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BUCKLING OF A NONLINEARLY ELASTIC
COLUMN: VARIATIONAL PRINCIPLES,

BIFURCATION AND ASYMPTOTICS

PETER WOLFE

ABSTRACT. We study the equilibrium states of an elastic
column subject to an end thrust. The column is modeled
as an inextensible rod with a nonlinear moment-curvature
equation. We bring various mathematical theories to bear on
this problem; the calculus of variations, bifurcation theory,
phase plane analysis, and singular perturbation theory for
ordinary differential equations. We study the connections
between the various approaches.

Many of the results presented here are not new. Our object
is to show how this problem can serve to illustrate various
abstract theories and to show how the various approaches
compliment each other.

1. Introduction. In this paper we study the equilibrium configu-
rations of an elastic column subject to end thrust. This problem can
be posed as a nonlinear eigenvalue problem for a second order ordinary
differential equation. Of course this is a very old problem. The case in
which the column is modeled as an inextensible rod with the bending
moment depending linearly on the curvature was solved by Euler [9] in
1744 in terms of elliptic integrals. Here we will consider the problem
in which there is a nonlinear moment-curvature equation. In this case
a fairly complete picture of the structure of the set of equilibria can be
obtained by a phase plane analysis as given by Maddocks [12]. Here
we wish to show how this problem fits into the framework of two the-
ories of modern nonlinear analysis; the direct method of the calculus
of variations and global bifurcation theory. The variational approach
starts from the observation that equilibria appear as stationary points
of an energy functional. The direct method of the calculus of variations
consists of using methods of functional analysis to prove the existence
of a (not necessarily unique) global minimum of the energy. Now we
will show by other means that for some values of λ, the parameter rep-
resenting the magnitude of the end loading there are multiple solutions
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of the eigenvalue problem. A natural question to ask is which of these
solutions represent a global minimum of the energy? More generally, a
solution is called stable if it represents a local minimum of the energy.
It is important to identify which solutions are stable in this sense as it is
generally true that such solutions are also stable in the dynamic sense.
This means that if we consider the dynamic problem of the motion of
the column with initial conditions which are a small perturbation of the
equilibrium configuration, the configuration of the column will remain
near the equilibrium for all positive time.

Bifurcation theory seeks to describe the set of solutions to nonlinear
eigenvalue problems by constructing bifurcation diagrams. These are
graphical representations of the set of solutions in which the horizontal
axis represents the parameter λ and the vertical axis some functional
of the solution (see Figure 1). For all nonnegative values of λ our
problem has a trivial solution in which the column remains straight.
However, at certain values of λ, which are precisely the eigenvalues
of the linearized problem, branches of nontrivial solutions bifurcate
from the trivial solution. These are curves which, in fact, exist
globally. If the eigenvalues of the linearized problem are ordered as
0 < λ0 < λ1 < λ2 < . . . , the branch bifurcating from (λn, 0) is
characterized by the property that solutions lying on this branch have
exactly n interior zeros. Of particular interest is the curve of solutions
bifurcating from (λ0, 0). Nontrivial solutions correspond to bowed or
buckled states of the column. The natural questions are: which of the
solutions are stable and, in particular, for a given λ which solution has
the minimum energy? For λ > λ0 the trivial solution is easily seen
to be unstable. This shows that proving existence of a solution by
minimizing the energy is not a vacuous exercise. It also turns out that
branches of solutions which bifurcate from (λn, 0) for n > 0 cannot
represent stable equilibria. Thus our attention focuses on the branch
bifurcating from the trivial solution at (λ0, 0). The stability of solutions
on this branch depends on the shape of the curve. It has long been
known [7] that if the branch is as in Figure 1a, at least locally, near
the bifurcation point, the solutions are unstable. This is the case of
subcritical bifurcation. On the other hand, if the branch is as in Figure
1b, (supercritical bifurcation) the solutions on this branch are stable.
Recent work of Maddocks [12] has shown that, if the ordinate of the
bifurcation diagram (labeled F (u) in Figure 1) is chosen appropriately,
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one can make global statements about stability. Figure 1c shows a
bifurcating curve of solutions. (Antman and Adler [4] have shown that
such curves are realizable.) Maddocks’ results imply that solutions
lying on segments AB and CD are stable while those lying on segments
OA and BC are unstable.

The bifurcation diagram can be obtained by applying the results of
Crandall and Rabinowitz [8, 15]. This theory gives us a fairly complete
description of the bifurcation diagram. However, it cannot predict the
precise shape of the curves, i.e., the number of “wiggles” as in Figure
1c. (It can, however, give the initial direction of the curve as in Figures
1a and 1b.) The phase plane analysis of Maddocks confirms the results
of Crandall and Rabinowitz and thus serves to illustrate it.

