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GENERALIZED FEYNMAN INTEGRALS:
THE £(Ly,L,) THEORY

CHULL PARK AND DAVID SKOUG

ABSTRACT. In this paper we develop an £(L2(R), L2(R))
theory for the Feynman integral of functionals of general
stochastic processes.

1. Introduction. In [1], Cameron and Storvick introduced a
very general analytic operator-valued function space Feynman integral,
Jg"(F), which mapped an Lz(R) function ¢ into an L2(R) function
(Jg"(F)¥)(§). Further work involving the Ly — Lo theory, the
L, — L. theory and the L, — L, theory, 1/p+1/p’ =1, includes [2,
3, 11, 12, 13].

In [9], Chung and Skoug introduced the concept of a conditional
Feynman integral using Yeh'’s definition of conditional Wiener integrals
[20]. In [7], Chung, Park and Skoug expressed the Feynman integral
J3"(F) € L(L1(R), Loo(R)) in terms of conditional Feynman integrals.

In various Feynman integration theories, the integrand F' of the Feyn-
man integral is a functional of the standard Wiener (i.e., Brownian)
process. In [8], Chung, Park and Skoug defined a Feynman integral for
functionals of general stochastic processes. They then used the theory
of the conditional Feynman integral to develop an L(K(R), Lo (R))
theory where

K(R) = {t1 + 12 : ¢¥1 € Li(R) and ¢, € M(R)},

and where M (R) is the space of Fourier transforms of measures from
M(R), the space of C-valued countably additive Borel measures on R.

In this paper we develop an £(L2(R), L2(R)) theory for the operator-
valued Feynman integral of functionals of general stochastic processes.
The Ly — Lo theory is more relevant in quantum mechanics and
other applications than the L1 — Lo, or the K(R) — Lo (R) theory.
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Moreover, it is usually more difficult to establish the Ly — Lo theory;

partly because a summation procedure is needed since ¥ need not be
in L1 (R)

2. Definitions and preliminaries. Let C[0,T] denote the R-
valued continuous functions on [0, T]. Let (Cy[0,T], m) denote Wiener
space where Cy[0,7] is the set of all functions z(¢) in C[0,7] with
z(0) = 0 and m is the Gaussian measure on Cy[0,T] with mean zero
and covariance function R(s,t) = E[z(s)z(t)] = min(s,t). We denote
the Wiener integral of a Wiener measurable function F' by

E[F] = oo F(z)m(dz)

whenever the integral exists.

Let h be an element of L2[0,T] with ||h|| > 0 and let Z : Cy[0,T] x
[0,7] — R be the Gaussian process

(2.1) Z(a,t) = /0 h(s) da(s)

where fot h(s) dz(s) denotes the Paley-Wiener-Zygmund stochastic in-
tegral. Also, let

(2.2) at) = /0 h2(s) ds.

In defining various analytic operator-valued Feynman integrals of F',
one starts [1, p. 517], for A > 0, with the Wiener integral

[ PO e () + m(da),
Co[0,T]

and then extends analytically in A to the right-half complex plane. Our
starting point is the Wiener integral

/c [0,7] FO\'V2Z(z,) + YNV Z(2,T) + E)m(da).
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Definition. Let C,C,; and C7 denote respectively the com-
plex numbers, the complex numbers with positive real part, and
the nonzero complex numbers with nonnegative real part. Let h
be an element of L3[0,7] with ||| > 0, and let Z(z,t) be given
by (2.1). For each A > 0, ¥ € Ly(R) and { € R, assume that
FOY2Z(x, ) + )W\ Y2Z(x,T) + €) is Wiener integrable with re-
spect to z on Cy(0,T], and let
(2.3)

(retEpw) @ = [ PO 2 )60 2w 1) 4 Emd),

If by, (F)y isin Ly(R) as a function of £, and if the correspondence ¢ —
hr, (F)Y gives an element of £(Ly(R), Ly(R)), we say the operator-
valued space integral hr, (F') exists. Next suppose there exists an £-
valued function which is analytic in A on C, and agrees with hy, (F)
on (0,+,00); then this £-valued function is denoted by hje=(F') and
is called the analytic operator-valued Wiener integral of F' associated
with A. For A = —ig € CZ, suppose there exists an operator f jan (F)
in £(L2(R), Lz(R)) such that for every ¢ in Ly(R),

(2.4) |[hgan (F)Y — hygn (F)9¢]|l2 — 0 as A — ig through C,

then h Jan (F) is called the generalized analytic operator-valued Feyn-
man integral of F' with parameter g.

