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CONSTANT AND PERIODIC RATE STOCKING
AND HARVESTING FOR KOLMOGOROV-TYPE

POPULATION INTERACTION MODELS
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To the memory of Geoffrey James Butler

ABSTRACT. Averaging methods are used to compare so-
lutions to n-dimensional systems of ordinary differential equa-
tions with constant or periodic forcing. These results are
applied to population models of Kolmogorov-type where per
capita growth rates are either monotone decreasing (pioneer)
or one-humped (climax) functions of weighted population den-
sities. The asymptotic behavior of such systems may be con-
trolled, to some extent, by stocking or harvesting a popula-
tion.

1. Introduction. The effects of population density on the repro-
duction and survival of individuals of a species are widely studied and
accepted, e.g., see [1, 16, 11]. Here we model the interaction of popula-
tions of animals or plants by a system of ordinary differential equations
where the per capita replacement rate is a function (called the fitness)
of a linear combination of the densities of the interacting populations.
Other studies assuming this approach include Comins and Hassell [3],
Hassell and Comins [12], Hofbauer, Hutson and Jansen [13], Cush-
ing [4, 5], Selgrade and Namkoong [19, 20], Franke and Yakubu [6],
and Selgrade [18]. These systems are generalizations of Lotka-Volterra
equations where the fitnesses are linear functions of the densities.

For our study we take the population fitnesses to be either mono-
tone decreasing functions or one-humped functions. Borrowing from
the forestry terminology, we refer to the former as pioneer fitnesses
and to the latter as climax fitnesses. Such a pioneer fitness is a de-
creasing function of density, it simply captures the detrimental effects
of crowding on per capita replacement rates. Ricker [17] concludes that
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certain fish populations have exponential pioneer fitnesses, and Hassell
and Comins [12] study pioneer fitnesses which are rational functions.
On the other hand, Allee [1], Freedman and Wolkowicz [7], Tonkyn
[22], Cushing [5], and Wolkowicz [23] discuss examples of the bene-
ficial effects of increasing density on both reproduction and survival
rates. Thus, we take a climax fitness to be monotonically increasing up
to a maximum value and then monotonically decreasing as a function of
density. Populations with such climax fitnesses are studied in Cushing
[4, 5], Selgrade and Namkoong [19, 20], and Selgrade [18].

For population interaction models with pioneer and climax fitnesses,
Selgrade and Namkoong [19, 20] observe that varying an intraspecific
crowding parameter may destabilize an equilibrium via Hopf bifurca-
tion. In fact, continuing to vary this intrinsic parameter may produce a
period-doubling cascade resulting in an apparent strange attractor. Sel-
grade [18] analyzes the dynamical behavior of the interaction between
a linear pioneer and an exponential climax and shows that such a two-
dimensional system may be returned to “near-equilibrium” by stocking
or planting the pioneer population. Constant rate stocking and peri-
odic rate (a sine or cosine function) stocking are studied. Selgrade [18]
shows that if the system with constant rate stocking has an asymptoti-
cally stable equilibrium then solutions of the periodic rate system near
this equilibrium stay close to solutions of the constant rate system if the
constant rate is the time-average of the periodic rate function. Here
we use averaging methods to extend this result to n-dimensional C1

vector fields where each component of the vector field is forced (which
represents stocking or harvesting) with a sine or a cosine function of
different amplitude and frequency. We show (Theorem 1) that if the
autonomous system with constant forcing vector whose components
are the time-averages of the periodic forcing functions has an asymp-
totically stable equilibrium, then solutions to both systems near this
equilibrium stay close for all positive time. The error bound between
solutions depends on the sum over the components of the products of
amplitude and period. We suspect that similar results are true for a
neighborhood of any hyperbolic attractor of the system with constant
forcing. For example, Kot, Sayler and Schultz [14] study nutrient forc-
ing in a three-dimensional model of the chemostat. They are interested
in dynamical behavior for periodic forcing near a stable periodic orbit
of the system with constant forcing which is the time-average of the
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periodic forcing. From their work, it appears that solution components
normal to the periodic orbit stay close with a bound depending on the
product of amplitude and period of the forcing function.