Another interesting aspect of the problem is the behavior of solutions
as λ → ∞. Our analysis will show that λ → ∞ along each branch, i.e.,
for every nonnegative integer n, for λ > λn, there exists a solution
(actually two, by symmetry) having exactly n interior zeros. The
asymptotic behavior of solutions as λ → ∞ is a chapter in the theory
of singular perturbations for ordinary differential equations.

The outline of the remainder of the paper is as follows. Section 2 is
devoted to a statement of the problem and its variational formulation.
Section 3 describes the existence theorem using the direct method of
the calculus of variations. Section 4 is concerned with global bifurcation
theory. Section 5 discusses the phase plane analysis while Section
6 deals with the stability results. Section 7 is concerned with the
asymptotic behavior of solutions as λ → ∞. Some concluding remarks
constitute Section 8.

2. Statement of the problem. We consider planar deformations of
a column clamped at one end and subject to a compressive force at the
other. We model the column as an inextensible rod. Let {i, j} be a fixed
orthonormal basis in the plane. We define a position vector function r
of the real variable s ∈ [0, 1]. Here s identifies material cross sections
of the rod so that r(s) = x(s)i + y(s)j is the position of the material
point at the centroid of the section s in the deformed configuration.
The condition that the rod be inextensible is that |r′(s)| = 1 so that

(2.1) r′(s) = cos θ(s)i + sin θ(s)j,

where prime denotes differentiation with respect to s. We assume that
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FIGURE 1. Bifurcation diagrams. Figure 1a shows an example of subcritical
bifurcation; the branch of nontrivial solutions is unstable. Figure 1b shows
an example of supercritical bifurcation; the branch of nontrivial solutions is
stable.
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in the natural (undeformed) state r(s) = si and the rod is clamped at
0 so that

(2.2) r(0) = 0, θ(0) = 0.

The free end of the rod, s = 1, is subjected to a compressive force
acting parallel to i

(2.3) f(1) = −λi, λ > 0.

Let n(s) denote the contact force and M(s)k, where k = i × j, the
bending moment exerted by the material of (s, 1] on the material of
[0, s]. Then the equations of equilibrium for the rod are

n′ = 0,(2.4)
M ′ + (r′ × n) · k = 0.(2.5)

From (2.3) and (2.4) we find

(2.6) n = −λi.

If we insert (2.6) in (2.5) and use (2.1), we find

(2.7) M ′ + λ sin θ = 0.

The elastic properties of the rod are embodied in the moment-curvature
equation relating the bending moment M to the curvature θ′. Thus,
we assume that there is a differentiable function

R � µ → M̂(µ) ∈ R

such that

(2.8) M(s) = M̂(θ′(s)).

We assume

(2.9)
M̂(−µ) = −M̂(µ), M̂(0) = 0, M̂ ′(0) = 1,

M̂µ > 0, M̂(µ) → ∞ as µ → ∞.
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(From now on we will drop the carat over the M .) The condition that
the end of the rod at s = 1 be free is expressed by the condition

(2.10) M(1) = 0,

or, in view of (2.9), this is equivalent to

(2.11) θ′(1) = 0.

Thus our boundary value problem consists of finding solutions to the
boundary value problem

(2.12) M(θ′)′ + λ sin θ = 0, 0 < s < 1,

subject to the boundary conditions

(2.13) θ(0) = θ′(1) = 0.

If we can solve (2.12) and (2.13), we can determine the deformed
configuration of the rod from (2.1) and (2.2a), i.e.,

(2.14) r(s) =
∫ s

0

cos(θ(σ)) dσi +
∫ s

0

sin(θ(σ)) dσj.

For all values of λ, θ ≡ 0 is a solution (the trivial solution) correspond-
ing to a straight rod. Of course, the object of this paper is to study
the existence of nontrivial solutions.

We define the strain energy function W by

(2.15) W (p) =
∫ p

0

M(τ ) dτ.

Then from (2.9),

(2.16)
W (−p) = W (p), W (0) = W ′(0) = 0, W ′′(0) = 1,

W ′′(p) > 0, W (p)/|p| → ∞ as |p| → ∞.

The boundary value problem (2.12), (2.13) is equivalent to finding
stationary points of the energy functional

(2.17) E(θ) =
∫ 1

0

(W (θ′) + λ cos θ) ds
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over the class of functions

V = {θ | θ ∈ C2[0, 1], θ(0) = 0}.
Equation (2.12) is the Euler-Lagrange equation for this functional. The
condition θ′(1) = 0 is a natural boundary condition. In the next
section we will prove existence of nontrivial solutions of (2.12), (2.13)
by showing that for each λ, E has an absolute minimum in the class
V and for sufficiently large λ > 0 this minimum is not attained at the
trivial solution.

3. Existence via the calculus of variations. In this section
we will prove existence of a solution of (2.12), (2.13) by proving the
existence of a minimizer of the energy E in a Sobolev space and by
showing that, in fact, this solution is in C2[0, 1] and satisfies (2.12),
(2.13). We will show the existence of a minimizer of the energy by
applying a theorem of functional analysis.

