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NONPROBABILISTIC COMPUTATION OF THE POISSON
BOUNDARY FOR AN ETALEE MEASURE ON A
SEMI-SIMPLE LIE GROUP

DOUGLAS PAUL DOKKEN

0. Introduction. In [6], Furstenberg proved the existence of a
boundary representation for p-harmonic functions on 7', a connected
semi-simple Lie group with finite center and no compact factors. In the
same paper he also computed the boundary in the case u was absolutely
continuous with respect to Haar measure on 7. In proving both these
results he used probability theory (the Martingale theorem). In [1]
Azencott generalized these results to the case of an étalée measure
again using probability theory.

In [2] it was shown how to construct the boundary using nonproba-
bilistic techniques. These results were developed further in [3] applied
to u and T as in Furstenberg’s situation with the additional hypothesis
that p was supported on T'. The boundary was shown to be a compact
homogeneous space of 7.

In this paper we prove Azencott’s generalization of Furstenberg’s
result (see Theorem 2.7) for the case of p, a spread out étalée measure
on T a semi-simple, connected Lie group, with finite center and no
compact factors. The techniques we use are those developed in [2] and
[3] and are nonprobabilistic in nature.

1. Review of basic concepts. In this section we review the
basic definitions and constructions involved in the Poisson boundary
(B,T,w). For a more detailed discussion, see [2] and [3]. Let T be
a locally compact Hausdorff topological group. The right uniformly
continuous functions on T" which are bounded form a Banach algebra,
R, with respect to pointwise multiplication and the supremum norm.
Let P be the Gelfand space of R. Then (P,T) is a flow and P has a
semi-group structure such that if p € P, then, : P -+ P:q —=p-q
is continuous, and if t € T', then r, : P — P : ¢ — q - t is continuous.
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The set T is a dense open subset of P, consequently every measure on
T is also a measure on P. Let M(P) be the regular Borel probability
measures on P. It is possible to define convolution of two measures
a and B in M(P) such that I, : M(P) - M(P) : 8 — «a-fis
continuous and if 4 € M(T), then r, : M(P) = M(P):  — (- pis
continuous also. We say v € M(P) is idempotent if v2 = v-v = v.
Given p € M(T) (the regular Borel probability measures on T') we say
f € R is p-harmonic if [ f(¢' -t)du(t') = f(t), fu = f. The set of
p-harmonic functions form a Banach space with respect to the sup-
norm. It can be shown that (M (P),T) is a flow. In [2] it is shown
that there is an idempotent measure v € M (P) such that vy = v and
if B = e (civ (vT)) (the extreme points of the closed convex hull of
the orbit closure of v in M(P)) and if w € M(B) such that b(w) = v
(where b : M(B) — &x(cav (vT)) is the barycentric mapping) then
C(B) is isometrically isomorphic as a Banach-space with H,,, and the
isomorphism is given by right convolution of w with f in C'(B). That
is,

R, : C(B) —>Hu:f—>/Bf(x-t)dw(x)

is an isometry from C(B) onto H,. The set (B,T,w) is called the
Poisson flow of p and w is called the representing measure.

2. The Poisson boundary for an étalée measure on a con-
nected semi-simple Lie group with finite center. In this section
we give a nonprobabilistic proof of Furstenberg’s result using ideas de-
veloped in [3] and [2].

Definition 2.1. A measure p is spread out (étalée) if either of the
following equivalent conditions is satisfied:

(i) there exists an integer n such that p™ is not singular with respect
to Haar measure m on T’;

(ii) the set > , is not empty where }_  is the set of elements ¢ of T
for which there exists an integer p such that u? dominates a multiple
of m on some neighborhood of ¢.

Remark 2.2. Tt can be shown that > ., contains an open neighborhood
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whence Z;l +>_, contains an open neighborhood of e in T" (see [6] or

[1]).

Remark 2.3. Let (X,T) be an arbitrary factor of (B,T) the Poisson
flow and w the representing measure induced on X from B.

Theorem 2.4 [3]. Let p € P be such that wp € B and (ts), (sa) nets
inT such thatty, — p and so — s in T, and tosat,t —t € Z;l . Zu'
Then

(i) wpe X and
(i) (wp)s = wp.

2.5. Notation and review. For a detailed discussion of these
topics, see [7] or [8]. Let T be an analytic semi-simple Lie group with
finite center and no compact factors.

Let ¢ be the Lie algebra of T', t = k + p a Cartan decomposition of ¢,
a a maximal abelian subspace of p and A the roots of the pair (¢, a).
Order A and let AT be the positive elements of A.

For A € Aset t* = {Y €t | [H,Y] = NH)Y,H € a} and define
the Lie subalgebras n* by n* = doireat t*, and let K, A, N* be the
analytic subgroups of T' corresponding to k,a,n™, respectively. Let
at={H €a|AH)>0,A€ A"} and A" the positive Weyl Chamber.
Then K is compact, KATK =T = KANT = KAN.

Definition 2.6. Let M = {k € K|kak ! = a,a € A}. In other
words, M is the centralizer of A in K. Let M, be the connected
component of the identity in M. Let P = NAM. We can now state
Furstenberg’s result.

