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OSCILLATIONS OF HIGHER ORDER
NEUTRAL DIFFERENTIAL EQUATIONS

B.G. ZHANG, J.S. YU AND Z.C. WANG

ABSTRACT. We obtain a necessary and sufficient condition
for the oscillation of all solutions of the higher order neutral
differential equation

o a(0) ~ P)e(t ) +Q(O(t — (1)) =0,

where n > 1 is an odd integer, = > 0, P, Q, o €
C([to, ), Rt) and lim;—oo(t — o(t)) = oco. Some applica-
tions of this result are also listed. Our results extend and

improve some known results in the literature. In particular,
our conditions do not require

/ Q(s)ds = oo.

1. Introduction. Consider the n-order neutral delay differential
equation

(1) %(m(t) — P(t)w(t — 7')) + Q(t)m(t _ O'(t)) —0,

where n > 1 is an odd integer,

7€ (0,00), P,Q,0 > C([to,0),R"),

) R*=[0,00), Qt) %0

and
t—o(t) > 00 ast— oco.
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The literature on the oscillation theory of neutral differential equa-
tions is growing rapidly. This study is a relatively new field and is very
interesting in applications. In particular, the oscillation of Equation (1)
has been investigated by many authors. For some contributions to this
topic, we refer to the monograph by Gyori and Ladas [7], the papers
by Chuanxi and Ladas [1], Georgiou and Qian [3], Gopalsamy, Lalli
and Zhang [4], Grammatikopoulos, Ladas and Meimaridou [5], Grove,
Ladas and Schinas [6], Ladas, Qian and Yan [8], Ladas and Qian [9],
Ladas and Sficas [10] and Yan [12]. All the papers mentioned above,
however, assume that the coefficient Q(t) satisfies the integral condition

o0

(3) Q(s)ds = o0

to

which has played a very important role in the study of (1). Considerably
less is known about the oscillatory behavior of (1) when condition (3)
does not hold.

Our aim in this paper is to establish several new types of oscillation
results of (1), which do not require the integral condition (3). In Section
2 we establish several key lemmas which will enable us to obtain many
oscillation criteria for (1) without condition (3). These lemmas are
interesting in their own right. In Section 3 we obtain a necessary and
sufficient condition for the oscillation of all solutions of (1). As some
applications of this result, we establish two new comparison theorems
of (1). These results extend and improve several known results in the
literature.

As usual, a solution of (1) is said to be oscillatory if it has arbitrarily
large zeros and nonoscillatory if it is eventually positive or eventually
negative.

In the sequel, for convenience, when we write a functional inequality
without specifying its domain of validity, we assume that it holds for
all sufficiently large ¢.

2. Several key lemmas. The main results in this section are the
following Lemmas 1-3 which will play key roles in the proofs of the
theorems in Section 3.
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Lemma 1. Assume that (2) holds and that
(4) 0<P(t) <1.

Let x(t) be an eventually positive solution of the inequality

(5) o (@(t) = Pl — 7)) + Q()a(t — o(t)) < 0
and set
(6) y(t) = 2(t) = P()z(t 7).

Then y(t) is eventually positive.
The following Lemma 2 is an improvement of Lemma 10.5.2 in [7].

Lemma 2. Assume that n > 1 is a positive integer,

(7) P,Q,0 € C([I,),R"), 7€ (0,00)
and
lim (¢ — o(t)) = oo,
and either
(8) Pt)+Q(t)o(t) >0 fort>T
(9) o(t)>0 and Q(s)Z0 forselt,T*]

where T* = T*(t) =min{T : T — o(T) = t}.

Let b = max{7,sup;>r o(t)}, and assume that the integral inequality

(10)

z(t) > P(t)z(t — 1)
+ _1 ol /t (s — )" 1Q(s)z(s — o(s)) ds, t>T

(n
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has a continuous positive solution z : [T — b,00) — (0,00). Then the
corresponding integral equation

z(t) = P(t)z(t — 1)

(11) 1 o o
+ m /t (s=t)" " Q(s)x(s — o(s)) ds, t>T

has a continuous positive solution x : [T — b, 00) — (0,00).

Proof. Define the set of functions
W={weC(T—-b,00),R"):0<w(t)<1 fort>T-b},
and define the mapping S on W as follows

ﬁ[P(t)w(t —7)z(t—7)

(wyty=] FEod -0
xQ(s)w(s —o(s))z(s —o(s))ds], t>T,
ETEb (Sw)(T) + 1 — =248, T-b<t<T.

It is easy to see by using (10) that S maps W into itself, and for any
w € W we have (Sw)(t) >0for T —b<t<T.