Theorem 3.1 [17]. Let X be a reflexive Banach space and E a
coercive, sequentially weakly lower semicontinuous functional on X.
Then E attains its minimum on X.

Recall that E is coercive if for each α ∈ R the set {z ∈ X | E(z) ≤ α}
is bounded.

To apply Theorem 3.1, we define

(3.2) X = {θ | θ ∈ H1[0, 1]; θ(0) = 0}
where H1[0, 1] is the Sobolev space of functions in L2[0, 1] whose
distributional derivatives are in L2[0, 1], or equivalently, the space of
absolutely continuous functions with square integrable first derivatives.

We argue as in [16]. We first consider the mapping

(3.3) θ →
∫ 1

0

W (θ′(s)) ds.

We wish to show that this map is sequentially weakly lower semicon-
tinuous, i.e., that for each c ∈ R the set

F (c) =
{

θ |
∫ 1

0

W (θ′(s)) ds ≤ c

}
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is closed in the weak topology of X. Since, by (2.16), W is strictly
convex each set F (c) is convex. Since a strongly closed convex set is
weakly closed it is sufficient to show that F (c) is strongly closed. Thus,
let {θk} ∈ F (c) and suppose θk → θ in X. Then θ′k → θ′ in L2[0, 1].
Then {θ′k} has a subsequence, again denoted by {θ′k} which converges
almost everywhere to θ′. Since W is continuous, Fatou’s lemma implies

∫ 1

0

W (θ′(s)) ds =
∫ 1

0

lim W (θ′k(s)) ds

≤ lim inf
∫ 1

0

W (θ′k(s)) ds ≤ c,

showing that the mapping (3.3) is sequentially weakly lower semicon-
tinuous. Next we observe that the mapping

θ →
∫ 1

0

cos(θ(s)) ds

is continuous from H1[0, 1] to R (in the strong topology). This is
because if θk → θ in H1[0, 1] then, in fact, θk → θ uniformly on [0, 1].
For θ ∈ X we have the representation

(3.4) θ(s) =
∫ s

0

θ′(σ) dσ.

Thus the functional E(θ) is sequentially weakly lower semicontinuous
on X. The coercivity of E follows easily from the growth condition on
W , (2.16). Thus, we may apply Theorem 3.1 to conclude:

Theorem 3.5. The functional E(θ) defined by (2.17) attains its
minimum over the space X defined by (3.2).

We now show that a minimizer of E is in fact in C2[0, 1] and satisfies
(2.12), (2.13). For this we let u = θ′ so that

θ(s) =
∫ s

0

u(σ) dσ.
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The function u is in L2[0, 1]. The minimization problem can then be
restated as

Ê(u) =
∫ 1

0

{
W (u(s)) + λ cos

( ∫ s

0

u(σ) dσ

)}
ds

= min{Ê(v) | v ∈ L2[0, 1]}.
The first step in the regularity theory is to show that u ∈ L∞[0, 1].
The most convenient way to do this is to use the convexity of W . The
following is a variant of an argument given in [5]. Let v ∈ L2[0, 1] be
such that

(3.6)
∫ 1

0

W (v(s)) ds < ∞.

For 0 < t < 1, by the convexity of W ,

(3.7) W ((1 − t)u + tv) < (1 − t)W (u) + tW (v)

so (1 − t)u + tv has finite energy and

(3.8) Ê(u) ≤ Ê((1 − t)u + tv).

If we use (3.7) in (3.8) we find for 0 < t < 1
(3.9)∫ 1

0

W (u(s)) ds ≤
∫ 1

0

W (v(s)) ds

+
λ

t

∫ 1

0

[
cos

( ∫ s

0

{(1 − t)u(σ) + tv(σ)} dσ

)

− cos
∫ s

0

u(σ) dσ

]
ds.

We let t → 0. An easy argument based on the Lebesgue dominated
convergence theorem shows that the second term on the right converges
to

λ

∫ 1

0

sin
{∫ s

0

u(σ) dσ

}∫ s

0

(v(τ ) − u(τ )) dτ dσ.

By reversing the order of integration this can be rewritten as

(3.10) λ

∫ 1

0

v(τ ) − u(τ )) dτ

∫ 1

τ

sin
( ∫ s

0

u(σ) dσ

)
ds.
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Hence the result of letting t → 0 in (3.9) is

(3.11)
∫ 1

0

{
W (u(s)) − W (v(s)) + λ(v(s) − u(s))

·
∫ 1

s

sin
( ∫ σ

0

u(τ ) dτ

)
dσ

}
ds ≤ 0.

Equation (3.11) holds for every v satisfying (3.6). Now we choose v.
Let Ω be a measurable subset of [0, 1], and define

(3.12) v =
{

0 in Ω,
u in [0, 1] − Ω.

