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ABSTRACT. A class of nonlinear autonomous systems or-
dinary differential equations in R™ with an invariant linear
subspace which includes as examples a wide range of biologi-
cal and chemical systems is defined and studied. Among other
things, criteria precluding the existence of periodic solutions
are obtained for such systems using a general method devel-
oped in [4].

1. Introduction. Let D C R™ be a convex open set and z —
f(z) € R™ a C*! function defined in D. We consider the autonomous
system in R"

(1.1) ¢ = f(x)

under the following assumptions:

(H1) The Jacobian matrix df/dz of the vector field f of (1.1) can
be written as
of
Oz
where v is a constant and z — A(x) is an n X n matrix-valued function.

(H2) There exists a constant matrix B with rank B = r such that

(1.2) () = —vI+ A(z) forall zin D,

(1.3) BA(z) =0 forall z in D.

We will call a nonlinear system (1.1) satisfying (H1) and (H2) an
autonomous system with an invariant linear subspace. Examples of
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such systems include many biological models such as chemostat and
chemostat-like models in population biology [3, 13]; SEIRS models in
epidemiology [5]; some HIV transmission models in AIDS epidemiology
[12]. Examples can also be found among chemical kinetics models [10].
It has been known that all these concrete systems have as the global
center manifold an invariant lower dimensional simplex in their phase
spaces. We will shown in Theorem 3.1 that this property is preserved
in our general setting: under the assumptions (H1) and (H2), system
(1.1) has in D a global invariant (n — r)-dimensional affine manifold T’
given by

(1.4) I'={zeD|B(x—) =0}, forsomeZeR"

It is also proved in Theorem 3.1 that I' is either the global center
manifold in D or a level surface defined by a set of linear first integrals.
In any case, it is sufficient to study the dynamics on I' if only the
asymptotic behavior of the solutions is concerned. One way to do this
is to employ the equation B(z—Z) = 0 defining I" to reduce the number
of variables by r and to study the resulting n — r system. This is the
method used by many authors [3, 5, 13]. Our approach in this paper is
to exploit the property that the linear subspace ker B of R is invariant
with respect to the linear variational equation

(1.5 () = oL (2(t,z)u(t)

for any solution z = z(t,z¢) of (1.1), in the sense that y(t) € ker B
for all ¢ € R if y(0) € ker B. Since there is no need to break up the
original system, more balanced results may be obtained. We also hope
this can partially justify the name given to such systems.

In Section 2 we study linear systems in R™ with an invariant subspace
in order to understand the implications of (H1) and (H2) on the linear
variational equations in (1.5); in Section 3 we give in Theorem 3.3 a
general Bendixson criterion for a nonlinear autonomous system (1.1)
satisfying (H1) and (H2). It is based on a general method of proving
the nonexistence of periodic solutions for general autonomous systems
in R™ developed in [4]. Finally, in Section 4, as an illustration, the
SEIS models in epidemiology considered by Liu et al. [5] is revisited,
the global asymptotic stability of the endemic equilibrium whenever it
exists can also be proved easily using our results.
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2. Linear systems with an invariant subspace. Let (, ) and
|| - || denote the Euclidean inner product and norm, respectively, and
t — A(t) an n X n matrix-valued function continuous in R. We consider
the linear system of n differential equations

(2.1) '(t) = A(t)z(t)

subject to the condition that there exists a constant matrix B such
that

(2.2) BA(t) =0, forallteR.

We denote the kernel of B by Vj and its orthogonal complement in R™
by V. Then R"™ = V@ V' and V- = Im B* (cf. [9, Theorem 12.10]),
where the asterisk denotes the transposition. Moreover, if rank B = 7,
then dim Vg = n — 7, dim V- = r.

Let X be the solution space of (2.1) and Xy be the subspace of X
consisting of those solutions z = x(t) of (2.1) with z(¢9) € Vp, for some

to € R. The subspace Vj of R™ is called invariant with respect to (2.1)
if 2(t) € Vp for all t € R when = = z(t) is a solution in Xj.

Theorem 2.1. Suppose (2.2) is satisfied. Then Vy is invariant with
respect to (2.1).

Proof. From (2.1) and (2.2) we have (Ba:( ) =
Hence, for every solution z = z(t) of (2.1), Bxz(t)
t,to € R, which leads to the claim of the theorem. ]

BA(t)z(t) =
= Bux(t )forall

Remark. In the rest of this section, our interest will be primarily in
the behavior of solutions in X} or, equivalently speaking, we will study
(2.1) restricted to the invariant subspace V5. We will see later that the
need for this consideration arises in Section 3.