We now define the following sequence {wg(¢)} in W:
wo(t)=1, t>T—b,
wi1(t) = (Swy)(t) for k=0,1,2,....
Then, by using (10) and a simple induction, we can easily see that
0 < wp41(t) < wi(t) <1
fort>T —band k=0,1,2,.... Set
w(t) = lim wg(t) fort>T —b.

k—o0

Then it follows by Lebesgue’s dominated convergence theorem that
w(t) satisfies

1
w(t) = %[P(t)w(t —7)z(t —71)
o OOS* "1Q(s)w(s — o(s))z(s — o(s)) ds
o 0 Rl ls))s(s — o) ),

(n-1
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t > T, and

t—T+b t—T+b
:T—Fw(T)+1—T+>O

for T —b<t<T. Set z(t) = w(t)z(t). Then z(t) satisfies the integral
equation (11) and

w(t)

z(t) >0 forT—-b<t<T.
Clearly, z(t) is continuous on [T — b, T]. Then, by the method of steps
we see, in view of (11), that x(¢) is continuous on [T — b, 00).

Finally it remains to show that x(¢) > 0 for ¢t > T — b. Assume that
there exists t* > 7" — b such that z(t) > 0 for T —b < ¢t < t* and
z(t*) = 0. Clearly, t* > T. Thus, by (11) we have

0=2z(t") =Pt )z(t* — 1)
1 - n-1
e /t (s — )" Q(s)2(s — o(s)) ds
which implies
P(t*)=0 and Q(s)z(s—o(s))=0

for all s > ¢*, which contradicts (8) or (9). Therefore, z(t) is positive
on [T — b, 00), and the proof is complete. O

Similarly, we can prove the following lemma.

Lemma 3. Assume that (7) holds, 1 <n* <n—1, ¢ > 0 and that
the integral inequality

z(t) > e+ P(t)z(t — 7)
(12) .héa_uwﬂd/ (s — W)= 71Q(s)2(s — o(s)) ds,

t > T, has a continuous positive solution z : [T —b,00) — (0, 00), where
b is defined as in Lemma 2. Then the corresponding integral equation

z(t) =c+ P(t)z(t — 1)

13 t N o0 .
(13) +/erw%*/ (s — w" " 1Q(s)a(s — o(s)) ds,

T



562 B.G. ZHANG, J.S. YU AND Z.C. WANG

also has a continuous solution x : [T — b, 00) — (0, 00).

3. Main results. The following first theorem provides a necessary
and sufficient condition for the oscillation of all solutions of Equation

(1).

Theorem 1. Assume that (2) and (4) hold and that (8) or (9) holds.
Then every solution of (1) is oscillatory if and only if the corresponding
differential inequality (5) has no eventually positive solutions.

Before we prove Theorem 1, let us first compare it with some known
results in the literature.

Remark 1. When n = 1, Theorem 1 improves Theorem 2.1 in Lalli
and Zhang [11] by removing the hypothesis (3) and by relaxing the
hypothesis P(t) = ¢ € (0,1). We should note that Gopalsamy, Lalli
and Zhang [4] extend Theorem 2.1 in [11] to (1), which is also improved
by Theorem 1.

Proof of Theorem 1. The sufficiency is obvious. Therefore, we only
need to prove the necessity. To this end, we assume, for contradiction,
that (5) has an eventually positive solution z(t) and set y(¢) as in (6).
Then, by Lemma 1, we have

(14) y(t) > 0.
In view of (2), we get
(15) y™M (1) < —Q(®)e(t —o(t) <0 and y™ () £0

which implies that y(™~1(t) is decreasing and that y*(¢) for i =
0,1,...,n — 2 is strictly monotonic. Since n is odd, it follows by (14)
that there exists an even integer n* : 0 < n* < n —1 such that for large
t

(16) (=19 () >0 fori=n*n*+1,...,n—1

and '
y(’)(t) >0 fori=0,1,...,n".
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First consider the case n* = 0. For this case, integrating (15) from ¢
to co and using (16), one can obtain

n—1)!

1 o0 o
W) > e [ 0" Q)a(s — e s

That is,

z(t) > P(t)z(t —7) + ﬁ /too(s — )" 'Q(s)x(s — o (s)) ds

which implies, in view of Lemma 2, that the corresponding integral
equation

z(t) = P(t)z(t — 1) + 1 I /too(s — )" 1Q(s)z(s — a(s)) ds

(n—1

also has a positive solution z(t). It is clear to see that this z(¢) is an
eventually positive solution of (1) and so the proof of this theorem for
the case n* = 0 is complete. For the case n* > 2 we can use Lemma
3 to prove this theorem as in the case n* = 0. The proof is complete.
mi

We now list some applications of Theorem 1. We compare (1) with
the equation

(17) %(w(t) — P*(t)x(t — 7)) + Q" (t)z(t — o(t)) = 0

and state the following comparison theorem.

Theorem 2. Assume that (2) holds and that (8) or (9) holds.
Further, assume that

(18) P(t) > P(t) and Q'(t) > Q) fort >ty
and that

(19) P*(t) < 1.
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Then every solution of (1) oscillates implies that every solution of (17)
also oscillates.

