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ON THE BEHAVIOR OF SOME EXPLICIT SOLUTIONS
OF THE HARMONIC MAPS EQUATION

A.M. GRUNDLAND, M. KOVALYOV AND M. SUSSMAN

1. Introduction and definitions. Harmonic maps of the
Minkowski space are the critical points u : M → N of the energy
functional

(1.1)
∫
M

ηαβgij
∂ui

∂xα

∂uj

∂xβ
dx

where

(1.2)
M(n, 1)is the n+ 1 − dimensional Minkowski space
with Lorentzian metric ηαβ = (1,−1, . . . ,−1) and local
coordinates x0 = t, x1, . . . , xn,

(1.3)
Nis an m− dimensional Riemannian manifold with
local coordinates (u1, . . . , um) and metric form
ds2 = gij(u)duiduj .

The Euler-Lagrange equations describing the critical points of (1.1)
are

(1.4)
∂2ui

∂t2
−

n∑
p=1

∂2ui

∂xp2
+ Γi

jk(u)
{
∂uj

∂t

∂uk

∂t
−

n∑
p=1

∂uj

∂xp

∂uk

∂xp

}
= 0,

1 ≤ i, j, k ≤ m, Γi
jk are the Christoffel symbols corresponding to the

metric in (1.3) and summation over repeated indices is understood.

There has been a lot of research done regarding different aspects of
harmonic maps [1, 2, 3 and references therein]. Here we look at the
behavior of some special solutions of (1.4) defined below.
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We call a function u = u(t, x) a null-solution of (1.4) if it satisfies

(1.5)
∂2ui

∂t2
−

n∑
p=1

∂2ui

∂xp2
=
∂uj

∂t

∂uk

∂t
−

n∑
p=1

∂uj

∂xp

∂uk

∂xp
= 0.

A typical example of a null-solution is a function u = f(〈A, x〉),
〈A,A〉 = 0 where

(1.6) 〈A, x〉 = A0x
0 −A1x

1 −A2x
2 − · · · −Anx

n

and f(·) is a function of a scalar variable.

Here is the problem which ignited our interest that led to this paper.
Let f(s) and g(s) be two C2

0 functions of a single variable satisfying
the following conditions:

(1.7)
g(s) = 0 for s ∈ (−∞,−3) ∪ (−1,∞)
f(s) = 0 for s ∈ (−∞, 1) ∪ (3,∞)

with S = {s ∈ [−3,−1], g′(s) = 0} ∪ {s ∈ [1, 3], f ′(s) = 0} being finite.
Then for n = 1 the function u(t, x) = f(x + t) + g(x − t) is a null
solution of (1.4) for 0 ≤ t ≤ 1 and describes two solitary waves moving
towards each other.

At time t = 1 the waves collide. We are interested in what happens
after the collision. In Section 2 we consider this problem in the case
of one space dimension and in Section 3 we generalize it to the higher
dimensions. In Section 4 we look at some similar waves which are not
null-solutions.

Some results and proofs described in Sections 2 and 3 can be gen-
eralized to a more general class of equations satisfying Klainerman’s
null-condition [2], though we will not do it here.

2. The case n = 1. We start this section with two examples that
will make the subsequent computations much more clear.

Example 2.1. Consider the case when N is the two-dimensional
hyperbolic manifold, i.e.,

(2.1) N =
{
u1, u2 | u1 ∈ R, u2 + 1 > 0, ds2 =

du12
+ du22

(u2 + 1)2

}
.
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The equations (1.4) take the form:

(2.2)

∂2u1

∂t2
− ∂2u1

∂x2
− 2
u2 + 1

〈∇u1,∇u2〉 = 0

∂2u2

∂t2
− ∂2u2

∂x2
+

1
u2 + 1

〈∇u1,∇u1〉

− 1
u2 + 1

〈∇u2,∇u2〉 = 0,

where 〈∇ui,∇uj〉 = (∂ui/∂t)(∂uj/∂t)− (∂ui/∂x)(∂uj/∂x). The initial
data is chosen to be