This v satisfies (3.6). We use this v in (3.11). We find

(3.13)
∫

Ω

{
W (u(s)) − λu(s)

∫ 1

s

sin
( ∫ σ

0

u(τ ) dτ

)
dσ

}
ds ≤ 0.

Since Ω is arbitrary, (3.13) implies that

(3.14) W (u(s)) ≤ λu(s)
∫ 1

s

sin
( ∫ σ

0

u(τ ) dτ

)
dσ a.e.

Hence, in particular, W (u(s)) ≤ λ|u(s)| almost everywhere in [0, 1]. By
(2.16) this implies that u ∈ L∞[0, 1].

Thus if η is any test function, t ∈ R and v = θ′ + tη′ then (3.6) is
satisfied. It is easy to see that the map t → E(θ + tη) is differentiable
and its derivative at t = 0 must be zero, i.e.,

(3.15)
∫ 1

0

{η′(s)M(θ′(s)) − λ sin θ(s)η(s)} ds = 0.

So we see that θ is a weak solution of (2.12). But it is standard that
weak solutions of (2.12) are, in fact, classical solutions. Thus, if we
take η in (3.15) to be a smooth function not vanishing at s = 1 and
integrate by parts we see that θ′(1) = 0.

Thus, we have proven existence of a solution of (2.12), (2.13) for each
λ which, however, may be trivial. However, for λ sufficiently large, the
solution we found by this method is nontrivial.
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Proposition 3.16. Let

(3.17) λ > π2/4.

Then the trivial solution θ ≡ 0 is not stable, i.e., it does not represent
a local minimum of the energy.

Proof. Let

(3.18) η = sin
π

2
s,

F (t) = E(tη) =
∫ 1

0

{W (tη′) + λ cos(tη)} ds.

Then

F ′(t) =
∫ 1

0

{M(tη′)η′ − λ sin(tη)η} ds.

Of course, F ′(0) = 0. We compute

(3.19)
F ′′(t) =

∫ 1

0

{M ′(tη′)(η′)2 − λ cos(tη)η2} ds,

F ′′(0) =
∫ 1

0

{(η′)2 − λη2} ds.

(Recall that by (2.16) M ′(0) = 1.) If we insert η given by (3.18) into
(3.19) and use (3.17), we find

F ′′(0) =
1
2

(
π2

4
− λ

)
< 0.

Thus for λ satisfying (3.17) the trivial solution is not even a local
minimum of the energy. Thus, there must be nontrivial solutions of
(2.12) and (2.13) for all λ satisfying (3.17). In fact, we will show in the
next section that if

(3.20) λ > (2n + 1)2π2/4

there are at least 2n+2 nontrivial solutions of (2.12), (2.13). A question
naturally arises as to which of these solutions minimize the energy. One



800 P. WOLFE

of the main goals of this paper is to provide an answer to this question.

4. Global bifurcation. In this section we consider (2.12) and
(2.13) from the point of view of global bifurcation theory. This theory,
developed mainly by Crandall and Rabinowitz [8, 15] in the 1970’s finds
its main applications in the area of boundary value problems such as
(2.12), (2.13). This theory deals with equations of the form

(4.1) u = λLu + H(λ, u)

where L is a compact linear operator on a Banach space E and H is
a nonlinear compact map from R × E into E with H = o(||u||) near
u = 0 uniformly on bounded λ intervals. The set of solutions of (4.1)
consists of pairs (λ, u) in R × E.

For every λ ∈ R (λ, 0) is a solution of (4.1). These are the trivial
solutions. A point (µ, 0) is a bifurcation point if every neighborhood
of (µ, 0) in R × E contains nontrivial solutions. A necessary condition
for (µ, 0) to be a bifurcation point is that µ−1 belong to the spectrum
of L. We say that µ is an eigenvalue of L if there exists a nonzero
v ∈ E such that v = λLv. The multiplicity of µ is the dimension of
∪∞

n=1 ker(I − µL)n where kerA denotes the kernel of A. Since L is
compact, the eigenvalues of L are isolated and have finite multiplicity.
The basic result is

Theorem 4.2 [15]. If µ is an eigenvalue of L of odd multiplicity,
then (µ, 0) is a bifurcation point for (4.1).

This is a purely local result. Actually much more is true, namely the
following global result. Let S denote the closure of the set of nontrivial
solutions of (4.1) in R × E.

Theorem 4.3 [15]. If µ is an eigenvalue of L of odd multiplicity,
then S contains a maximal connected subset Σ(µ), (called a branch
through (µ, 0)) which contains (µ, 0) and is either

(i) unbounded or

(ii) contains (ν, 0) where ν �= µ is an eigenvalue of L.
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In the application of the theory to (2.12) and (2.13), we will show
that, in fact, alternative (ii) cannot occur. Thus, branches of solutions
bifurcating from (µ, 0) and (ν, 0) where µ and ν are distinct eigenvalues
of L are disjoint. The natural question to ask is whether these branches
are, in fact, curves. In the next section we will show that they are. In
general, we have the following local result.