For vectors ui,...,ur € R™, uy A --- A up denotes their exterior
product, which is a vector in AFR® 2 RN, N = (Z) An inner product
and the corresponding norm can be defined canonically in AFR"™ from
those of R™ (cf. [11, Chapter 5]). We will also denote them by ( , )
and || -||, respectively, for simplicity of notation. We need the following
property of this canonical inner product in AFR™.
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Lemma 2.2. Suppose thatu,... ,ug,v1,... ,Um € R"™ and (u;,v;) =
0,1 <i<k,1<j<m. Let A=ui AN+ Nug, A=v1 AN+ Avp,.
Then (A Ny,z AA) = (A, z){y,A) for all z € A*R™ and y € A™R™.

Proof. Since each element in AFR™ is a linear combination of
terms like e; A -+ A e, we may assume that z = u} A--- A u), and
y =vy A--- Avl,, the general case can be proved using the bilinearity
of (, ). By definition

Dll D12

(2.3) (ANy,zANA) =det <D21 Doy

> (k+m)x (k+m)

where D;; are blocks given by

Dyy = ({ui, u))kscks D12 = ((%i, V) kxm,
Dy, = (<v2,u9>)mxk, Dy = (<v;;vj>)m><m-

Observe that det D3 = (A, z), det Do2 = (y,A), by definition, and
D15 = 0 from assumptions, the lemma is proved by expanding the
determinant in (2.3). O

Let X (t) be the fundamental solution of (2.1) with X (¢¢) = I,,x,, for
some ty € R, where I,,,, is the n x n identity matrix. The following
result is essential to all developments in this section.

Proposition 2.3. Assume that the system (2.1) satisfies (2.2). If
u € R"™ and w € Vi, then

(2.4) (X (t)u,w) = (u,w) forallteR.

Proof. Since V- =2 Im B*, we can assume that w = B*v for some v.
Now

E(X(t)u, w) = (A(H) X (t)u, w)
= (BA(t)X (t)u,v) =0
for all t € R, hence (X (t)u,w) = (X (to)u, w) = (u, w). O
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In the following, for an n X n matrix A, and integer 1 < k < n, we
use Al¥! to denote the k-th additive compound matriz of A. This is an
N x N matrix, N = (Z) A good survey on the definition and properties
of additive compound matrices, together with their connections to
differential equations, may be found in [8]. Here we only mention a
few properties that will be used in this paper. We refer the readers to
[8] for their proof.

The term additive comes from the property (A+ B)* = AlFl4 BIkl if
A1, ..., A, are the eigenvalues of A, then all the possible sums of form
Aig + Ay, 1 <4 <+ <4 < n, give the eigenvalues of Al in
the two extreme cases when k£ = 1 and n, we have

(2.5) A=A and AN =tr(4),

respectively.

The connection between additive compound matrices and linear sys-
tems of ordinary differential equations can be seen from the following
proposition, whose proof can be found in [6] or [8].

Proposition 2.4. If z(t),...,z,(t) are solutions of (2.1), then
y(t) = z1(t) A+ Axg(t) is a solution of the linear system

(2.6) y'(t) = AM()y(0).

Equation (2.6) is called the k-th compound equation of (2.1). When
k =1 and n, as a result of (2.5), (2.6) becomes the original system (2.1)
and the well-known Liouville equation (cf. [2, Chapter V]), respectively.
To see the latter, recall that u; A--+ A u, = det (ug,... ,u,) for any n
vectors uy, ... ,u, in R™, where (uy, ... ,u,) denotes the n X n matrix
with the i-th column given by the coordinate vector of w;.

The following result is an attempt to study the stability of (2.1) when
restricted to the invariant subspace V.

Theorem 2.5. Assume that the system (2.1) satisfies (2.2), and
rank B = r. Then, for any uy,...,ur € Vo, limsoo X(B)ug A --+ A
X (t)ur, = 0 if the linear system

(2.7) 2 (t) = AT (1) 2(t)
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is asymptotically stable.