Note that if h(t) = 1 on [0,T], then this definition agrees with the
previous definitions of the analytic operator-valued Feynman integral
1, 11, 13].

In various integral representations for h Jan (F)4, since ¢ is not
necessarily in L;(R), the integral is interpreted in the mean as in the
theory of the La-Fourier transform. We use the notation

(€3] A
FEm)dn = Lim.as o / F(&m) dn
R —A

which means

© A ,

A—+oo
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The following lemma [1, 11, 13] plays a key role in this paper.

Lemma 1. Let s be a positive number. For all A € CT and
'(/J € Lo (R) let

(25) () = <2m>1/2 [ vtmesn { - 201

Then Cx¢ is in La(R) and ||Cat)|l2 < ||[¢|l2 (when ReA = 0, the
integral is interpreted as a limit in the mean.) In addition, ||Cx¢) —
C_iq¥|l2 = 0 as A — —iq through values in C4 and ||Cy|| =1 for all
AeCy [11].

The following formula [18] for expressing conditional Wiener integrals
in terms of ordinary Wiener integrals
(2.6) E(F(Z(x,") +&)|Z(x,T)+E&=n)
a(-) a(-)
=F|F| Z(x,- Z(x,T)+ —=(n—
(2@ +e- Sz + S a-9)]

is used several times in this paper. We also use the well-known formula

1/2 2 2
(2.7) <%> /Rexp{—b%—i—iuv}du:exp{—%}, Reb > 0.

Finally we note that the results of this paper can easily be extended
to v-dimensional Wiener space C§[0,T] for v = 2,3,... .

3. The L(Ls, Ls) theory for F in the Banach algebra S. In [4],
Cameron and Storvick introduced a Banach algebra S of functionals
on Cy[0,T], each of which is a type of a stochastic Fourier transform
of a bounded C-valued Borel measure. Further work, including [5, 6,
14, 15, 16, 17], shows that S contains many classes of functionals of
interest in Feynman integration theory.

The Banach algebra S consists of functions on Cy[0, 7| expressible in
the form

(3.1) Flz) = /L P {z /0 " os) dw(s)} do(v)
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for s—almost every z in Cy[0,T], that is, except on a scale invariant
null set, where o is an element of M (Ly[0,7]), the space of C-valued,
countably additive Borel measures on L2[0,T].

Recall that, for each g € L2[0,7], the PWZ integral fOTg(s) dz(s)
exists for s—almost every x € Cy[0,T]; this result doesn’t hold for all
g € L1]0,T]. Thus, in our first theorem we need to require that h
belongs to Ly[0,T] as well as to Ly[0, T}, so that for each v € L3[0,T],

(3.2) /0 o(s) dZ(z, 5) = /0 o(s)h(s) da(s)

for s, almost every z in Cy[0,T.

Theorem 1. Let F € S be given by (3.1), and let h € L[0,T].
Then, for all real g#0, hjon(F') exists as an element of L(L2(R), L2(R)),
and for each ¥ € La(R), we have

o (e {5

) ol 5] )
' [mzm] N /R(O P {%}

- (n)exp { —iqg; _T?

} dndo(v)
for all € € R.