(2.3)

u|t=0 =
(

f(x) + g(x)
−1 +

√
1 + a2 − [f(x) + g(x) + a]2

)

ut|t=0 =

⎛
⎝ f ′(x) − g′(x)

−[f(x)+g(x)+a][f ′(x)−g′(x)]√
1+a2−[f(x)+g(x)+a]2

⎞
⎠

with f(x) and g(x) as in (1.7), a a constant and the vector u satisfying

(2.4) (u1 + a)2 + (u2 + 1)2 = 1 + a2.

Geometrically, the conditions (2.3) simply means that the initial data
lie on a geodesic. Equations (2.3) and (2.4) guarantee the existence of
a solution in the form

(2.5) u(t, x) =
(

f(x+ t) + g(x− t)
−1 +

√
1 + a2 − [f(x+ t) + g(x− t) + a]2

)

for 0 ≤ t ≤ 1, whereas (2.4) allows us to reduce the Cauchy problem
(2.2) and (2.3) to a much simpler one

(2.6)
w +

2w
1 + a2 − w2

〈∇w,∇w〉 = 0

w|t=0 = f(x) + g(x), wt|t=0 = f ′(x) − g′(x)

where the w = u1 + a. Using w̃ = ln((b + w)/
√
b2 − w2)1/b =

(1/2b) ln((b + w)/(b − w)) with b =
√

1 + a2, (2.6) can be reduced
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to the following form:

(2.7a)

w̃ = 0

w̃|t=0 = ln
(

b+ f(x) + g(x)√
b2 − [f(x) + g(x)]2

)1/b

w̃t|t=0 =
f ′(x) − g′(x)

b2 − [f(x) + g(x)]2
.

Note that for (2.7a) to make sense we must have b ≥ max(|f(x)| +
|g(x)|). One can easily solve (2.7a) to obtain:

(2.7b)

w̃ =
1
2

ln
[

f(x+ t) + g(x+ t) + b√
b2 − [f(x+ t) + g(x+ t)]2

]1/b

+
1
2

ln
[

f(x− t) + g(x− t) + b√
b2 − [f(x− t) + g(x− t)]2

]1/b

+
1
2

∫ x+t

x−t

f ′(ξ) − g′(ξ)
b2 − [f(ξ) + g(ξ)]2

dξ.

To see what is happening, let us look at the following pictures, Figures
1 and 2:

where

(2.8)

C = {(t, x) | −3 < x− t ≤ −1, 1 ≤ t+ x ≤ 3};
A = {(t, x) | t > 0,−3 ≤ x− t ≤ −1}\C;

B = {(t, x) | t ≥ 0, 1 ≤ t+ x ≤ 3}\C;

D = {(t, x) | t > 0, x ∈ R}\{A ∪ B ∪ C}.
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supp f(A x-t)

supp f(A x-t)   supp g(B x-t)

   supp g(B x-t)

C

FIGURE 1.

x

t

=0 = 0 = f(x) = 0= g(x)

-3 -1 1 3

FIGURE 2.
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For (t, x) ∈ C we can simplify (2.7b) in the following manner:
(2.9a)

w̃ =
1
2

ln
[

f(x+ t) + b√
b2 − [f(x+ t)]2

]1/b

+
1
2

ln
[

g(x− t) + b√
b2 − [g(x− t)]2

]1/b

− 1
2

∫ 1

x−t

g′(ξ)
b2 − [g(ξ)]2

dξ +
1
2

∫ x+t

1

f ′(ξ)
b2 − [f(ξ)]2

dξ

=
1
2

ln
(√

b+ f(x+ t)
b− f(x+ t)

)1/b

+
1
2

ln
(√

b+ g(x− t)
b− g(x− t)

)1/b

− 1
4b

∫ 1

x−t

[
1

b− g(ξ)
+

1
b+ g(ξ)

]
g′(ξ) dξ

+
1
4b

∫ x+t

1

[
1

b− f(ξ)
+

1
b+ f(ξ)

]
f ′(ξ) dξ

=
1
2b

ln
b+ f(x+ t)
b− f(x+ t)

+
1
2b

ln
b+ g(x− t)
b− g(x− t)

.