Our general result is applied to two- and three-dimensional interac-
tion models of pioneer and climax populations. For the interaction of
one pioneer and one climax, we investigate the Hopf bifurcation curve
with respect to the intrinsic crowding parameter and the constant rate
stocking or harvesting parameter. We show that either stocking or
harvesting may return the system to a stable equilibrium; and the
strategy which will accomplish this depends on the first two deriva-
tives of the fitnesses and on intraspecific and interspecific competition
parameters. Hence, the corresponding periodic rate stocking or har-
vesting will return the system to “near-equilibrium” behavior because
of Theorem 1. For the three-dimensional system which models the in-
teraction of two linear pioneers and an exponential climax, we consider
a two-parameter example, determine the Hopf bifurcation curve, and
show that harvesting the first pioneer is the strategy which restabilizes
the system at equilibrium. Without harvesting, this system exhibits a
period-doubling cascade to a strange attractor. Numerically, we illus-
trate how appropriate levels of harvesting may reverse this cascade and
maintain the system at any periodic attractor along the cascade. Thus
the asymptotic behavior of this population interaction model may be
controlled by harvesting.

Section 2 states and proves our averaging result for n-dimensional C1

vector fields. Section 3 presents the model equations and background
for the Kolmogorov-type population interaction models which we study.
Sections 4 and 5 discuss stocking and harvesting strategies for two- and
three-dimensional systems, respectively.

2. Averaging result. Let F be an n-dimensional C1 vector field.
In this section we compare the asymptotic behavior of two systems
obtained by adding external forcing to F . These two systems have the
forms:

(C)
dz

dt
= F (z) + (A1, . . . , An)∗

(P)
dx

dt
= F (x) +

(
A1 + B1 cos

2πt

p1
, . . . , An + Bn cos

2πt

pn

)∗
,



70 J.R. BUCHANAN AND J.F. SELGRADE

where ∗ represents the transpose operation and x = (x1, . . . , xn)∗,
z = (z1, . . . , zn)∗. System (C) has constant forcing. The ith component
of the forcing in (P) is a cosine function of period pi which may be
different from the periods of the other components; and Ai is the time-
average over the period of the ith component of the forcing. This
component may be taken to be any finite linear combination of sines
and cosines of period pi, but here we use a single cosine to simplify the
mathematical analysis. A system with periodic forcing may be more
realistic for biological applications, e.g., because of seasonal variations
in ecosystems.

Assume that E is a hyperbolic equilibrium of (C) which is locally,
asymptotically stable. Thus, the eigenvalues of DF (E), the derivative
of F at E, have negative real parts. Let B = (B1, . . . , Bn)∗ and p =
(p1, . . . , pn)∗ denote the amplitude and period vectors, respectively.
Using dot product notation, we have p · B =

∑n
i=1 piBi. Our result

compares solutions to (C) and (P) in a neighborhood of E. This
theorem is similar to the classical averaging results (see Hale [10] or
Guckenheimer and Holmes [9]), but our error bound between solutions
is O(p ·B) instead of O(|B|) for fixed p or O(|p|) for fixed B, as in the
classical case.

Theorem 1. Let F be a C1 vector field on �n and E a stable
hyperbolic equilibrium of (C). Assume that Bi ≥ 0 and pi > 0 for
i = 1, 2, . . . , n. Then there exist positive constants ε, N , M and γ and
two balls Sε(E) and Sδ(E) centered at E of radius ε and δ(ε) < ε, so
that if p · B is sufficiently small and if x(0), z(0) ∈ Sδ(E), then x(t),
z(t) ∈ Sε(E) for all t ≥ 0, and

(1) |x(t) − z(t)| ≤ Mp · B + Ne−γt|x(0) − z(0)|.

Proof. First we subtract (C) from (P) which eliminates Ai and gives

(2) ẋ − ż = F (x) − F (z) +
(

B1 cos
2πt

p1
, . . . , Bn cos

2πt

pn

)∗
.