Proof. Ifuy,... ,u are linearly dependent, so are X (t)uy, ... , X (¢)ug,
from the uniqueness of solutions of the linear system (2.1). This leads
to Q(t) := X (t)ur A+ - -AX (t)ur, = 0 and the proposition holds trivially.
Now assume that ui,...,u; are linearly independent; then Q(t) # 0
for all ¢ € R. Choose an orthonormal basis {wi, ... ,w,} of Vz-&. We
claim the following: for all t € R,

(1) (X@B)wr A AX(Q)wp,wi A Awy) =1,

(2) (XB)wi A AXE)we AQE), w1 A -+ AwQ(2)) = |]Q(2)]|%,

B) Nwi A Awe AQE)| = (120,

@) @I < [[X@wi A= A X (E)w, AQH)]]-

Observe that (X (t)w;, w;) = (w;, w;) = ;5,1 <4,j <r, forallt € R,
by Proposition 2.3. Thus, (X (t)wy A -+ A X(Q)wr, w1 A+ Aw,) =

(X()wy,wy) - (X(t)w,,w,) = 1, from the definition of the inner
product in A"R"™. Hence (1) follows.

To show (2), observe that (X (t)u;, w;) = (u;, w;) = 0 for all t € R,
t=1,...,k, and j =1,...,r. Then the identity follows from choosing
A=Xt)wi A AX@)wp, A=y =Q(t), z =w; A+ - Aw, in Lemma
2.2, and using (1). Identity (3) can be proved in the same way.

Using the Schwarz inequality in (2), we have
1O < IX(#)wi A- - A X (Bwy AQ] - [Jwr A Awe AQ(E)]].

The inequality (4) now follows from (3) and the fact that ||2(¢)|| # O
for all t € R.

By Proposition 2.4, z(t) = X (t)w; A--- A X (t)w, A Q(t) is a solution
of (2.7). The theorem can now be proved using (4) and the definition
of asymptotic stability. ]

Let | - | denote a general vector norm in R™ and the matrix norm
derived from it. For an n X n matrix A, the Lozinskii measure (or the
logarithmic norm) p(A) of A corresponding to the norm |- | is defined
as (cf. [1, p. 41] or [8])

(2.10) p(A) = Dy |T + hA[p—.
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It has the property that

wless (= [ wae)as), and

to

o0 exp ([ (-0 ds)

to

are nonincreasing and nondecreasing, respectively, when z = z(t) is a
solution of (2.1). The calculation of the Lozinskil measure correspond-
ing to some common norms of R™ can be found in [1, 8]. More detailed
study on this subject can be found in [7].

Corollary 2.6. Under the assumptions of Theorem 2.5, lim;_, o, X (t)
ug Ao A X(Huk =0 if
t

(2.11) lim [ p(AF*7)(s))ds = —oc0

t—oc0 to
for some Lozinskii measure p.

Proof. Condition (2.11) is simply a sufficient condition for the
asymptotic stability of linear system (2.7) (cf. [1]). o

3. Bendixson’s criterion for nonlinear systems. A subset D,
of D is invariant with respect to (1.1) if z(¢,D;) = Dy for all t € R,
when z = z(¢, ) is a solution of (1.1) such that z(¢,0) = xo.

Theorem 3.1. Under the assumptions (H1) and (H2), the n — r
dimensional affine manifold T' given in (1.4) is invariant with respect

to (1.1).

Proof. Since Bf(z) ~ Bf(z) = [ B(3f/0z)(Z+s(x 7)) ds(x —zp) =
—vB(z — ) for all z and 7 in D, from (1.2). Choosing Z as an
equilibrium point of (1.1) in D, we have

(3.1) (Bz)' = —vB(z — ).

It is easy to see that the invariance of I' follows from (3.1). u]
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We can see from (3.1) that if » # 0, then I' is the global center
manifold in D (the stable center manifold when v > 0, and the unstable
center manifold when v < 0); if v = 0, Bz gives a set of r independent
linear first integrals, and I' is one of the level surfaces defined by these
first integrals. In either case, if there is a periodic solution, it stays on
I'. Therefore, to rule out periodic solutions of (1.1), it suffices to study
its dynamics on I'. Recall that if (¢, ) describes the dynamics of (1.1)
and 0z(t, zg)/dzo is its linearization with respect to the initial values,
then Ox(t, z9)/0zou is a solution of the linear variational equation (1.5)
for any u € R™. Moreover, since I' is an invariant manifold, if u is a
vector tangent to I’ at g € I, then the vector 0z (t, zg)/Ozou is tangent
to I' at @(t,z¢). From this discussion and the fact that the tangent
space of the affine manifold I' is ker B at every point, we arrive at the
following: (a) the subsapce ker B of R™ is invariant with respect to
(1.5); (b) we need only to study those solutions of (1.5) which stay in
ker B for all time. This leads us to the same consideration as discussed
in the remark following Theorem 2.1 in Section 2.

