is the projective space P(R"*1),
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where R"*! comes equipped with a fixed volume form. In that case,
&' is just the product bundle with fiber R"*! and the obvious flat
connection. (This explains our decision as to which bundle is £/ and
which its dual!)

The tractor curvature is defined by
(V:V; = V;V)UX = ;X U"

and a calculation shows that

k Ciik, 0) <Vz>
ViV, -V, V) (V) = i :
(ViVs = Vs )<P> <—2V[ipj]z 0/ \»p

thus identifying the square matrix as the curvature. The projecting
part is the Weyl curvature. This necessarily vanishes for n = 2 in which
case we see that V[;P;j; is an invariant. Given (16), we immediately
obtain

Proposition 3.4. The tractor connection is flat if and only if
Cij*1 =0 forn >3 or V;Pjjp = 0 for n = 2.

An analogous argument to the conformal case shows that if the tractor
connection is flat then M is locally equivalent to the flat model.

3.5. The D operator. Thomas also defined an analogue, for
projetive structures, of the operator Dy for conformal structures.

Definition 3.5. On a section f of £(w), the operator Dy : £(w) —
Er(w — 1) is defined by

Dif =(Vif wf).

It is easy to check that this definition is invariant and that it remains
so even if f has tractor indices.

One can use D to construct invariant operators, etc., much as in the
conformal case. We give a single example here.
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Proposition 3.6. For each integer k > 0 there exists a projectively
invariant linear differential operator

with symbol V ;... V).

The (k + 1)** order operator V(;..V,,) on £(k) is invariant in the
flat model, and one can thus regard the proposition as a proof of the
existence of curved analogues of these operators.

Proof. If ¢ is a quantity of weight w, possibly with tractor indices,
then XID;¢ = we¢ and it is also easy to check that

Dy(X7¢) — X' D¢ = 67 .
From this it follows that

X'D..Dyy f=0
N————
k+1

for any section f of £(k). Thus, the projecting part of D(;...Dyp) f is
the “last possible” piece, and this is clearly a differential operator with
the required symbol. O

There is also an analogue for projective structures of the Fefferman-
Graham construction for conformal structures. It was also found by
Thomas [29]. Stated briefly, on the total space of £(—1) (with the zero
section removed) there is defined a canonical affine connection which
preserves a naturally defined volume form. Tractors are essentially
tangents to this space, and Dy is the connection. In the flat case, this
constructed space is just the vector space of which the flat model is
the projective space, and D; is essentially differentiation with respect
to homogeneous coordinates.

4. Other geometries. The constructions above can be carried out
on other structures with appropriate geometry. Our main example is
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paraconformal structure and we outline the proof below of an assertion
about the equivalence of such structures to their flat model which was
made in [1].

4.1. Paraconformal (PCF) manifolds. The analogue of
Thomas’s structure bundle for PCF manifolds will be referred to as
the “local twistor” bundle. This is because in the special case p = 2,
g = 2 (see below), a PCF manifold is a 4-dimensional conformal spin
manifold, and the bundle we define is precisely the local twistor bundle
of Penrose. It is not hard to verify that in that case, the tractor bundle
can be identified with the second exterior power of the local twistor
bundle.

Paraconformal manifolds are manifolds locally modelled on Grass-
mannians. We consider only the holomorphic category here, although
real forms do exist. A complete definition and a description of their
differential geometry and twistor theory can be found in [1]. Roughly
speaking, a PCF is a manifold whose tangent bundle £¢ splits as a ten-
sor product of two vector bundles of ranks ¢,p : £¢ = EAN —gAgEA,
So as to avoid repetition, we will adopt the conventions and notation
of [1] without explanation. Thus, in this section, we use lower case
letters a, b, ¢, d for tangent and cotangent bundle indices, 4, B, C, D for
indices pertaining to the defining bundles of the PCF structure, and
lower case Greek for the local twistor indices.

We will consider only the special case of torsion-free quaternionic
conformal (QCF) manifolds here, although the arguments can be
generalized to PCFs with some extra work. A torsion-free QCF has
p = 2, ¢ = 2k (with & > 2) for the ranks of the vector bundles and
they also satisfy a certain condition of vanishing torsion. They are
essentially a complexified version of quaternionic manifolds [22, 23].

In [1], the local twistor bundle of a PCF is defined and necessary and
sufficient conditions for its flatness (and hence for equivalence with the
flat model by the usual type of argument) are stated. Our aim here is
to outline the proof of this statement, in the simple case of torsion-free

QCFs.

The curvature of the local twistor connection is given by

UJC \I’ABDCEA/B/ 0> <WD>
VoV = ViV, = )
(VaVb = Vb )(m> (—2V[GP,,}DC, 0)\7mp
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thus identifying the square matrix as the local twistor curvature Qqp7s.

Several appeals to the Bianchi identities are made in the ensuing
argument. These are rather difficult to derive directly for QCFs but
everything that is needed is a consequence of, and can most easily be
derived from, the local twistor Bianchi identities V[ach]55 =0.

The local twistor curvature splits according to
Qap’s = Qarprap”s + Qap’scap

where the summands have the symmetries Q4.5 475 = Q(A,B,)[AB]V(;
and Q4575 = Q(ap)”s- It is a consequence of the Bianchi identities that
VA(A’PB’)BCC’ — VB(A’PB’)ACC’ = 0 and hence that Q454575 = 0.
Another consequence of the Bianchi identities is that

Vaa¥pep™ + (2k — 1)V?BIPC)B’DA’7

which implies that the local twistor curvature vanishes if and only if
U pc? =0, as asserted in [1] for this special case. As we remarked,
the general case is similar but more involved.

4.2. Other structures modelled on Hermitian symmetric
spaces. Baston [5] has shown the existence of a local twistor con-
struction for other structures locally modelled on Hermitian symmetric
spaces. It is possible to proceed in these cases in an analogous way
to that used in the PCF theory and construct an explicit local twistor
vector bundle and connection. From this point of view, the relevant ge-
ometry is that the manifolds have a tangent bundle that can be written
as \? or O of some other vector bundle.
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