For each fixed t > 0, use the mean value theorem to write

(3) F (x) − F (z) =
∫ 1

0

DF (w(s, t))(x− z) ds
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where w(s, t) = sx(t)+(1−s)z(t) for some s, 0 ≤ s ≤ 1, which depends
on x(t) and z(t). Let D = DF (E) and u = x− z; then (2) and (3) give

(4)
u̇ − Du =

∫ 1

0

[DF (w(s, t)) − D]u ds

+
(

B1 cos
2πt

p1
, . . . , Bn cos

2πt

pn

)∗
.

Multiplying both sides of (4) by e−Dt and integrating from T to t yields

(5)

u(t) = eD(t−T )u(T )

+
∫ t

T

eD(t−τ)

∫ 1

0

[DF (w(s, τ)) − D]u(τ ) ds dτ

+
∫ t

T

eD(t−τ)

(
B1 cos

2πτ

p1
, . . . , Bn cos

2πτ

pn

)∗
dτ.

Take norms in (5) and assume |DF (w(s, t))−D| ≤ L, where L will be
determined later, to get

(6)

|u(t)| = |eD(t−T )||u(T )|

+
∫ t

T

L|eD(t−τ)||u(τ )| dτ

+
∣∣∣∣
∫ t

T

eD(t−τ)

(
B1 cos

2πτ

p1
, . . . , Bn cos

2πτ

pn

)∗
dτ

∣∣∣∣.
The last term in (6) is bounded by using the Jordan canonical form
of D to evaluate integrals before taking norms. The required bounds
are obtained by the following lemma which is proved by induction on
k and some tedious computation, see Buchanan [2].

Lemma 1. Fix i = 1, 2, . . . , n, and let k be a nonnegative integer.
Assume Re λ < 0. Then there exists a positive number Mk such that
the following inequalities hold.

∣∣∣∣
∫ t

T

(
a0+a1(t−τ ) + · · · + ak

(t−τ )k

k!

)
eλ(t−τ)Bi cos

2πτ

pi
dτ

∣∣∣∣
≤ MkpiBi
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∣∣∣∣
∫ t

T

(
b0+b1(t−τ ) + · · · + bk

(t−τ )k

k!

)
eλ(t−τ)Bi sin

2πτ

pi
dτ

∣∣∣∣
≤ MkpiBi.

From Lemma 1 there is an M > 0 so that (6) becomes

(7) |u(t)| = |eD(t−T )||u(T )| +
∫ t

T

L|eD(t−τ)||u(τ )| dτ +
M

2
p · B.

Since Re λ < 0 for all the eigenvalues of D, then there exists N > 0
and σ with

max
λi∈spec(D)

Reλi < σ < 0

such that |eD(t−τ)| ≤ Neσ(t−τ) for all t ≥ τ ≥ T . Hence, u(t) is
bounded by

(8)
|u(t)| ≤ N |u(T )|eσ(t−T ) +

M

2
p · B

+
∫ t

T

NLeσ(t−τ)|u(τ )| dτ.

Multiplying both sides by e−σt gives

(9)
|u(t)|e−σt ≤ N |u(T )|e−σT +

M

2
p · Be−σt

+
∫ t

T

NLe−στ |u(τ )| dτ.

Apply a time dependent version of Gronwall’s inequality to get

(10)
|u(t)|e−σt ≤ N |u(T )|e−σT +

M

2
p · Be−σt

+
∫ t

T

NLeNL(t−τ)[N |u(T )|e−σT +
M

2
p · Be−στ ] dτ.

Multiply both sides in (10) by eσt and integrate

(11)
|u(t)| ≤ N |u(T )|e(NL+σ)(t−T ) +

M

2
p · B

+
NLMp · B
2(NL + σ)

(e(NL+σ)(t−T ) − 1).
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Since F is C1 and DF (E) is fixed, then there exists ε > 0 so that if
w ∈ Sε(E) then |DF (w)−DF (E)| < L where L is chosen small enough
that σ + 2NL < 0. The last inequality implies NL + σ < −NL < 0
and hence 0 < −NL/(NL + σ) < 1. Then (11) becomes

(12) |u(t)| ≤ N |u(T )|e(NL+σ)(t−T ) + Mp · B.