Substituting the expression for w̃ we eventually get

(2.9b)
b+ w

b− w
=

(b+ f(x+ t))(b+ g(x− t))
(b− f(x+ t))(b− g(x− t))

because the terms g(x + t), f(x − t) vanish in C and the domain of
integration of the integral in (2.7b) is reduced to (x− t,−1)∪ (1, x+ t)
with f(ξ) vanishing on (x− t,−1) and g(ξ) vanishing on (1, x+ t). The
value of w in the other regions is given by the following table:

TABLE 1.

terms in (2.7b) that terms in (2.7b) that
region vanish or cancel do not disappear w

A f(x+ t), f(x− t), g(x+ t) g(x− t) g(x− t)
B g(x+ t), g(x− t), f(x− t) f(x+ t) f(x+ t)
D g(x+ t), g(x− t), f(x+ t) 0 0

f(x− t)
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We can interpret this in the following manner: the solution of (2.2),
(2.3) and (2.4) consists of two solitary waves(

f(x+ t)
−1 +

√
b2 − [f(x+ t) + a]2

)

and (
g(x− t)

−1 +
√
b2 − [g(x− t) + a]2

)

running towards each other colliding, interacting and departing as if
nothing happened. We eventually obtain

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
f(x+ t)√

b2 − [f(x+ t) + a]2 − 1

)

+
(

g(x− t)√
b2 − [g(x− t) + a]2 − 1

)
(t, x) /∈ C(

w − a

−1 +
√

1 + a2 − w2

)

with w satisfying (2.9b).

Example 2.2. Consider the case when N = S2, i.e.,

N = {(r, θ) | −π/2 ≤ r ≤ π/2, 0 ≤ θ ≤ 2π, ds2 = dr2 + cos2 r dθ2}.

The equations (1.4) take the form

(2.10)
r + sin r cos r〈∇θ,∇θ〉 = 0,

θ − 2 tan r〈∇r,∇θ〉 = 0.

We choose the initial data to be:
(2.11)(

r
θ

)
t=0

=
(

f(x) + g(x)
arcsin(α(tan[f(x) + g(x)]))

)
(
rt
θt

)
t=0

=
(

f ′(x) − g′(x)

a[f ′(x) − g′(x)]/(cos2(x)
√

1 − α2 tan2(f(x) − g(x)) )

)
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with f(x) and g(x) as in (1.7a) and α a number. Again, (2.11) gives
us a solution(

r
θ

)
=

(
f(x+ t) + g(x− t)

arcsin(α(tan[f(x+ t) + g(x− t)]),

)

for 0 ≤ t ≤ 1, with this formula suggesting that we look for a solution
of (2.10) and (2.11) in the form

u(t, x) =
(

w
arcsin[α tanw]

)

with w(t, x) being a scalar function. Substituting the above into (2.10)
and (2.11), we obtain

(2.12)

⎧⎨
⎩

w + (α2 sinw/ cos3 w(1 − α2 tan2 w))〈∇w,∇w〉 = 0,
w|t=0 = f(x) + g(x)
wt|t=0 = f ′(x) − g′(x).

Again, using w̃ = ln
[√

α2+1 sinw+
√

(α2+1) sin2 w − 1
]1/

√
α2+1

we

obtain for w̃,

(2.13)

w̃ = 0

w̃|t=0 =
1√
α2+1

ln
[√

α2+1 sin(f(x)+g(x))

+
√

(α2+1) sin2(f(x)+g(x))−1
]

w̃t|t=0 =
1√

α2 tan2(f(x)+g(x)) − 1
(f ′(x)−g′(x)).

