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THE S-C-L GRAPH IN CHEMICAL KINETICS
D. SIEGEL AND Y.F. CHEN

ABSTRACT. We present two results that provide sufficient
conditions for the applicability of the Deficiency Zero The-
orem of Horn, Jackson and Feinberg and a theorem due to
Vol'pert. In both cases the Species-Complex-Linkage class
(S-C-L) graph is assumed to be acyclic.

1. Introduction. The structure of certain graphs induced by
chemical reaction networks plays a vital role in the study of chemical
kinetics. In this paper the Species-Complex-Linkage (S-C-L) graph
which was first introduced by Schlosser and Feinberg will be related to
two other graphs, namely, the HJF-graph (standard reaction diagram)
studied by Horn-Jackson-Feinberg and the V-graph introduced by
Vol’pert. The Deficiency Zero Theorem by Horn, Jackson and Feinberg
and a theorem due to Vol’pert give significant information about the
qualitative behavior of certain chemical kinetics systems of mass action
type based upon their graphical structure. Our results here provide
sufficient conditions for the applicability of the two theorems.

2. Definitions and terminology. We will consider a general closed
chemical network with n species. An introduction of definitions and
terminology is necessary. Our notations are based on [2, 6, 8] and [4].
It should be understood that we use the standard terminology of graph
theory (see, for example, [5] and [1]).

Definition 1. A complex Y° is a formal linear combination of
species, Y°¢ = Z?:l a;A;, where A;s denote species. Each stoichio-
metric coefficient, a;, is a nonnegative integer and a; # 0 for some 3.
Y = > | a;e; is the vector corresponding to Y¢, where {e;} is the
standard basis in R™.
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Definition 2. A critical species is a species that appears in two or
more distinct complexes.

Definition 3. The standard reaction diagram (HJF-graph) of a
chemical network is a digraph whose vertices are distinct complexes
of the network and whose arcs are drawn to indicate the “reacts to”
relation in the set of complexes.

Definition 4. The linkage classes of a chemical network are the
connected components of the standard reaction diagram. The symbol
[ will be used to denote the number of linkage classes in a network.

Definition 5. If Z is a vector in R”, then the support of Z,
suppZ := {i : ; # 0, 1 <i<n} where z; is the ith component in
T.

Definition 6. The stoichiometric subspace, S, of a chemical network
is the span of its reaction vectors. That is,

S::span{f’j—f’i:Yic%cheR}

where 171 and 17] are the corresponding vectors of complexes Y;¢ and Yy
in R™, respectively.

Definition 7. The deficiency of a chemical network, §, is defined as
follows
d:=m-—1—s
where m is the number of complexes in the network, [ is the number of

linkage classes and s is the dimension of the stoichiometric subspace.
It can be shown that § > 0 (see [4]).

Definition 8. The deficiency of the hth linkage class is defined as
follows
(Sh = mp — 1-— Sh
where my, is the number of complexes in that linkage class and sj is
defined as

sp := dim (span{}ﬁ;j ~Y,eR": Y — YPeR,YS Y € V(Ln)})
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where V(L) denotes the vertex set of the linkage class Ly,

Definition 9. A network is weakly reversible if for any two complexes
C1 and C4 in the same linkage class there exists a directed arrow
pathway (consisting of one or more reaction arrows) joining C; to C 2
in the standard reaction diagram.

Definition 10. The V-graph of a chemical network is a bi-
partite digraph whose vertex set is partitioned into the species set
S = {A4y,A,,... ,A,} of the network and the reaction set R =
{r1,72,...,7-} and whose arcs are drawn from A; to r; if A, enters
the reaction r;, and from r; to A; if A; is in the product of the reaction
rj. Also, the coefficient of every species is attached to the corresponding
arc as its label.

Definition 11. The S-C-L graph (first given in [7]) of a chemical
network is a bipartite graph whose vertex set is partitioned into the
species set S = {4, Aa, ..., A,} of the network and the linkage class
set L = {Ly,Lo,...,L;} and whose edges are drawn as follows. For
each complex, Y°¢ € C, in which a species appears, draw an edge
connecting that species vertex to the linkage class vertex for the linkage
class containing Y °. In addition, label each edge by writing the complex
for which it was drawn.