Since E is locally asymptotically stable there exists 0 < δ < ε such that
δ < ε/(6N), and for all z(0) ∈ Sδ(E) then z(t) ∈ Sε/3(E) for all t ≥ 0.
Now if z(0), x(0) ∈ Sδ(E) and if p · B < ε/(6M), then x(t) ∈ Sε(E)
for all t ≥ 0. To see this, assume the last statement is false; then
there is a first time t̂ such that |x(t̂) − E| = ε. Consequently, for all
t < t̂ we have |x(t̂) − E| < ε. The constant δ has been chosen so that
z(t) ∈ Sε/3(E) ⊂ Sε(E) for all t ≥ 0. Thus, if x(t), z(t) ∈ Sε(E) for
all t < t̂, then the line segment connecting them is also contained in
Sε(E). By our choice of ε we have |DF (w(s, t)) − DF (E)| < L for all
t < t̂. Hence, if we let γ = −(NL+σ) and T = 0 and use (12), we have

|x(t) − z(t)| ≤ Mp · B + Ne−γt|x(0) − z(0)| < ε/2

for all t < t̂ since NL + σ < 0, x(0), z(0) ∈ Sδ(E), and by our choice
of p · B. Since z(t) ∈ Sε/3(E) for all t ≥ 0, then using the triangle
inequality we have

|x(t) − E| ≤ |x(t) − z(t)| + |z(t) − E| < ε/2 + ε/3 < ε

for all t < t̂. This contradicts the assumption that |x(t̂) − E| = ε.
Consequently, x(t), z(t) ∈ Sε(E) for all t ≥ 0 and (12) holds for all
t ≥ 0. Thus, Theorem 1 is proved.

3. Model equations and background. An ecosystem of n
interacting, continuously reproducing populations is modeled by an
autonomous system of ordinary differential equations of Kolmogorov-
type. Let xi, i = 1, . . . , n, denote the density of the ith population as a
function of time t, and let yi denote its weighted total density variable,
i.e.,

yi =
n∑

j=1

cijxj
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where cij is called the interaction coefficient and weights the effect of
the jth population on the ith population. The per capita replacement
rate, the fitness fi, of the ith population is a smooth function of yi.
Our model equations are

(13)
dxi

dt
= xifi(yi), i = 1, 2, . . . , n.

This vector field is defined on the nonnegative orthant which is invariant
because of the form of (13). Introducing the weighted density variable,
yi, has the advantage of separating the ith population’s response to
density, fi, from the competitive or cooperative effect of each individual
interacting population. Typically, this response may be characterized
by monotonicity properties of the fitness, fi, as a function of the
weighted density yi. Here we restrict our attention to pioneer and
climax fitnesses.

If fi is a pioneer fitness, then we assume that it has exactly one
positive zero, i.e., there is exactly one value zi > 0 so that fi(zi) = 0.
Hence the xi-isocline is the hyperplane zi =

∑n
j=1 cijxj . Also, we

assume this zero is nondegenerate, i.e., f ′
i(zi) �= 0. We take each climax

fitness to have exactly two positive zeros which also are nondegenerate.
Thus, the isoclines of a climax population are two parallel hyperplanes.
An equilibrium of (13) in the positive orthant occurs precisely where
these hyperplanes intersect. If C = (cij) is the matrix of interaction
coefficients and z = (z1, . . . , zn)∗ is a vector of zeros of the fitnesses,
then an interior equilibrium E = (e1, . . . , en)∗ is a solution to the
system of linear equations

(14) CE = z.

This equilibrium is isolated if detC �= 0, which we always assume.
The derivative of our vector field F may be expressed in terms of two
diagonal matrices and C as

(15)

DF (x) =

⎛
⎜⎝

f1(y1) 0
. . .