Theorem 4.4 [15]. If µ is a simple eigenvalue of L (i.e., has
multiplicity 1) and H(λ, u) = λN(u) where N is continuously Frechet
differentiable near u = 0, then near (µ, 0), Σ(µ) consists of a continuous
curve of solutions.

We now show that we can transform (2.12) and (2.13) into the form
(4.1) and that we may apply Theorems 4.1, 4.2 and 4.3.

As E we take C1[0, 1], the space of functions which, along with their
first derivatives, are continuous on [0, 1]. For f ∈ C1[0, 1] we define

(4.5) ||f || = max
0≤s≤1

|f(s)| + max
0≤s≤1

|f ′(s)|.

In order to convert the problem (2.12), (2.13) to the form (4.1) with L
and H compact, we rewrite (2.12) as

(4.6) θ′′ +
λ sin θ

M ′(θ)
= 0.

Let G(s, t) be the Green’s function for L v = −v′′ with the boundary
conditions (2.13);

(4.7) G(s, t) =
{

s, 0 ≤ s ≤ t ≤ 1,
t, 0 ≤ t ≤ s ≤ 1.

Then (4.6) with the boundary condition (2.13) is equivalent to

(4.8) θ(s) = λ

∫ 1

0

G(s, t)
sin θ(t)

M ′(θ′(t))
dt.

It is easy to check that the expression on the left of (4.8) considered as
an operator on C1[0, 1] has the form (4.1). The linearization of (4.8)
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about the trivial solution is equivalent to the linearization of (2.12),
viz.

(4.9) θ′′ + λθ = 0,

along with the boundary conditions (2.13). This problem has eigenval-
ues

(4.10) λn =
(

n +
1
2

)2

π2, n = 0, 1, 2, 3, . . .

with the corresponding eigenfunctions

(4.11) φn(s) = sin
(

n +
1
2

)
πs.

Each of the eigenvalues is simple. Therefore, we may apply Theorems
4.2, 4.3 and 4.4 to conclude that through each point (λn, 0) there passes
a connected family Cn of solutions of (2.12), (2.13) which is, at least
locally, a curve. Now in fact, Cn and Cm are disjoint if n �= m. This
follows from the fact that nontrivial solutions belonging to Cn inherit
their nodal structure from (4.11) and hence may be characterized by
having exactly n interior zeros (i.e., zeros on (0, 1)). In the next section
we will show that Cn is globally a curve. Since alternative (ii) of
Theorem 4.3 is ruled out, Cn must be unbounded. We now show that
on each Cn, λ is unbounded from above, i.e., for every λ > λn there
exists a nontrivial solution of (2.12), (2.13) having exactly n interior
zeros. We do this by ruling out all other possibilities.

Lemma 4.12. If λ ≤ 0 (2.12), (2.13) has only the trivial solution.

Proof. If λ = 0, this follows directly from the equation which can be
integrated to obtain M(θ′) = constant. Since θ′(1) = 0 the constant is
zero and θ′ ≡ 0. Since θ(0) = 0, θ ≡ 0. Otherwise, we note that (2.12),
(2.13) has a first integral

(4.13) F (θ′(s)) − λ cos θ(s) = −λ cos γ

where

(4.14) F (p) = pM(p) − W (p)
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and

(4.15) γ = θ(1).

We note that F has the following properties:

(4.16)
F (0) = 0, F (p) > 0 for p �= 0,

F is even and convex, F (p) → ∞ as |p| → ∞.

Now, for a nontrivial solution F (θ′(0)) > 0 but

F (θ′(0)) = λ(1 − cos γ) ≤ 0

if λ < 0, a contradiction, proving the lemma. If we assume

(4.17) W ′′(p) ≥ W (p)/p for p �= 0,

then, as is shown in [12] a sharp lower bound on the set of λ for which
nontrivial solutions exist is λ0. This is the case in which C0 is as in
Figure 1b (supercritical bifurcation). However, if (4.17) is violated, it
is easy to construct examples in which C0 is as in Figure 1a (subcritical
bifurcation) and there exist nontrivial solutions for λ < λ0. However,
as we are in the process of showing, if we follow the curve in Figure 1a
it must eventually cross every line λ = c for c > λ0.

Lemma 4.18. For a fixed λ > 0, there exists a constant C(λ) such
that if θ is a solution of (2.12), (2.13), then

(4.19) ||θ||C1 ≤ C(λ).

Proof. From (4.13) it follows that F (θ′) ≤ 2λ. Since F is coercive
this implies that there is a C ′ = C ′(λ) such that

(4.20) |θ′(s)| ≤ C ′(λ).

The bound (4.19) then follows from (3.4).