3. The Deficiency Zero Theorem and Vol’pert’s Theorem.
We continue to use the notations introduced in the previous section. Let
S,C, R denote a set of species, a set of complexes, and a set of reactions
in a chemical network, respectively. Let C denote an arbitrary kinetics
and A; each species for 1 <1i < n. Also, let C = (C4,,Ca,,...,Ca,)
be the composition vector in P, where P = {zeR" : z; >0, Vi}.
Also, let P* = {Z € R™ : z; > 0, Vi}. Then for a reaction system
{S,C¢,R,K?}, the species formation function f : P" — R™ is defined
as follows:

(1) FO) =) Ky (O)Y;-Y:), CeP”

R
where R is an abbreviation for “Y;* — Y € R,)” and Kyz_,ye (C) is
an assignment to a reaction Y;* — Y7, Y° #+ Yy, of a continuous rate
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function Ky ye : P — P such that /cyicﬁyjc(é) > 0 if and only if

suppﬁ C supp C. Let 171 = (di1,- .- ,din). The species formation rate
function for a mass action system takes the form

(2) ﬂ@—;%W%%ﬁy%)@—m

where kye_,ye is called the rate constant for the reaction Y;* — Y and
is a positive real number. By the differential equations for a reaction
system, we mean

(3) ¢ = f(©)

where the overdot indicates differentiation with respect to time. This
is a vector differential equation which encodes a system of n scalar
equations, one for each species in the network. The m component
equations of (3) with an arbitrary kinetics are as follows

(4)  Ca, =) Kveove(O)djp —dip), VA, €8,CeP".
R

For a mass action system, (3) takes the form

®) ay = Lz (1 0% ) =Ty
R p=1

This is a polynomial system provided the d;;,s are nonnegative integers.
We will always assume that this is true although many results hold
without this restriction. It follows that a steady state of a reaction
system is a composition C* such that

0= Kyevs(C)(Y; - V2).
R

Now we introduce the deficiency zero theorem and Vol’pert’s theorem.
For a general discussion, see [2, p. 42—-46].

Theorem 1 (The Deficiency Zero Theorem, [4, p. 20, Lecture 3]
or [6, 3]). For any reaction network of deficiency zero, the following
statements hold true:
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(i) If the network is not weakly reversible, then, for arbitrary kinetics
(not necessarily mass action), the differential equations for the corre-
sponding reaction system cannot admit either a positive steady state or
a pertodic composition trajectory along which all species concentrations
are positive.

(ii) If the network is weakly reversible, then for mass action kinetics
(but regardless of the positive values the rate constants take), the
differential equations for the corresponding reaction system have the
following properties: there exists within each positive stoichiometric
compatibility class precisely one positive steady state; that steady state
is asymptotically stable; and there is no periodic composition trajectory
along which all species concentrations are positive.

Remark. Theorem 1(i) implies that for a deficiency zero system that is
not weakly reversible, an equilibrium concentration cannot be positive;
i.e., if it exists then at least one of its coordinates is zero.

Theorem 2 (Vol'pert’s Theorem, [8, p. 632-633]). Suppose that (5)
is a polynomial system of equations with an acyclic V -graph. Then:

(i) The solution of (5) is defined for t > 0.
(ii) There does not exist a nonnegative periodic solution of (5).

(i) Each solution of (5) has a limit as t — oo, and this limit is an
equilibrium point of (5).

(iv) Any nonnegative equilibrium point of (5) is a solution of the
following system of equations:
n
d;
kyeove ( 11 CA;> =0, VY*-YfeR.

p=1

(v) For each solution to (5) there exists a constant K, K > 0, so
that the following inequalities hold:

/|C'Ap(s)\ds<K, Vp. p=1.....n.
0

4. Some results connecting the two theorems. In this section
some connections are given between HJF-graphs and V-graphs based
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upon consideration of S-C-L graphs which were first introduced by
Schlosser and Feinberg [7]. We will be using a significant amount of
graph theory as a bridge to our final results. We begin with some
propositions.

Proposition 1 ([1, p. 26]). Every nontrivial tree has at least two
vertices of degree one.

Proposition 2. The S-C-L graph is cyclic if and only if one of the
following conditions holds

(i) Some species appear more than once within the same linkage
class.

(ii) There exists at least one pair of species sets corresponding to
different linkage classes such that their intersection contains at least
two distinct species.

(ili) There exists at least one group of species sets corresponding to
different linkage classes, S1,S2,... 8P, such that S'NS? = {A2},
82N 83 = {Ags},..., 8P NS = {A,1} for some distinct species
Ai(i+1); 1<i<p-—-1, Apl'

Proof. If the S-C-L graph is cyclic, there exists a cycle p such that
ﬁ = L1A1L2A2 e LkAkLl Ifk = 1, then ﬁ = L1A1L1. By Definitions
2 and 11, A; is a critical species in the linkage class L;. Thus (i) is
true. If & = 2, then p = L1 AyLsAsLy. It follows that {A;, A2} C
S (L1) NS (L2) by Definition 11. So (ii) is true. If £ > 3 and (ii) does
not hold, then {A4;} =S'NS2, {4} =82nS3,... {4} =SFnSt
by Definition 11. Thus, (iii) is true.