0 fn(yn)

⎞
⎟⎠

+

⎛
⎜⎝

x1f
′
1(y) 0

. . .
0 xnf ′

n(yn)

⎞
⎟⎠ C.
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Note that the first diagonal matrix in (15) vanishes at an equilibrium
E in the interior of the orthant. Hence, formulas for the trace and
determinant of DF (E) are

(16)

trDF (E) =
n∑

i=1

eif
′
i(zi)cii

detDF (E) = detC

n∏
i=1

eif
′
i(zi).

4. Interactions of one pioneer and one climax. For the two-
dimensional system modeling the interaction of a pioneer, x1, and a
climax, x2, Selgrade and Namkoong [19, 20] show that an asymp-
totically stable, interior equilibrium E may lose its stability via Hopf
bifurcation where the parameter is either intraspecific crowding coeffi-
cient cii > 0, i = 1, 2. This bifurcation occurs only if detC < 0 and
only if E is determined by the smaller zero z2 of the climax fitness, f2,
i.e., where f ′

2(z2) > 0. Selgrade and Namkoong [20] derive a formula
for the stability coefficient of the resulting periodic solution and show
that this solution is asymptotically stable for many examples of bio-
logical interest. Since increasing or decreasing appropriate intraspecific
crowding parameters destabilizes an equilibrium, we try to reverse this
behavior by harvesting or stocking the appropriate population.

First we consider system (C) for the vector field of (13) with A1 = A
and A2 = 0, i.e., we stock or harvest the pioneer. If A = 0, a Hopf
bifurcation occurs as c11 decreases through the critical value ĉ11. We
use the implicit function theorem to determine the curve in the (c11, A)
parameter space along which the Hopf bifurcation occurs near the point
(c11, A) = (ĉ11, 0). For specific cases of a linear or exponential pioneer
and an exponential climax, Selgrade [18] obtains conditions implying
that this curve is the graph of A as a decreasing function of c11. Hence,
for c11 < ĉ11 and A = 0 where the equilibrium E is unstable, the
system (C) will be returned to stable equilibrium by stocking at a rate A
above the bifurcation curve. Here we do a similar analysis for arbitrary
pioneer and climax fitnesses and present an example where stocking or
harvesting may be required to return (C) to stable equilibrium.

Recall that z2 is the smaller zero of f2. For A1 = A and A2 = 0, the
interior equilibrium E of (C) where the Hopf bifurcation must occur
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solves the nonlinear system of equations:

(17)
0 = x1f1(c11x1 + c12x2) + A

z2 = c21x1 + c22x2.

The trace of DF (E) is given by

(18) trDF (E) = c11x1f
′
1(y1) + c22x2f

′
2(y2) − A

x1
.

To determine where the Hopf bifurcation occurs, we set trDF (E)
equal to zero in (18) and that equation along with (17) provide three
equations in the four unknowns x1, x2, A, and c11. We use the
second equation in (17) to eliminate x2 and to obtain two equations
in the unknowns x1, A and c11. Specifically, the first equation in (17)
determines the function

G(x1, A, c11) = x1f1

(
c11x1 +

c12z2 − c12c21x1

c22

)
+ A

and (18) gives

H(x1, A, c11) = −c11x
2
1f

′
1

(
c11x1 +

c12z2 − c12c21x1

c22

)

+ c21f
′
2(z2)x2

1 − z2f
′
2(z2)x1 + A.

The set of points where Hopf bifurcation occurs is the solution set to
(G, H) = (0, 0). We appeal to the implicit function theorem to find
conditions when the equation (G, H) = (0, 0) determines x1 and A as
functions of c11 near the point Q = (x1, A, c11) = (x̂1, 0, ĉ11). The
appropriate derivative at Q is given by:

(19)
∂(G, H)
∂(x1, A)

(Q) =
(

x̂1f
′
1(z1)(detC)/c22 1

z2f
′
2(z2) − c11f

′′
1 (z1)x̂2

1(detC)/c22 1

)
.