Again, we can solve (2.13) and thus (2.12) to obtain

(2.15) w =

⎧⎪⎪⎨
⎪⎪⎩

0 in D,
f(x+ t) in B,
g(x− t) in A,
I−1(I(f(x+ t)) + I(g(x− t))) in C,
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with

I(f(ξ)) =
∫ f(ξ)

0

α2 sin ρ

cos3 ρ
√

1 − α2 tan2 ρ
dρ

=
1√
α2+1

ln
[√

α2+1 sin(f(ξ)) +
√

(α2+1) sin2(f(ξ)) − 1
]

and A,B, C and D as on the picture of Example 2.1. Correspondingly,
u =

(
w

arcsin[α tan w]

)
is obtained.

The above examples lead us to the following

Theorem 2.1. Let u be a harmonic map from M(1, 1) into a
Riemannian manifold N which, for 0 ≤ t ≤ 1, has the form f(x +
t) + g(x− t), i.e., for 0 < t < 1, u satisfies (1.5) with initial data

u|t=0 = f(x) + g(x)
ut|t=0 = f ′(x) − g′(x)

with f(x) and g(x) satisfying (1.7) and being sufficiently small. Let us
also assume that

(2.16) f =

⎛
⎜⎜⎝

f1(x)
f2(f1(x))

...
fm(f1(x))

⎞
⎟⎟⎠ , g =

⎛
⎜⎜⎝

g1(x)
g2(g1(x))

...
gm(g1(x))

⎞
⎟⎟⎠

i.e., all coordinates are some functions of the first one. Then there
exist functions F i of two variables such that

(2.17) ui = F i(f1, g1), 1 ≤ i ≤ m

(2.18)

⎧⎨
⎩
F 1(0, g1) = g1, F 1(f1, 0) = f1

F i(0, g1) = gi(g1), F i(f1, 0) = f i(f1),
f i(f1 =0)=gi(g1 =0)=0.

Remark 1. The condition (2.16) is not too restrictive. It can be
easily generalized and is used for simplicity of notation. We could have
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assumed f i = f i(f̃(x)), gi = gi(g̃(x)) and repeated the computations
with only slight modifications. One-dimensionality of f(x) and g(x)
follow from one-dimensionality of x.

Remark 2. The last condition on f i(f1 = 0) = gi(g1 = 0) = 0 is
here to insure that all the f i and gi vanish in D. It puts, however, an
unnecessary constraint requiring f i = 0 and gi = 0 at the points of
A∪B∪C where f1 = 0 and g1 = 0, correspondingly. It can be avoided
if we assume that at t = 0, f1 �= 0 in (1,3) and g1 �= 0 in (−1,−3). If it
is not the case, in view of the previous remark, we can always replace
f1 and g1 with some other parameters f̃ and g̃ which do not vanish
inside of (1, 3) and (−3,−1), correspondingly.

Proof. We show existence of the F i by constructing them.

Differentiating (2.17) we obtain

(2.19)
ui = −4F i

12f
1′

(x+ t)g1′
(x− t),

〈∇uj ,∇uk〉 = −2(F j
1F

k
2 + F k

1 F
j
2 )f1′

g1′

where

F i
12 =

∂F i(ξ, η)
∂ξ∂η

, f1′
(x+ t) =

∂f1

∂(x+ t)
, etc.

Combining (2.19) with (1.4), we get

(2.20) (F i
12 + Γi

jkF
j
1F

k
2 )f1′

g1′
= 0,

together with the boundary conditions (2.18).

Thus, our problem is reduced to showing existence of solutions of the
following system:
(2.21)⎧⎪⎨

⎪⎩
F i

12+Γi
jk(F 1, . . . , Fm)F j

1F
k
2 =0, F i =F i(ξ, η), 1≤ i≤m

F 1(0, η) = η, F 1(ξ, 0) = ξ

F i(0, η) = gi(η), F i(ξ, 0) = f i(ξ)

which can be viewed as a nonlinear Goursat problem.