Suppose either (i), (ii) or (iii) holds. Then, if (i) holds, there exists
at least a cycle p such that p = L;A;L; by Definition 11. It follows
that the S-C-L graph is cyclic. If (ii) holds, there exists at least two
species sets S; and S ; corresponding to linkage classes L; and Lj,
© # j, such that there exists at least two distinct species A; and A,
where {4;, A;} C (S;NS ;). It follows that there exists a cycle p such
that p = L, A;L;A;L;. Thus, the S-C-L graph is cyclic. Finally, if (iii)
holds, there exists a cycle p such that p = L1 A12L9A33L3... Ly ApiLy.
Thus, the S-C-L graph is again cyclic. i
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Lemma 1. A connected graph G in which every vertex is contained
in at least two edges must have a closed path.

Proof. Suppose that G has no closed paths. It follows that G is a
tree since G is connected. By Proposition 1, G has at least two vertices
of degree one. But every vertex of G is said to be contained in at least
two edges. This is a contradiction. u]

Lemma 2. If each vertex of a connected, nontrivial and acyclic graph
G is on some edge, then there must exist at least two vertices of degree
one in G.

Proof. Obviously, G is a nontrivial tree. Thus, the result follows from
Proposition 1. ]

Lemma 3. If some reaction vectors from a single linkage class in
a chemical network are linearly independent, then the corresponding
graph G whose vertices are complexes and whose edges are reactions
corresponding to the reaction vectors is acyclic.

Proof. In constructing G, an edge is drawn to connect two vertices
when a reaction occurs among them. Suppose that G is cyclic so that
there exists a closed path p and p = Y{e Yy ... YyenY?, where IV is
the number of reactions in p. Let y; = ~i+1 — }72', 1 <i < N, with
Y51 =Y. Then y; or —y; is a reaction vector and Zfil y; = 0. This
implies that the reaction vectors are not linearly independent, which is
a contradiction. O

Lemma 4. A linear combination §* with nonzero coefficients of one
or more linearly independent reaction vectors in a linkage class of a
chemical network satisfies |supp §*| > 2, where |supp §*| is the number
of elements in supp §*, provided that there exists no critical species
within this linkage class.

Proof. Let §* be a linear combination of some linearly independent
reaction vectors ¢i,¥s2,.-.,Jn in a linkage class. Without loss of
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generality, assume the following

h
(6) §° = _diji, where d; #0,Vi.

i=1

By the definition of a linkage class all complexes belonging to the
same linkage class are connected by some reactions. Additionally, each
reaction contains exactly two complexes.

Now construct a graph G whose vertices and edges are complexes and
reactions, respectively, occurring in §;, for all . In other words, each
vertex represents a complex and each edge is drawn corresponding to
the occurrence of a reaction between its connected vertices. By Lemma
3, G has no closed path. It then follows that there exist at least two
vertices of degree one by Lemma 2. Thus, there exist at least two
distinct complexes among the §;’s which occur only once. Since one
complex comprises at least one species and it is assumed that there
exists no critical species within the linkage class, y* must contain at
least two distinct species. ]

Lemma 5. If there exist no critical species within the linkage class
Li, then 51 =0.

Proof. Let m; be the number of complexes in the linkage class L;, and
let those complexes be denoted Y, Yy, ..., Y, . Since there exists no
critical species in L;, any reaction vector f’q — }7;, € R" corresponding
to the reaction Y7 — Y € R, where R is the set of reactions in L;
can be written as a linear combination of the linearly independent set

{}72*5;17%75;175;4*?1)"' 7?111,' *i;l}

Further if we construct the same graph G as in Lemma 3, then we
observe that each Y — Y7 is in the stoichiometric subspace S. This
follows from the fact that there is a path p in G connecting Y{® and
Y,? since L; is connected. Let p = Yfe1Y ea - Y er_1Yy. The

Thk—1
vectors Yy, , — Y., 1 <i< k-1, withr; =1, 7, =k arein S. Thus,

Y, -V, =Y 1Y, —Y,)isin S. It follows that

i=1 \17Tit1

si=mj—1 and d;=m; —1—35;=0. O
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Now we are ready to introduce one of the connections between the
different graphs.