The implicit function theorem applies if the determinant of the matrix
in (19) is nonzero. If so, the monotonicity of A as a function of c11 at
ĉ11 is determined by

(20)
dA

dc11
=

x̂2
1f

′
1(z1)[x̂1f

′
1(z1)detC + z2c22f

′
2(z2)]

x̂1detC[f ′
1(z1) + ĉ11f ′′

1 (z1)x̂1] − z2c22f ′
2(z2)

.
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The numerator of (20) is always negative because f ′
1(z1) < 0,

f ′
2(z2) > 0 and detC < 0. Thus the sign of (20) is determined by

the sign of the denominator, i.e., the sign of the determinant of (19).
This sign crucially depends on the first two derivatives of the pioneer
fitness, on the first derivative of the climax fitness, and on the com-
petition coefficients. Even for a linear pioneer where f ′′

1 (z1) = 0, this
denominator may be positive or negative as we see in the following
example. Let

f1(y1) = 1 − y1 and f2(y2) = y2e
r(1−y2) − 1

where r < 1. Then the denominator of (20) is

(21) c12 − (2 − r)c22.

Essentially, (21) measures the difference between the competitive effect
of the climax on the pioneer and the climax intraspecific competition.
Thus, if c12 > (2 − r)c22, then dA/dc11 < 0 at ĉ11, so for c11 < ĉ11

stocking the pioneer returns system (C) to stable equilibrium. But if
c12 < (2 − r)c22, then harvesting the pioneer returns the system to
stable equilibrium.

For the system (P) with A1 = A, A2 = 0, and c11 < ĉ11, if the
parameters are such that (C) has an attracting periodic orbit then the
corresponding system (P) has a toral attractor surrounding this orbit
for small B1, see Levinson [15]. If A is chosen so that stocking or
harvesting at rate A yields a stable equilibrium for (C) then, in light
of Theorem 1, the corresponding periodic rate stocking or harvesting
with sufficiently small product p1B1 will return system (P) to “near-
equilibrium” behavior.

For (C) with A1 = 0 and A2 = A, i.e., for stocking or harvesting the
climax, an argument analogous to the preceding may be used to find
the Hopf bifurcation curve in the (c22, A) parameter space near (ĉ22, 0).
A stable equilibrium bifurcates to a periodic orbit as c22 increases
through ĉ22, see Selgrade and Namkoong [20]. So if the bifurcation
curve is increasing as a function of c22, then stocking the climax is
needed to restore (C) to stable equilibrium; and if the bifurcation
curve is decreasing, then harvesting the climax restores (C) to stable
equilibrium. The system (P) may be returned to “near-equilibrium”
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with the corresponding periodic stocking or harvesting. The bifurcation
curve determines A as a function of c22 with derivative at ĉ22 given by

(22)
dA

dc22
=

−x̂2
2f

′
2(z2)[x̂2f

′
2(z2)detC + z1c11f

′
1(z1)]

x̂2detC[f ′
2(z2) + ĉ22f ′′

2 (z2)x̂2] − z1c11f ′
1(z1)

.

Notice the similarities between (22) and (20).

5. Interactions of two pioneers and one climax. Gardini,
Lupini and Messia [8] report the occurrence of strange attractors
for three-dimensional Lotka/Volterra systems, which are included in
(13). For (13) with two linear pioneers and one exponential climax,
we observe these attractors arising from repeated period-doubling of
the return map of a stable Hopf periodic orbit as the self-crowding
parameter c11 decreases. With forcing on the first pioneer, our system
is:

(23)

dx1

dt
= x1[4 − 4(c11x1 + c22x2 + x3)] + A

dx2

dt
= x2[.75 − (c22x2 + x3)]

dx3

dt
= x3[−6 + 6(x1 + x2 + c33x3)e.5−.5(x1+x2+c33x3)].