Proof. Using (3.1), (2.6), (3.2), the Fubini theorem, and a fundamen-
tal Wiener integration formula, for all (), £) € (0,00) x R, we obtain
the formula

(3.4)
(b (F)¥)(§) = EIF(A2Z(x,) + (A2 Z(x, T) + €)]

- / E(FO22(z, ) +€)
R
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N2 Z (2, T+ €) | N Y2 Z(2, T) + € = 1)

2
fo

(omy) e{ -8
B RE|:/L[0T] Xp{'/OTU(S)d[AW
.(Z(m, 5) - ((T))z< T)> *ﬂ@z—&)]} do_(v)]
o) (52) oo { -2 Yo
// [0,7] [ { /0 vhdz
(; h?) / hdz + (n(T)g)(””ﬁ)H dolo)
0 (grazy) { oo,
//L[ o) p{ h
126 o) 2] s} ao
. )

( 5) P{— TR
‘/L[T]e"p{ £<T];)

“5x ), e {“(s)‘—T)] ds}<2wA<T>>m
oo (st - A0 e

To show that hy, (F) is an L£(L2(R), L2(R))-valued function of A in
C,, it suffices to fix ¥ and ¢ and show that

a(s)

g()‘) = (hb\ (F)'(/},QS)
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is a scalar-valued analytic function of A in C,. Using the Fubini
theorem we can write

35) o= [ . {5 [ " r2(s)
(R
Sy
o) [ e { - Bl 20O K oie) dednaoto)

We will use Morera’s theorem to show that g(\) is analytic in C4. First
an application of the dominated convergence theorem shows that g()\)
is continuous in C,. Thus, we need only show that [.g(\)d\ = 0 for
every closed contour I' in C,. But it suffices to show this for closed
triangular paths. So, let I' be a closed triangular path in C;. Now let
f(v,n,&,\) denote the integrand on the righthand side of (3.5). For all
(v,m,€) € L]0, T] x R x R, f(v,n,&, ) is an analytic function of X in
C. and so, by the Cauchy integral theorem, [ f(v,7,&,X)dX\ = 0 for
all (v,m,€) € Lz[0,T] x R x R. Let M = sup{|\| : A € T'}, and let
N =inf{ReX: XA € I'}. Then N is positive and so

(%@)1/2¢(5)w(n)exp{ - %T?z}

is an integrable dominating function for f(v,n,&,\) on L2[0,7] X R x
R x T'. Hence, by the Fubini theorem,

/1“9(/\) d/\:/LZ[QT]/R/R/Ff(U,U,f,A) d\ d¢ dn do(v) = 0.

Hence, hr, (F') is analytic, and so by Lemma 1 above, hjen (F) exists
as an element of £(L2(R), L2(R)). O

Next, using the dominated convergence theorem for Bochner integrals
[10, p. 83] and Lemma 1, we see that the generalized analytic operator-
valued Feynman integral of F, hjan (F') exists and is given by (3.3). In
addition, we have that

HhWFW\L < ||| 1[#]]2-
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Remark. Throughout the rest of this paper, we only need require that
h be in L0, T] rather than requiring h to be in Ly [0, 1.

Note that, in Theorem 1, for F' in S, we expressed h jan (F)4 in terms
of an integral over the infinite dimensional space L2[0,T]. In our next
theorem we obtain a series expansion of hyan (F)¢ in terms of integrals
over finite dimensional spaces.

Theorem 2. Let h € Ly[0,T], and let

(3.6) Flz) = exp { /OT 0(s, 2(5)) ds}

where 6 : [0,T] x R — C is given by

(3.7) bit,0) = | exp liun} doun)

R
where {0y : 0 < t < T} is a family from M (R) with ||o¢|| € L1[0,T],
and for each Borel set B C R, 04(B) is a Borel measurable function
of t.  Then, for all real g # 0, hyen(F) exists as an element of
L(L2(R), L2(R)), and for ¢ € L2(R), we have

(3.8)
<mywwwozﬁf(%5ﬁﬁuwmmm¥%§%f}m

o0

o3 [ Lo (G Slem —ate)
M;memmr}

Z%Mﬁ)
é;wﬂ@ﬂ}¢W)

Ll
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- exp { %} dndos,(wy) - -dos, (wy,) ds

for all £ € R where A, (T) = {§=(81,-..,8,): 0=89 < 81 < - <
Sp < Sn+1 = T}
Proof. Let Hy(&,n) denote the conditional Wiener integral
E(FI\NY2Z(z, )+ &) | \YV2Z (2, T) + £ =n) for A > 0.