Remark 4.21. Our phase plane analysis of the next section shows that
we have the a priori bound

(4.22) |θ(s)| < π, 0 ≤ s ≤ 1.
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It follows from Lemmas 4.12 and 4.18 that, along Cn, λ must be
unbounded from above as all other possibilities have been ruled out.
Since, if θ(s) is a solution of (2.12), (2.13), then so is −θ(s) nontrivial
solutions occur in pairs, and we have

Theorem 4.22. Let λ satisfy (3.20). Then there are at least 2n + 2
nontrivial solutions of (2.12), (2.13).

5. Phase plane analysis. In this section we show how the problem
(2.12), (2.13) can be attacked directly using phase plane analysis. This
analysis confirms the results obtained by bifurcation theory and shows
that the sets Cn defined in Section 4 are indeed curves. The results of
this section are taken from Maddock’s paper [12].

We let u = θ, v = θ′ and write (2.12) as the system

(5.1) u′ = v, v′ =
λ sin u

M ′(v)
.

Equation (5.1) has rest points at (u, v) = (nπ, 0), n = 0,±1,±2, . . . .
It also has the first integral

(5.2) F (v) − λ cos u = −λ cos γ

where F is given by (4.14) and γ by (4.15). The phase plane picture is
given in Figure 2. The curve corresponding to γ = π, i.e.,

(5.3) F (v) − λ(cos u + 1) = 0

is a separatrix connecting the rest points at (−π, 0) and (π, 0). Orbits
of (5.1) lie on the curves (5.2). Since F is an even function of v, the
phase plane picture is symmetric in both axes. For a fixed λ a nontrivial
solution exists and lies in Cn precisely when an orbit which starts on
the v axis at s = 0 arrives at the u axis at s = 1/(2n + 1), i.e., the
“time” it takes to make a quarter turn around the origin is 1/(2n + 1).
In order to show that such orbits actually exist we must show that
the parameter γ can be chosen in (0, π) in such a way as to bring this
about.

We will consider solutions with θ′(0) > 0. By symmetry there will be
a corresponding solution with θ′(0) < 0 differing only in sign.
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FIGURE 2. Phase plane for equation (5.1).

Since we are considering a piece of the orbit for which v = θ′ ≥ 0 we
may rewrite (5.2) as

(5.4) dθ/ds = G(λ(cos θ − cos γ))

where G is the inverse of the restriction of F to [0,∞). Thus, the
“time” it takes for the orbit to go from (0, θ′(0)) to (γ, 0) is given by

(5.5) T (γ, λ) =
∫ γ

0

dθ

G(λ(cos θ − cos γ))
.

Recall that we have a nontrivial solution of (2.12), (2.13) lying on Cn

precisely when

(5.6) T (γ, λ) =
1

2n + 1
.

Our results follow from the theorem proved by Maddocks. (The
notation used here is different from that used in [12].)

Theorem 5.7 [12]. The function T defined by (5.5) has the following
properties:
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T is a differentiable function of (γ, λ) on (0, π) × (0,∞) with

(5.8) lim
γ→π

T (γ, λ) = ∞, lim
γ→0

T (γ, λ) =
π

2
√

λ
,

(5.9)
∂T (γ, λ)

∂λ
< 0.

If (4.16) holds, then

(5.10)
∂T (γ, λ)

∂γ
> 0.

From this theorem we can immediately read off the following results:

1. If

(5.11) λ >
π2

4
(2n + 1)2 = λn

there exists a nontrivial solution of (2.12), (2.13) in Cn.

2. If in addition (4.17) and thus (5.10) holds, the solution in Cn is
unique (up to sign). In this case the bifurcation is supercritical. By
the implicit function theorem, (5.6) can be solved for γ as a function
of λ on (λn,∞). This also shows that Cn is a curve.)

3. In any case (5.9) shows that (5.6) can be solved for λ as a function
of γ on (0, π), again showing that Cn is a curve.

If (4.17) is violated (it is easy to construct such W ’s) then the curve
can assume shapes as in Figures 1a and 1c.

Thus we have confirmed the theoretical analysis of Section 4. We
next turn to the issue of stability.

6. Stability. In this section we consider the stability of solutions
on the branches of nontrivial solutions which bifurcate from the trivial
solution. Recall that a solution is stable if it is a local minimum of
the energy E defined by (2.17). A solution θ is stable if the second
variation of E at θ is a positive definite quadratic form [12, 13], i.e.,

(6.1)
∫ 1

0

{M ′(θ′(s))η′(s)2 + λ cos(θ(s))η(s)2} ds > 0
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for all η ∈ V which do not vanish identically. Condition (6.1) is
equivalent to the requirement that the linear, self adjoint eigenvalue
problem

−(M ′(θ′)η′)′ + λ cos θη = µη,(6.2)
η(0) = 0, η′(1) = 0(6.3)

have only positive eigenvalues.