Equation (23) represents a class of interactions where the climax has
the same effect on both pioneers, i.e., c13 = c23 = 1; each pioneer has
the same effect on the climax, i.e., c31 = c32 = 1; and the second pioneer
affects itself and the first pioneer equally so c12 = c22. The formulas for
Hopf bifurcation in (23) are complicated so we restrict our attention to
a two parameter problem by choosing c22 = 1.5 and c33 = .5. When
A = 0, a Hopf bifurcation occurs at E ∼= (.616371, .034517, .698225) as
c11 decreases through ĉ11

∼= .4056. We examine the Hopf bifurcation
curve in the (c11, A) parameter space near (c11, A) = (ĉ11, 0).

An interior equilibrium E of (23) where our Hopf bifurcation occurs
must satisfy the following three equations:

(24)
0 = x1(4 − 4(c11x1 + 1.5x2 + x3)) + A

.75 = 1.5x2 + x3

1 = x1 + x2 + .5x3.
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(a) A = 0, stable periodic solution.
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(b) A = −.05, stable equilibrium.

FIGURE 1. c11 = .38.
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For a pair of eigenvalues of E to cross the imaginary axis, the following
equation must be satisfied:

(25) (J11 + J22 + J33)trDF (E) − det DF (E) = 0

where Jii denotes the cofactor of DF (E) corresponding to the ii entry,
see Sumner [21] for a detailed discussion. With the aid of the symbolic
manipulator MAPLE, we find that

(26)

tr DF (E) = 1 − 8c11x1 + 1.5(x3 − x2)
det DF (E) = −.75x2x3(1 − 8c11x1)

J11 + J22 + J33 = 1.5(x3 − x2)(1 − 8c11x1)
+ 12x1x3 + .75x2x3.

Using (24) to eliminate x2 and x3 and inserting (26) into (25), we obtain
two equations in the unknowns x1, c11 and A:

(27)

G(x1, c11, A) ≡ x1(1 − 4c11x1) + A = 0
H(x1, c11, A) ≡ (810 − 2376c11 + 960c2

11)x
3
1

+ (2028c11528c2
11 − 1539/4)x2

1

− 825c11/2 + 3567/16)x1 + 3399/32 = 0.

The equation (G, H) = (0, 0) determines x1 and A as functions of c11

near the point Q ≡ (x1, c11, A) ∼= (.616371, .4056, 0) since the following
determinant is nonzero at Q:

det
∂(G, H)
∂(x1, A)

(Q) ∼= −47.1926.

The bifurcation curve in the (c11, A)-space is the graph of A as an
increasing function of c11 near .4056 because dA/dc11 is positive at
.4056, i.e., dA/dc11

∼= 1.95478. Hence, for c11 less than .4056, system
(23) has a stable equilibrium for negative A below the bifurcation
curve, i.e., harvesting is needed to restore (23) to stable equilibrium
(see Figure 1).

Numerical experiments indicate that appropriate levels of harvesting
will reverse the period-doubling cascade in (23) and will maintain the
system at any periodic attractor along the cascade. For example,
when c11 = .21 and A = 0, (23) has a period-2 attractor with initial
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(b) A = −.02.

FIGURE 2. c11 = .21.
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FIGURE 3. c11 = .19.
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FIGURE 3. c11 = .19. (c) A = −.04.

condition (x1, x2, x3) = (2.22669, .20737, .27923), see Figure 2a. If (23)
is harvested at a level of .02, i.e., A = −.02, then the attractor is
an orbit of period roughly one half that of the period-2 attractor, see
Figure 2b.

For c11 = .19 and A = 0, (23) appears to have a strange attractor con-
taining the orbit of the point (x1, x2, x3) = (1.30014, .155198, .286801),
see Figure 3a. If A = −.03, then this strange attractor is re-
placed with a period-4 attractor with initial condition (x1, x2, x3) =
(2.65342, .286699, .118539), see Figure 3b. If A = −.04, then (23) has a
period-2 attractor with initial condition (x1, x2, x3) = (1.93927, .25526,
.30584), see Figure 3c. Hence, the local asymptotic behavior of (23)
may be controlled by harvesting the first pioneer.
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