Note that the data is given on the characteristics. There are two ways
to show existence of F is.
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In the first one we can write the equations (2.21) on η = 0 in the
form

∂

∂ξ

⎛
⎜⎝
∂F 1/∂η

...
∂Fm/∂η

⎞
⎟⎠+

(
Γ1

j1∂F
j/∂ξ · · · Γ1

jm∂F
j/∂ξ

Γm
j1∂F

j/∂ξ · · · Γm
jm∂F

j/∂ξ

) ⎛
⎜⎝
∂F 1/∂η

...
∂Fm/∂η

⎞
⎟⎠=0

with ∂F 1/∂ξ = 1, ∂F i/∂ξ = ∂f i(ξ)/∂ξ and⎛
⎜⎝
∂F 1/∂η

...
∂Fm/∂η

⎞
⎟⎠

ξ=0

=

⎛
⎝ 1

...
∂gm(0)/∂η

⎞
⎠ .

By solving the latter system on η = 0 we obtain ∂F i/∂η on η = 0.
Differentiating the system and solving it again we, in principle, can
compute all derivatives of F i, and if the F i and the Γi

jks are analytic,
we can use the argument of the Cauchy-Kowalewski theorem to obtain
an analytic solution near η = 0.

The second method consists of rewriting (2.21) in the form:
(2.22)

F 1(ξ, η) = ξ + η

+
∫ ξ

0

∫ η

0

Γ1
jk(F 1, . . . , Fm)F j

1 (ξ1, η1)F k
2 (ξ1, η1) dξ1 dη1

F i(ξ, η) = gi(η) + f i(ξ)

+
∫ ξ

0

∫ η

0

Γi
jk(F 1, . . . , Fm)F j

1 (ξ1, η1)F k
2 (ξ1, η1) dξ1 dη1.

where F i
1(ξ, η) = ∂F i/∂ξ, F i

2(ξ, η) = ∂F i/∂η.

We consider a ball of radius R in the Banach space C1 endowed with
the norm

(2.23) ||F || = max
i,−ε≤ξ,η≤ε

{
|F i| +

∣∣∣∣∂F i

∂ξ

∣∣∣∣ +
∣∣∣∣∂F i

∂η

∣∣∣∣
}
.

For ε, gi(η) and f i(ξ) sufficiently small, the righthand sides of (2.22)
generate a contractive mapping of the ball into itself. The fixed point
of this contraction gives us the required functions F i.
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Corollary. In terms of the picture (2.8) used for the previous two
examples we can write u = f(x+ t)+g(x− t), provided (x, t) /∈ C. Two
solitary waves f(x+ t) and g(x− t) move towards each other, collide,
pass through each other and depart as if nothing happened.

What happens during the collision is not clear. The following theorem
sheds some light on it.

Theorem 2.2. Let u be a harmonic map from M(1, 1) into N which
for 0 ≤ t ≤ 1 has the form f(x + t) + g(x − t), i.e., for 0 ≤ t ≤ 1, u
satisfies (1.5) with the initial data

u|t=0 = f(x) + g(x), ut|t=0 = f ′(x) − g′(x)

with f(x) and g(x) satisfying (1.7). Let us also assume that there are
sufficiently smooth invertible functions Gi such that

(2.24) f i(x) = Gi(f1(x)), gi(x) = Gi(g1(x)),

i.e., the image lies on a curve in N given by (2.24). Then the image
will stay on the curve ui = Gi(u1) for all t ≥ 0 if and only if this curve
is a geodesic. Moreover, if ui = Gi(u1) is a geodesic, there exists an
invertible function F such that

(2.25) F (u1) = F (f1(x+ t)) + F (g1(x− t)).

Proof. Corollary to Theorem 2.1 implies that the image stays on the
curve ui = Gi(u1) for all (x, t) away from the collision region C (as on
the picture of Example 2.1). For (x, t) ∈ C the image will stay on the
curve ui = Gi(u1) if and only if the following equations hold:

(2.26) u1 +
Gi′′ + Γi

jkG
j′
Gk′

Gi′ 〈∇u1,∇u1〉 = 0, 1 ≤ i ≤ m.