The following result is classical (see, e.g., [13, Section 6]).

Theorem 6.4. The number of negative eigenvalues of (6.2), (6.3)
is equal to the number of interior zeros of the solution y of the initial
value problem

−(M ′(θ′)y′)′ + λ cos θy = 0,(6.5)
y(1) = 1, y′(1) = 0.(6.6)

Theorem 6.7. Solutions lying on Cn for n > 0 are unstable.

Proof. If θ(s) is a nontrivial solution of (2.12), (2.13) then θ′(s)
satisfies (6.5). (Just differentiate (2.12).) If θ has n ≥ 1 interior zeros,
then θ′ has at least one interior zero. Of course, θ′(1) = 0. Since
zeros of solutions of (6.5) interlace each other, the solution y of (6.5),
(6.6) must have at least one interior zero. The result follows from an
application of Theorem 6.4.

Theorem 6.7 tells us that for λ > λ0 the minimum energy solution
must lie on C0 and therefore we again see that this branch must
intersect each line λ = c for c > λ0.

We now turn to the branch C0. In the context of their bifurcation
theory, Crandall and Rabinowitz [7] have shown that if the bifurcation
is subcritical (Fig. 1a), then, at least near the bifurcation point,
solutions on C0 are unstable. This is a purely local result. The
definitive work on the subject is that of Maddocks [12]. He is able
to analyze quite completely the stability of solutions along a branch



808 P. WOLFE

3

2.5

2

1.5

1

0.5

0.2 0.4 0.6 0.8 1

FIGURE 3. Solution on C0 for W (p) = p2/2, λ = 50.

such as C0. The crucial idea in this paper is that when the ordinate
in the bifurcation diagram is chosen appropriately stability depends on
the shape of the curve. His results are global. The relevant result as
applied to our problem is

Theorem 6.8 [12]. On C0 the forward going segments, i.e., those
segments for which dγ/dλ > 0 are stable while the backward going
segments are unstable.

Hence in Figure 1c, if F (u) = γ = θ(1), then the solutions on
segments AB and CD are stable while solutions on segments OA and
BC are unstable.

So we see that the answer to the question of the location of the
minimum energy solutions is that they must lie on one of the forward
going segments of C0.

7. Asymptotic behavior. We now consider the behavior of
solutions as λ → ∞ along the branch Cn. It is interesting to trace
the evolution of a solution as it moves along Cn. The branch Cn

begins at (λn, 0), along the branch λ → ∞ although perhaps not
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FIGURE 4a. Solution on C3 for W (p) = p2/2, λ = 125. Note: λ3 = (7π/2)2 =
120.9.
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FIGURE 4b. Solution on C3 for W (p) = p2/2, λ = 1000.
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FIGURE 4c. Solution on C3 for W (p) = p2/2, λ = 2000.

monotonically. Near the initial point the solution can be represented as
a small multiple of the eigenfunction (4.11) plus a smaller perturbation.
This is illustrated in Figure 4a. We now wish to analyze the solution
for very large λ. We may rewrite (2.12) as

(7.1) εM ′(θ′) + sin θ = 0

where ε = 1/λ. We recognize (7.1) as a singular perturbation problem.
This problem is treated in [14]. Formally, for small ε, we obtain a zero
order approximation by setting ε = 0, i.e., sin θ = 0 so that θ = 0 or
±π. What we may expect is that the solution will be constant except
for transition layers in which the solution jumps from one constant to
another in a very short s interval. More specifically, referring to the
phase plane picture, Figure 2, since (±π, 0) are saddle points, orbits
which are close to the separatrix must spend much of the “time” in a
neighborhood of these points. So for a solution lying on C0, for large
λ, in the phase plane representation the solution will move quickly to
the neighborhood of (π, 0) (Figure 3). In this case, the transition layer
is at s = 0 and θ is near π for most of the interval. If we denote by
θ(s, λ) the solution lying on C0,

(7.3) lim
λ→∞

θ(s, λ) = π, 0 < s ≤ 1.
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Similarly, if θ(s, λ) is a solution lying on Cn, n ≥ 1, then for large λ,
θ(s, λ) undergoes a succession of jumps from π to −π and from −π to
π, the jumps occurring at s = 2k/(2n + 1) for k = 1, . . . , n. So, for
example, for θ(s, λ) on C1,

(7.4) lim
λ→∞

θ(s, λ) =
{

π, 0 < s < 2/3,
−π, 2/3 < s ≤ 1,

and for θ(s, λ) on C2

(7.5) lim
λ→∞

θ(s, λ) =

⎧⎨
⎩

π, 0 < s < 2/5,
−π, 2/5 < s < 4/5,
π, 4/5 < s ≤ 1.

Figure 4 shows the evolution of a solution on C3. For λ near λ3 =
(7π/2)2 the solution looks like a multiple of

φ3(s) = sin
7π

2
s.