Let U = B?(0;1) be the Euclidean unit ball in R?, and let U and 0U
be its closure and boundary, respectively. A function ¢ € Lip (U — D)
will be described as a rectifiable 2-surface in D; a function ¥ €
Lip (OU — D) is a closed rectifiable curve in D and is called simple
if it is one-to-one.

Since D is convex, the invariant affine manifold I' C D is convex.
For a given simple closed curve 9 € Lip (0U — T), the set
S(¥,T) ={¢ € Lip (U = I') | $(0U) = % (9U)}

is not empty. In fact, a surface ¢ € Lip (U — I') can be constructed by
connecting the points of ¢(9U) to a fixed point on T'.

A general method for proving the nonexistence of the periodic solu-
tions is developed in [4] by studying the evolution under (1.1) of general
functionals defined on surfaces.

Consider the functional A on L1p U — F) defined by

87‘1 87‘2

where | - | is any vector norm on RM, M = (g) For example, if the

norm is chosen as |y| = (y*y)'/?, then A¢ is the usual surface area of
#(U). The following result is proved in [4, Proposition 2.2].
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Proposition 3.2. Suppose that ¢ is a simple, closed rectifiable curve
on I'. Then there exists a § > 0 such that

(3.2) Ap > 6

for all p € (¢, T).

A subset Dy C T is absorbing with respect to (1.1) if any bounded
subset B C T satisfies (¢, B) C Dy for all sufficiently large ¢. In the
rest of this section, we will assume the following.

(H3) Either I' is bounded, or I' contains a bounded absorbing set.

A close rectifiable curve ¢ in D is invariant with respect to (1.1) if
the subset ¥(0U) of D is invariant. The following result is a general
Bendixson criterion for autonomous systems with an invariant linear
subspace.

Theorem 3.3. Assume that (H1), (H2) and (H3) are satisfied. If

(3.3) u<af g:] (ac)) < —rv

for all x € T', where u is the Lozinskii measure with respect to a vector
norm |- | in RN, N = (ri?)' Then no simple closed rectifiable curve
in ' can be invariant with respect to (1.1).

Remark. In the case when v # 0, I is the global center manifold,
condition (3.3) will then imply that there is no simple closed invariant
rectifiable curve in D under the assumptions of Theorem 3.3.

Proof. Let x = x(t, zp) be a solution of (1.1) such that zo € I'. From
(H3), z(t, zo) exists for all ¢ € R. The linear variational equations (1.5)
with respect to z(t,zg) can be written as

(3-4) y'(t) = —vy(t) + A(z(t, z0))y(t)-

The change of variables u(t) = y(t)exp(vt) leads to the equation
u'(t) = A(z(t,zg))u(t), subject to the condition BA(z(t,z)) = 0 for
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all ¢ > 0. Let y1(¢) and y»(t) be two linearly independent solutions
of (3.4) such that By;(0) = 0, and u;(t) = y;(t)exp(vt). We have
Bu;(0) =0, ¢ =1,2, and y1(¢) A y2(t) = u1(t) A ua(t) exp(—2vt). Now
(3.3) and (H3) imply

6f[r+2}

Ox

(A3 (z(t, 24))) — 20 < u( (z(t, xo))> +rv<-6<0
for all £ > 0. This and the same idea as in the proof of Corollary 2.6
imply that y1(¢) Ay2(t) — 0 as t — oo, and the convergence is uniform
for zy in any compact subset of T'.

Suppose 9 € Lip (OU — T') is a simple closed curve on I' invariant
with respect to (1.1) and ¢ € X(¢,T'). Let ¢ = z(¢t,¢(u)), u =
(u1,uz) € U. Then ¢, € %(,T) for all t € R by the invariance
of ¥. Moreover, for almost every u € U, 0¢;/0u; = 0xz(t, ¢)/Oxo.
0¢/0u;, i = 1,2, are two linearly independent solutions of (3.4) with
respect to ¢:(u) and Bd¢dy/Ou; = BOp/Ou; = 0, i = 1,2, hence
|0¢:/Ouy A Oy /Ouz| — 0 uniformly for almost every u € U as t — oo.
Therefore, A¢; — 0 as t — oco. This contradicts (3.2) in Proposition
3.2. |

Remarks. (1) By Theorem 3.3, condition (3.3) excludes not only peri-
odic orbits, but also orbits of the following types: (a) homoclinic orbits;
(b) a pair of heteroclinic orbits of any two equilibria; (c) heteroclinic
cycles. Each of these situations gives rise to an invariant piecewise
smooth simple closed curve.