The above equations can be compatible if and only if the nonlinear
term is the same for all i between 1 and m which, in turn, can happen
only if either

(2.27) 〈∇u1,∇u1〉 = 0
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or

(2.28) h(u1) =
Gi′′ + Γi

jkG
j′
Gk′

Gi′

is independent of i. Equation (2.27) implies u1 = 〈∇u1,∇u1〉 = 0
which, in turn, gives us u1 = ϕ(x + t) + ψ(x − t), ϕ′ψ′ = 0, i.e., the
situation which cannot happen during collision of the solitary waves
f(x + t) and g(x − t), i.e., for (x, t) ∈ C since it would contradict the
condition on S after (1.7). So we discard this possibility and turn to
(2.28) which is an equation of a geodesic parametrized by u1, with
d2u1/ds2 = −h, where s is the arc length. So, if ui = Gi(u1) is a
geodesic, (2.26) has a solution for all t ≥ 0. If, however, ui = Gi(u1)
is not a geodesic, (2.26) becomes contradictory for 1 ≤ t ≤ 3 in the
domain of collision (region C on the picture of Example 2.1).

One can easily see now that if ui = Gi(u1) is a geodesic, the function

F (u1) =
∫ u1

0

dρe
∫ ρ

h(s) ds

satisfies (2.25).

3. The case n > 1. Technically this section is similar to the previous
one though the results and interpretations are different enough to
justify putting them into a separate section. We want to study here the
interaction of two null-solutions f(〈A,X〉) and g(〈B,X〉), with f(s) and
g(s) being as in (1.7), 〈A,A〉 = 〈B,B〉 = 0. Without loss of generality,
we can assume that A0 = B0 = 1 and

∑n
p=1A

2
p =

∑n
p=1B

2
p = 1.

Theorem 3.1. Let the functions F 1(ξ, η), . . . , Fm(ξ, η) be solutions
of

(3.1)
F i

12+Γi
jk(F 1, F 2)F j

1F
k
2 = 0, F i = F i(ξ, η), 1≤ i≤m

F 1(0, η) = η, F 1(ξ, 0) = ξ

F i(0, η) = gi(η), F i(ξ, 0) = f i(ξ), gi(0) = f i(0) = 0,

with g2(η) and f2(ξ) being C1 invertible functions and the Γi
jk(F 1, F 2)

Christoffel symbols on a Riemannian manifold N with local coordinates
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(F 1, . . . , Fm). Then the functions ui = F i(f1(A · x− t), g1(B · x− t))
determine a harmonic map from M(n, 1) into N satisfying (1.4) and
having the form

ui(t, x) =
{
F i(f1(A · x− t), g1(B · x− t)), (x, t) ∈ C
f i(A · x− t) + gi(B · x− t), (x, t) /∈ C

with f1(·), g1(·) satisfying (1.7) and C = supp f1(A ·x− t)∩ supp g1(B ·
x− t).

The situation is very similar to that described in the previous section.
Both waves f(A ·x− t) and g(B ·x− t) move in the directions of A and
B, respectively, with the only interaction occurring at C.

Again, the remark after (2.16) applies. If the f i and gi are sufficiently
small, then as we saw in the previous section, (3.1) has a solution.

We also have:

Theorem 3.2. Let f(·) and g(·) be two C1
0 functions of one variable

satisfying (1.7) and also assume that there are sufficiently smooth
invertible functions Gi such that

(3.2) f i = Gi(f1), gi = Gi(g1).

Then the functions u1 and ui = Gi(u1) will be solutions of (1.4) if and
only if the curve ui = Gi(u1) is a geodesic. Moreover, if ui = Gi(u1)
is a geodesic, there exists an invertible function F such that

F (u1) = F (f(A · x− t)) + F (g(B · x− t)).