Remark 2. When n = 1, Theorem 2 is an improvement of Theorem
2.2 in [11] by removing the integral condition (3) and by relaxing the
hypothesis that 1 > P*(t) = p* > P(¢t) = p > 0. It also improves the
corresponding result in [4].

Proof of Theorem 2. Suppose the contrary, and let z(t) be an
eventually positive solution of (17). Set

z(t) = z(t) — P*(t)x(t — 7).
In view of Lemma 1, we have z(t) > 0. From (17) we see that

2M(t) = —Q*(t)z(t — o(t)) < 0. Hence, there exists an even integer
n*:0<n* <n-—1 such that

(20) (—]_)iz(i)(t)>0 fori:n*,n*—}—]_,... ,m—1

and '
20() >0 fori=0,1,...,n"

If n* = 0, then by integrating (17) from ¢ to co n times we have

2(t) = 2(00) 4+ — ; /too(s—t)”1Q*(s)x(s—0(s))ds

(n—1)!

z(t) = z(00) + P*(t)x(t — 1)

1 > n—1,*
+ 1) /t (s —)" Q" (s)z(s —o(s))ds
> P(t)z(t —7)
+

ﬁ / s 07 Qs o) d,

where z(00) = lim; o 2(t) > 0. Similar to the proof of Theorem 1,
one can see that (1) also has an eventually positive solution which is
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a contradiction. Hence, the proof for the case n* = 0 is complete. If
n* # 0 the proof can be carried out in a similar way. mi

The following Theorem 3 provides a comparison result which shows
that, under appropriate hypotheses, (1) has certain oscillatory proper-
ties provided that the same is true for an associated nonneutral differ-
ential equation.

In the sequel, for the sake of convenience, we define

Ps—oc—(j—17)=1.

0
Jj=

Theorem 3. Assume that (2) and (4) hold with o(t) = o. Suppose
also that there exist two nonnegative integers m and N with m < N
such that for any sufficiently large t there exists ig € {m,m+1,... ,N}
such that

Q) [[Ps—o =G -1 £0

for s € [t,t + o + io7]. Then every solution of the delay differential
equation

N i
21) w™(t) + Z Q(t) < H Pt—o—(j— 1)7‘)>u(t —o—ir)=0

oscillates implies that every solution of (1) also oscillates.

Remark 3. Theorem 3 is an improvement of Theorem 1 in [8] by
removing the condition (3).

Proof of Theorem 3. Otherwise, (1) has an eventually positive
solution z(t) and set y(t) as in (6). Then by Lemma 1, we have for
large t

(22) y(t) > 0.
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From (1) we find that

(23) y () = —Q(t)a(t —o) <0

which implies that y(®(¢) for i = 0,1,... ,n — 1 are eventually mono-
tonic. Since n is odd, it follows by (21) and (23) that there exists an

even integer n* : 0 < n* < n — 1 such that (16) holds. From (1) and
(6) we see that

y™ (1) +Qt)y(t — o) + Q) P(t — o)a(t —o — ) =0,

and by induction,

N %
v+ > ([T PG00 )ste-a-in)

N+1

+Q(t)< H P(t—o—(j—l)r))a:(t—a—(N—i—l)T) =0.

Hence, for ¢ sufficiently large,
N i
@) ¥+ Y Q) ([[Pe-o-G-1n) )yt - -in) <0
i=m j=1
We consider the following two possible cases:

Case 1. n* = 0. At this time, by integrating (24) from ¢ to co n
times and noting (16), we have

w02 o 3 [ -0

X (i[lP(s—o— (- 1)T)>y(s—a—ir)ds.

By a slight modification of Lemma 2, one can see that the corresponding
integral equation

N oo
o(t) = ﬁ;ﬂ / (s )" Q(s)

X (HP(sa(jl)T)>z(saiT)ds

i=1
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also has a continuous and positive solution z : [T" — b,00) — (0, c0)
for some T' > ¢, where b = max{r,o}. It is clear that this z(¢) is a
solution of (21).

Case 2. n* # 0. Then first integrating (24) from ¢ to co n —n* times
and using (16), we have

02 e 2 s

(n—n
x <1i[1P(s—cf—(j—l)T))g(S—U—iT)ds

and go on integrating the above inequality from 7" to ¢ n* times and
noting (16), we get

1
(n* — D(n — n* — 1)!

y(t) > y(T)+
x _i /| (o / T(s—ur T 1Q(s)
x <ﬁlp(8 - (j— 1)T)>y(s — o —ir)dsdu.

According to this and a slight modification of Lemma 3, we find that
the corresponding integral equation

1
(n* — D(n — n* — 1)!

x _i /| (- / (s —u)rT1Q(s)

x <ﬁlp(s—a—(j—1)7)>z(s—a—¢7)dsds

2(t) = y(t) +

has a positive and continuous solution z(t) on [I' — b, 00). Clearly, z(t)
is a solution of (21). Therefore, the proof of Theorem 3 is complete.
O
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