(2) If u(0fr*+2/0z) in (3.3) is calculated corresponding to the 12,
[ and ' norm of RY, N = (riz)’ we have the following concrete
Bendixson’s criterion for the autonomous system (1.1) satisfying (HI)
and (H2):

(a) M+ + A2 < —ry,

(b) Sup(i){(avfil/awil) + T + (6fir+2 /6xi1‘+2) + Zk#il,... ,ir+2(|6fk/
6£Ei1| + -+ |6fk/6$“+2|)} < —rv,

(C) Sup(i){(afil/axil) +ot (8fir+2/6wir+2) + Zk;&il,". Vit (‘6']“11/
Oxp|+---+ |afzr+2/8$k|)} < —rv,

where Ay > --- > ), are eigenvalues of the matrix (0f/0x+0f*/0x)/2,
and the supremum in (b) and (c) is taken over all r + 2 tuples
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(¢) = {i1,-.. ,irq2} such that 1 < i; < -+ < 4p42 < n. Conditions
(b) and (c), though they look a little complicated, simply mean that
the matrix (0f"*21/0x + rvI) is diagonally dominant in column and
in row, respectively, and all its diagonal elements are of the same sign
in I'. They are usually much easier to calculate than the eigenvalues
in condition (a). We also want to point out that the advantage of
using the Lozinskii measure is to allow us to choose easy-to-compute
conditions corresponding to different choices of the norm.

(3) If r = n — 2, it follows from (2.5) that the condition (3.3) will
become
div(f) < —(n—2)v onT.

(4) Criteria of Dulac type can be derived by introducing functionals
on X(¢,T") more general than A (cf. [4]).

We close this section by giving an example to show that condition
(3.3) in Theorem 3.3 is sharp.

Example. Consider the linear system ' = —y, v/ = z, 2/ = —2z.
The Jacobian matrix J of this system is a constant matrix and can be
written as J = —I + A, where

1 -1
A=|1
0

o O O

1
0
If we let B =(0,0,1), then rank B = 1 and BA = 0. Conditions (1.2)
and (1.3) are satisfied withn =3, D =R3 v =1and r = 1. It is easy
to see that the xy-plane is the global center manifold, and the origin is
a center-type equilibrium for the restricted flow on the xy-plane with

infinitely many concentric periodic orbits. This should not be a surprise
to us, since tr J = —1 = —v and condition (3.3) is not satisfied.

4. SEIS models with nonlinear incidence rate. The SEIS
model in epidemiology is given by the following system:

S = —NIPSY+p— uS +~I
(4.1) E'=-A\PS%— (¢ + p)E
I'— B~ (y+ )l
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where S denotes the susceptible class, E the exposed class and I the
infectious class. The AI?S7 term is the incidence rate (the rate of new
infections). The model (4.1) with general p and g, together with the
more general SEIRS models, are considered by Liu et al. [5]. They
have proved that when 0 < p < 1, (4.1) has two equilibria: the disease-
free equilibrium Py = (1,0,0) and the endemic equilibrium P* in the
invariant region T' = {(S,E,I) | S+ E+I1=1, S,E,I > 0} where P,
is unstable and P* is globally asymptotically stable in the exterior of
T; when p = 1 and the contact number o = Ae/(e + p)(y + p) <1, Py
is the only equilibrium in 7" and is globally asymptotically stable in T,
and when o > 1, F; is unstable and P* is globally asymptotically stable
in the interior of 7. The method used in [5] to prove these properties is
to use the equation S+ F + I = 1 to reduce (4.1) to a two-dimensional
system and to use the classic Dulac criterion to rule out periodic orbits.
We will show that these properties can also be proved using Theorem
3.3.

The Jacobian matrix J(S,E,I) of (4.1) can be written as J =
—plzxs + A, where

—AqI?PS?=t 0 —A\pIPT1SY 4«
A(S,E, I)= | AqgIPST™! —¢ ApIP~1519
0 € —y

Let B = (1,1,1); then BA(S,E,I) =0 for all S, E,I > 0. Thus, (1.2)
and (1.3) are satisfied with n = 3, D = R}, v = p, and r = 1.
Here T is the set {(S,E,I) € R3 | S+ E + I = 1}. Moreover,
trJ = —AqIPS9™! — ¢ — v - 3u < —p = —v. By Theorem 3.3, (4.1)
has no periodic solutions for all values of parameters. The stability
properties we want to show now follow easily from Poincaré-Bendixson
theory.
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