As λ increases, we see the curve flattening out on top and transition
layers developing (Figure 4b). As λ continues to increase, the flattening
process becomes more pronounced (Figure 4c). Figure 5 shows the
shape of the rod for large λ corresponding to the solution pictured in
Figure 4c. This solution is constructed by using (2.14). As one can
see, this solution is highly nonphysical. But recall that it lies on an
unstable branch so we wouldn’t expect to see it in nature.

8. Conclusions. In this paper we have tried to show how the
techniques of modern nonlinear analysis may be brought to bear on a
classical problem. Of course these techniques can be applied to more
complicated models in which the rod is assumed to be nonlinearly
elastic and can undergo stretch, twist and shear, as well as being
subject to a variety of forces [6, 16, 18]. These problems can be
three dimensional as well as planar. In some problems there is an
obstruction to the use of bifurcation theory. Because of the existence
of symmetries in the problem, the hypothesis of Theorem 4.4 fails. The
problem is that the eigenvalues are not simple. This has led to a study
of “bifurcation in the presence of symmetry” [10, 11], which is an effort
to surmount this difficulty. Sometimes one can prove bifurcation results
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FIGURE 5. Unphysical “shape of the rod” corresponding to the solution
depicted in Figure 4c.

in cases in which the Crandall-Rabinowitz theory fails by an argument
which directly exploits the variational structure of the problem [19].
Another area of investigation is multiparameter bifurcation theory [1,
2, 11].

These problems can also be investigated numerically. In a typical
numerical study the boundary value problem is solved by a shooting
method. The bifurcating branches of solutions can be traced using a
numerical continuation method [3]. In fact, even with all the analyt-
ical tools at our disposal, much insight can be gained by performing
numerical experiments.

Acknowledgment. I would like to thank John Maddocks for many
helpful discussions and for introducing me to his work.

REFERENCES

1. J.C. Alexander and S.S. Antman, Global and local behavior of bifurcating
multidimensional continua of solutions for multiparameter eigenvalue problems,
Arch. Rational Mech. Anal. 76 (1981), 339 354.

2. J.C. Alexander and J.A. Yorke, The implicit function theorem and the global
methods of cohomology, J. Funct. Anal. 21 (1976), 330 339.



BUCKLING OF A NONLINEARLY ELASTIC COLUMN 813

3. , The homotopy continuation method: Numerically implementable topo-
logical procedures, Trans. Amer. Math. Soc. 242 (1978), 271 284.

4. S.S. Antman and C.L. Adler, Design of material properties that yield a
prescribed global buckling response, J. Appl. Mech. 54 (1987), 263 268.

5. S.S. Antman and H. Brezis, The existence of orientation preserving defor-
mations in nonlinear elasticity, in Nonlinear analysis and mechanics, Heriot-Watt
Symposium Vol. II, Research Notes in Math. 27, Pitman, London (1987), 1 29.

6. S.S. Antman and G. Rosenfeld, Global behavior of buckled states of nonlinearly
elastic rods, SIAM Rev. 20 (1978), 513 566. Corrections and additions, ibid., 22
(1980), 186 187.

7. M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple
eigenvalues, and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 160 192.

8. , Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321 340.

9. L. Euler, Methodus inveniendi lineas curvas maximim minimivi proprietate
goudentes, Opera Omnia I, Vol. 24, Fussli, Zurich (1960), 231 297.

10. T.J. Healey, Global bifurcation and continuation in the presence of symmetry
with an application to solid mechanics, SIAM J. Math. Anal. 19 (1988), 824 840.

11. , Large rotating states of a conducting wire in a magnetic field: Subtle
symmetry and multiparameter bifurcation, J. Elasticity 24 (1990), 211 227.

12. J.H. Maddocks, Stability and folds, Arch. Rational Mech. Anal. 99 (1987),
301 328.

13. , Stability of nonlinearly elastic rods, Arch. Rational Mech. Anal. 85
(1984), 311 354.

14. R.E. O’Malley, Jr., Phase plane solutions to some singular perturbation
problems, J. Math. Anal. Appl. 54 (1976), 449 466.

15. P.H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky
Mountain J. Math. 3 (1973), 161 202.

16. T.J. Seidman and P. Wolfe, Equilibrium states of an elastic conducting rod
in a magnetic field, Arch. Rational Mech. Anal. 102 (1988), 307 329.

17. M.M. Vainberg, Variational methods for the study of nonlinear operators (in
Russian), English trans., Holden Day, San Francisco, 1964.

18. P. Wolfe, Bifurcation theory of a conducting rod subject to magnetic forces,
Int. J. Nonlinear Mech. 25 (1990), 597 604.

19. , Bifurcation theory of an elastic conducting rod in a magnetic field,
Q. J. Mech. Appl. Math. 41 (1988), 265 279.

Department of Mathematics, University of Maryland, College Park,
Maryland 20742