Theorem 2.7. Let p be spread out in M (T), T a semi-simple Lie
group. Let My, M, A, N and K be as above, and let X be a metric-factor
of (B,T,w). Then

(i) There exists g € X such that zg - s = zg, s € MyAN = P,

(ii) K acts transitively on X, whence K acts transitively on B.
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(iii) G/P, is a finite extension of G/P.

(iv) The Poisson boundaries of u correspond to G/P', P’ a subgroup
of P and P' D P,.

Lemma 2.8. There exist sequences (kp) in K and (ay) in A" such
that wkpa, — g € X, with xo1T = X.

Proof. Let (t,) be a sequence in T such that wt, — =z € X and
2T = X.

Write t, = ky - an - I, with (k,),(ln) € K and (a,) C AT. We
may assume that I, — I € K and wk,a, — p € M(X). Then
wtp, = wkpapl, — pl. Hence, limwkpa, = p = zl7' € X. Set
2o = zl~!. Then 20T = zol 1T = 2T = X. O

Remark 2.9. Recall that Zu contains an open set and hence
Z;l ->_,, contains a neighborhood O of e (the identity of T').

There exist arbitrarily small open neighborhoods U of e in T for
which U = UxkU Uy and Ux C K, Uq CAand Uy C N (UK,UA,UN
all open and containing e).

For the rest of this section, we let (a,), (k,) denote fixed sequences
in AT and K, respectively, such that wk,a, — o € X with ;T = X.
We shall also assume that k,, — k € K. We want to show oK = X.

Lemma 2.10. There exists a neighborhood Uy of e in A such that

zo-Uy = xp.

Proof. Let k, — k. Then ad(k,) — ad(k) (where [ad (k)](¢) =
ktk—'). Now ad (k) is continuous on T and ad (k)(e) = e.

Therefore there exists a neighborhood U of e in T such that
[ad (K)](U) € O and U = Uk - Ua - Uy where Ug,Us and Uy are
neighborhoods of e in K, A and N, respectively. Then k-U,s -k~ C O.

Now A is abelian, k,a,a = knaa, = k,ak; ‘k,a,. Hence, if a € Uy
and we take (t,) = (kna,) and (s,) = a, then (k,a,)a(k,a,)”! =
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knak, ‘knana, k! = kyak,' — kak € O. Therefore, by Theorem
2.4,

wp-a=uw-p.

Lemma 2.11. There extsts a neighborhood Uy; of e in M such that
zo-1=1z¢ (I € Upy), whence zy-1=1zy, 1 € My.

Proof. As in the preceding proposition, let k, — k. Then ad (k) is
continuous on T, hence there exists a neighborhood Uy, of e in M such
that ad (k)(Up) C O.

Now if I € M, knanl = kyla, = kulk; 'kpa,. Now knlkt — klk™!.
Hence, if | € Uy and we take (t,) = (knpan) and (s,) = (I),
then (kna,)l(knan)™' = kyl,'knana, 'kt = knlk,* — klk € O.
Therefore, by Theorem 2.4,

Lemma 2.12. LetY, H €t with [H,Y] =AY for some A € R. Then
(exp(H))(exp(Y))(exp(—H)) = exp(e*Y).

Proof. Standard. ]

Lemma 2.13. Let —\ € At. Then there exists a neighborhood U
of € in exp[t*] such that zo -t = xq for all t € Uy,.

Proof. Let a,, = exp H,, with H,, € a* for all n. Then a,ta,! =
exp(erHn)Y) (where t = expY) and since A(H,,) < 0 we have that
e MHn) converges to some constant c. Hence, the sequence v, = a,ta,, 1
converges to v € T. Let p :t* = T : X — exp(cX)and ¢ : t* — T :
1 = ad (k) o p. Then ¢ and 1 are continuous. Also

B(¥) = ad (k) (¢(¥)) = ad (1) lim exp(c***Y))

= lim ad (k)(exp e )Y

n— oo

= lim ad (k)(anta;') = lim kanta, k"
n—oo

= lim((kpan)t(kpa,) ™).
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Now the composition 9 of ad (k) and ¢ is continuous. Consequently,
P(X) = lim((knan) exp X (knan) 1) € O, for all X € V), an open
neighborhood of e in t*. Now set Uy = 9(V}).

Then setting (t,) = (kna,) and s = ¢ in Theorem 2.4 shows that
Tt =m0, t € Uy. m]

Remark 2.14. Note that 2.10 and 2.13 imply z¢-s = zg, s € AUN".

Proof of Theorem 2.7. (i) This is an immediate consequence of
Lemmas 2.10, 2.11 and 2.13.

(ii) Let H = {t € T' | xot = xo}. Then H is a closed subgroup of T
which contains A.

By Lemma 2.13 exp(Y) € H for all Y € V) and —\ € A*. Hence
the Lie algebra of H contains that of N~ and so N~ C H. Finally,
X = xoT = l‘oNiAK = l‘oK = LD()K.

(iii) M is compact. Hence M /M, is finite and so is P/Py.

(iv) In [5] we see G/P is strongly proximal (a result due to C.
Moore). Hence, every Poisson boundary for spread out p has G/P
as a homomorphic image. Consequently, every Poisson flow of a spread
out u is G/P' for some P’ O Py. Now the mapping = : G/Py —
G/P : gPy — gP is finite to one, and the number of preimages of gP
is the cardinality of P/P,. Hence, every Poisson boundary is a finite
extension of G/P. O
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