Theorem 3. If the S-C-L graph of a chemical network is acyclic,
then the deficiency § of the chemical network is zero.

Proof. Since the S-C-L graph is acyclic, there exists no critical species
within any single linkage class. Now suppose § # 0, that is, 6 > 0. By
the definition of § and Lemma 5, the following holds:

l l

!
(5:Zmi—l—s:Z(mi—l)—s:Zsi—s
i=1

i=1 i=1

where m; denotes the number of complexes in each linkage class, [ is
the total number of linkage classes in the network, s; is the rank of the
linkage class L;, and s is the dimension of the stoichiometric subspace
of the network. It follows that Zizl s; > s by our previous assumption
that § > 0.

Without loss of generality, assume that there exists a reaction vector
¥p in a linkage class L, such that @, is a linear combination of other
reaction vectors §¥ from other linkage classes, in which 7 indicates the
linkage class, for 1 <k <m; —land1<i<p—1,and g},...,5" "
are linearly independent for all . That is,

Op = a1fr +algi + oo e g

(7)
+otap fy o+ ta

mp_lfl ~mp_171
p—1 p—1

where for each i, at least one a¥ is nonzero. Now, combining all linearly

independent vectors in each linkage class, we obtain
(8) 171, = dlﬁl + dgﬁg R dp—lﬁp—l
where d; is nonzero for all i. By Lemma 4, 9; has at least two nonzero

components for 1 < i <p— 1.

Let L; be the linkage class corresponding to 7;, S; the species set of
¥; and |S; NS j| the number of elements in the intersection of S; and
S where ¢ # j, 1 <4, 5 < p. Let G be the graph with vertices L;
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and with edge e;; connecting vertices L; and L; when |S; NS ;| > L.
Further, |S; NS ;| <1 by Proposition 2(ii). Thus, for any two distinct
linkage classes L; and Lj, either |[S; NS,| =1or [S;NS;| =0. It
follows from (8) and the previous result that |supp¥;| > 2 for all ¢
that for any S, there exists iy,142, i1 # 4, 42 # 4, 91 # 42, such that
|SiNSi| =18:NS,| =1. Thus, each vertex L; in G is connected to
two other linkage classes. By Lemma 1 there exists a closed path in G.
By Proposition 2(iii), the S-C-L graph is cyclic. O

Corollary 1. If a chemical network has either a periodic solution or
multiple steady states in P™, then its S-C-L graph s cyclic.

Proof. Suppose the S-C-L graph is acyclic. Then 6 = 0 by Theorem
3. Theorem 1 has precluded the possibility of having either a periodic
solution or multiple steady states in P™ for a chemical network of
deficiency zero. Thus, the result follows. u]

Here is a second connection between the different graphs.

Theorem 4. If the S-C-L graph and the HJF-graph of a chemical
network are both acyclic, then the V -graph of the chemical network is
acyclic.

Proof. Suppose that the V-graph is cyclic. Then there must exist
at least one cycle in the V-graph. Denote this cycle by p. Here
an introduction of two graphs p,,; and p,,2 which are both modified
versions of p is necessary, where p,,; is defined when the vertices in p
come from the same linkage class, and p,,2 is defined when the vertices
in p come from at least two different linkage classes.

a. The p,,1 graph is formed by removing each reaction vertex in
P, merging both adjacent arcs of the removed reaction vertex together,
returning each removed reaction vertex as a label along the correspond-
ing merged-arc, and replacing each species vertex by its corresponding
complex.

b. The P2 graph is formed by replacing all the reaction vertices by
their corresponding linkage classes, discarding everything between any
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two identical linkage class vertices by merging the two identical ones
together, and changing all arcs into edges.

Now consider the following cases for p.

Case (i). All species in p belong to just one linkage class which
contains no critical species. In this case p,,; is a subgraph of the HJF-
graph of the network. Since it is cyclic, the HJF-graph is cyclic.

Case (ii). All species in p belong to just one linkage class which
contains critical species. By Proposition 2(i), the S-C-L graph of the
network must be cyclic.

Case (iii). The species in § do not belong to a single linkage class.

There exist at least two distinct linkage class vertices in p,,2 by our
assumptions in this case. The p,,2 graph induced by p is obviously a
bipartite graph which is cyclic itself. All distinct critical species in p
will be vertices in p,,2 and pp,2 is a subgraph of the S-C-L graph. The
S-C-L graph is therefore cyclic. i
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