Proof and expression for the F are the same as in the proof of
Theorem 2.2.

We see from the theorems that both waves move in the directions
A and B, respecitvely, with the only interaction happening at C =
supp f(A · x − t) ∩ supp g(B · x − t). At the points away from C each
wave behaves as if the other one does not exist.

If we have three null-solutions fi(Ai · x − t) with the three vectors
Ai linearly independent and the fi(·) satisfying one of the conditions



HARMONIC MAP EQUATIONS 245

of (1.7), then ∩3
i=1supp fi(Ai · x − t) has compact support and moves

as a “particle.” It would be very interesting to see whether there is
any physical significance attached to it. Though we believe that the
interaction of three null-solutions fi(Ai ·x− t) should be similar to the
interaction of only two of them, we have not been able to prove it. The
reason for that being that the differential equation in (3.4) is replaced
with a more complicated one for which we could not prove existence.

4. Waves in the background. Let M(n, 1) and N be as in (1.2)
and (1.3), and let h be a solution of the following system:

(4.1)
n∑

p=2

(
∂2hi

∂xp2 + Γi
jk

∂hj

∂xp

∂hk

∂xp

)
= 0.

We call such a solution “background” and assume that h depends
on a parameter w as well as the x2, . . . , xn and satisfies (4.1) for all
values of w in some interval [w1, w2]. One can easily observe then that
h(x2, . . . , xn, w) is a solution of (1.4) for w = f(x1 + t) and w = g(x1−
t). If f(·) and g(·) satisfy (1.7), then h(x2, . . . , xn, f(x1 +t)+g(x1−t))
is also a solution of (1.4) for 0 ≤ t ≤ 1. Again, we ask ourselves what
happens after t = 1.

Since h satisfies (4.1), it will be a solution of (1.4) if and only if w
satisfies

(4.2)
∂2w

∂t2
− ∂2w

∂x12 +
{

1
∂hi/∂w

(
∂2hi

∂w2
+ Γi

jk

∂hj

∂w

∂hk

∂w

)}

×
[(

∂w

∂t

)2

−
(
∂w

∂x1

)2]
= 0.

If the expression in {. . . } depends on w only (for example, if w is a
parameter along a geodesic) we can repeat the procedure desccribed
before reducing (4.2) to a linear wave equation and solve it for w with
the initial conditions w|t=0 = f(x) + g(x); wt|t=0 = f ′(x) − g′(x).
Having done this, we obtain w in terms of f(x1 + t) and g(x1 − t).

One can also consider another problem. Let γ be a geodesic described
by the following equation:

(4.3)
∂2hi

∂xn2
+ Γi

jk(h)
∂hj

∂xn

∂hk

∂xn
= 0, h = h(xn).
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Also let f(·) and g(·) be two scalar functions satisfying (1.7). Then

(4.4)

u = h(xn + f(A · x− t)),

A = (A1, . . . , An−1, 0),
n−1∑
p=1

A2
p = 1

v = h(xn + g(B · x− t)),

B = (B1, . . . , Bn−1, 0),
n−1∑
p=1

B2
p = 1

are solutions of (1.4). Away from supp f(A · x − t) ∪ supp g(B · x− t)
each of the (4.4) functions coincides with h(xn). We can view u and v
as describing distortions propagating on h(xn).

Function

(4.5)
ϕ = h(xn + w(t, x))

w(t, x) = f(A · x− t) + g(B · x− t)

for (x, t) /∈ supp f(A ·x− t)∩ supp g(B ·x− t) describes two distortions
propagating on h(xn), and we are interested in their interaction. Using
the ordinary chain rule we can easily see that (4.5) is a solution of (1.4)
if and only if

(4.6)
∂2w

∂t2
−

n−1∑
p=1

∂2w

∂xp2 = 0.

Linearity of (4.6) implies that w(t, x) = f(A · x− t) + g(B · x− t) for
all t, x and thus the distortions do not interact.
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