Then, using the Fubini theorem, (2.6), and a well-known Wiener
integration formula for PWZ integrals, we see that for all (£,n,\) €
R x R x (0, +o0),

(3.9)
H)\(£7 77) (

. (/ 0(s, \"Y2Z(z,s) + &) d )n

A2, T) € = n)

n=

= - Si 1/ Zz,Ss
2 (T)E|:]1;[19 AT )+
a(s;) /27, M 3
~am (e o+ S
_ o0 n . 1o
1+7;1/A(T)Eh:[ €+ AT ;[(k)

—a(sg_1)]M? h iz
(5] / [a(e) — alsk 1)
a(s;)A"1/2 s

L Dla(s) —a(sk )]

k=1
Sk hdz a(sj), =
' /Skl la(sk) — a(sk-1)]"/? " a(T) (1=4)| d

S [ e
; A, (T) R"+1( )
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.exp{_

: ﬁ 0(sj, E+X 2 la(se) — a(Sk—l)]l/QukvLM(n*f)

SR

N | =

k=1 a(T)
a(s;)A 121 i ]
ST I;[a(sk) —a(sp_1)]"?*ur) duy - - - dup 41 d5.

Next we substitute into the last expression above using (3.7) and then
we carry out the integrations with respect to uy,... ,u,4+1 using (2.7),
and obtain

(3.10)

Hy(&m —1+Z/ —(n+1)/2
/ exp{if;wjﬂ(nf)iz(gz))}

Jj=1

1 i
FAI B S ETED o
Rn+1 2 = =
J
{Z ) — a(si-1)]" ?u

k=1

N

e I a(sk_l)w?uk] }

k=1

dunJrl dUS1( ) e dUs (wn) ds

-exp{ - 5(2[ (50) —asx )

IS w "_wma(sm) ? [a(T)—a(sn)]
[Z =2 a(T) ]+ a*(T)

m=k m=1
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| mz_; wma(sm>)2) o) o, (wn) 85

Then, using (3.10), we see that for all (A, &) € (0,400) x R,
(3.11)

(hh<F>¢)<a>=E[F<A-1/QZ( )+ V(A T2Z(2,T) +€)]

/ E(F(\Y?Z(x

oS 1/2Z(w T)+) | xl/ZZ(w,T) re=u)
() o { - o
e { - 2 }¢(n) i
<27ra >1/2/ vmex p{
+z Lo e

a(T) — a(sn)
27a2(T)

n

}77

—a(s;)] -

n

{#(TQ/ 2 [ exp{%;wﬂ(s»}w(n)

1

- exp { - )\(2na(_T£)) } dndos, (w1)---do, (wy)ds.

As in the proof of Theorem 1 above, an application of Morera’s
theorem shows that hy, (F) is an L(L2(R), L2(R))-valued analytic
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function of A throughout C,. In addition, by Lemma 1 and the
dominated convergence theorem for Bochner integrals [10, p. 83],
hjan(F) exists as an element of £(L2(R),L2(R)). In fact, for each
P € L2 (R),

sz (Pl < Dotk 143 [ o+l ] ]
L n=1 An(T)
r e 1 T T
=Wl 143 [ [l ]

=||¢||21+Z (/ Ut”dt)”]
=||¢||2exp{/0T|at|dt}

< 00,

since, by assumption, ||o¢|| € L1[0, T].

4. The L, — L5 theory for exponential functions. In this
section we consider functionals of the form

(4.1) F(z) = exp{/OT 0(5,x(5))d5}

where 6(t,u) is continuous for almost all (¢t,u) € [0,7] x R and
[16(¢, -)||oo belongs to Ly [0, T]. Functionals of this type arise naturally in
quantum mechanics. In our next theorem we obtain a series expansion
for the generalized Feynman integral of functionals of the form (4.1).

Theorem 3. Let F be given by (4.1), and let h € L3[0,T]. Then, for
all real ¢ # 0, hyan (F) ezists as an element of L(L2(R), L2(R)) and,
for ¢ € Ly(R), we have

(4.2)
o 0© = [ (i) v {0 gy
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S 12 (8
q
+TLZ1/AH(T) (W(sﬂ) n 0(s1,w1)
{iq(w1 - 5)2}
cexp{ ———— 20

2a(sy)

' <27ri[a(52;]_a(51)]>1/2 /R(w1)0(52,w2)

|t

'@mw@mim%lnyﬂﬁfnﬂ“%”“

o e eto )

1/2 Wy
'<%ﬂde—M&M> /: ot

e A —w)® e
p{maT)aam}d”d” dwnd

for all £ € R where A, (T) = {§=(81,-.-,8,): 0=859 < 81 <--- <
Sp < Spt1 =T}

Proof. Using the same notation and proceeding as in the proof of
Theorem 2, we obtain equation (3.9) as before. Then, in the last
expression in (3.9), first let

o (Y g (M),

A A
(aﬁo—a@u>”2

a
Un+1 = Un + < by Un+1

and then let

a(s;)
a(T)

Wpt1 = Unt1 T Ea and Wo = E

w; =vj +&— (Vpg1+€—m) forj=1,2,...,n,
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to obtain

Hx(&m) =1+ i /AH(T) T.LH <27r[a(8j) i a(sj—l)]>1/2
11

oo ntl 2
=1+ /Anm 1l <2ﬂ[a(8j) i a(sil)]>

j=1

| exp{ - 2w =), =6
T
B o |
- C;((S;)) (Wnt1 — 77)] 2} dwn 41 - - - dwy d5.

Next we carry out the integration with respect to w1 in the above
expression, simplify and then multiply both sides of the resulting

expression by
A\ 1/2 A
(zem) -z
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and obtain the equation

(4.3)

A 1/2eX 7}\(7]_5)2 gy g
<2m<T>> p{ 2a(T) }E<F<A Z(z,)+€) | A4 (x, T)

+&=m) /
() {5 )

+Z/ "ﬁl (27r a(s;) —a(sj_l)])w‘/m (jﬁl9(8jaw]')>

_A wJ_w] 1)’ _ A(wn —1)? w.. - - dws d3
e’“’{ Z ) —a(s;1)] 2[a<T>—a<sn>]}d" dun 5.

Thus, using (4.3) for each (X, &) € (0,+00) x R, we obtain that

(R, (F)9)(€)
= B[F(\Z(z,) + v\ V?Z(2,T) + )]

- / E(FO22(z, ) +€)
R
HOV2Z (e, T) + ) | AV 2 (e, T) + € = )

| <2w:<T>>1/26"p{ - A(277a<T£>)2 } o

(s o] 25

+z/ <2MLI> /
B

'e"p{ 2[a5s2> a(ljn } (%[a(sn) ia(sm)])l/g o)
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ool - = o et >l/2 IR0

cexpd = A0 Ly ds
P { = B

Again, using Morera’s theorem, one can show that hr, (F) is an
L(L2(R), L2(R))-valued analytic function of A throughout C,, and
thus hyen (F)9 is given by the last expression in (4.4).

Next, for n =1,2,..., let

6500 = (o) [ otonm
ool G H a(a)])l/z/ff’(”’w?)
p{ - %} " (%[a(sn) - a(sn_o])m
[ O
ool - gy | e ) - W

e A
p{ Q[a(T)a(sn)]}d"d nooedwr.

A careful examination of G,,(8, A)(§) shows that it is the composition
of convolution operators (¢y — Cy¢ as in Lemma 1 where ||Cy|| = 1)
and multiplication operators (multiplication by ), and so

[|Grn(8,A) — Gn(8, —iq)||l2 = 0 as A — —igq.

In addition, for all A € C7,

|G (5, )H2<|I¢||2HII9 85> )0

j=1

and so, by the dominated convergence theorem for Bochner integrals,
hygn (F) exists as an element of £(L2(R), L2(R)). In addition, for each



GENERALIZED FEYNMAN INTEGRALS 755

¢ € L2(R)7
lhsge (FYolls < |w|z[1+;1/Am Il 16055, 5]

=|¢|2[1 i,/ ) [ 100510+ 18050, 05
~ vl |1+ i ([ v war)]
—lezexp{/ oz ||oodt}

< 00,
since, by assumption, ||0(t,-)||cc € L1[0,T].
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