NONPROBABILISTIC COMPUTATION OF THE POISSON BOUNDARY FOR AN ÉTALÉE MEASURE ON A SEMI-SIMPLE LIE GROUP

DOUGLAS PAUL DOKKEN

0. Introduction. In [6], Furstenberg proved the existence of a boundary representation for μ -harmonic functions on T, a connected semi-simple Lie group with finite center and no compact factors. In the same paper he also computed the boundary in the case μ was absolutely continuous with respect to Haar measure on T. In proving both these results he used probability theory (the Martingale theorem). In [1] Azencott generalized these results to the case of an étalée measure again using probability theory.

In [2] it was shown how to construct the boundary using nonprobabilistic techniques. These results were developed further in [3] applied to μ and T as in Furstenberg's situation with the additional hypothesis that μ was supported on T. The boundary was shown to be a compact homogeneous space of T.

In this paper we prove Azencott's generalization of Furstenberg's result (see Theorem 2.7) for the case of μ , a spread out étalée measure on T a semi-simple, connected Lie group, with finite center and no compact factors. The techniques we use are those developed in [2] and [3] and are nonprobabilistic in nature.

1. Review of basic concepts. In this section we review the basic definitions and constructions involved in the Poisson boundary (B,T,ω) . For a more detailed discussion, see [2] and [3]. Let T be a locally compact Hausdorff topological group. The right uniformly continuous functions on T which are bounded form a Banach algebra, \mathbf{R} , with respect to pointwise multiplication and the supremum norm. Let P be the Gelfand space of \mathbf{R} . Then (P,T) is a flow and P has a semi-group structure such that if $p \in P$, then $l_p: P \to P: q \to p \cdot q$ is continuous, and if $t \in T$, then $r_t: P \to P: q \to q \cdot t$ is continuous.

Received by the editors on July 15, 1993.

The set T is a dense open subset of P, consequently every measure on T is also a measure on P. Let M(P) be the regular Borel probability measures on P. It is possible to define convolution of two measures α and β in M(P) such that $l_{\alpha}: M(P) \to M(P): \beta \to \alpha \cdot \beta$ is continuous and if $\mu \in M(T)$, then $r_{\mu} : M(P) \to M(P) : \beta \to \beta \cdot \mu$ is continuous also. We say $\nu \in M(P)$ is idempotent if $\nu^2 = \nu \cdot \nu = \nu$. Given $\mu \in M(T)$ (the regular Borel probability measures on T) we say $f \in \mathbf{R}$ is μ -harmonic if $\int f(t' \cdot t) d\mu(t') = f(t)$, $f\mu = f$. The set of μ-harmonic functions form a Banach space with respect to the supnorm. It can be shown that (M(P), T) is a flow. In [2] it is shown that there is an idempotent measure $\nu \in M(P)$ such that $\nu \cdot \mu = \nu$ and if $B = \overline{\operatorname{ex}}(\overline{\operatorname{cnv}}(\overline{\nu T}))$ (the extreme points of the closed convex hull of the orbit closure of ν in M(P) and if $\omega \in M(B)$ such that $b(\omega) = \nu$ (where $b: M(B) \to \overline{\operatorname{ex}}(\overline{\operatorname{cnv}}(\nu T))$ is the barycentric mapping) then C(B) is isometrically isomorphic as a Banach-space with \mathbf{H}_{μ} , and the isomorphism is given by right convolution of ω with f in C(B). That is,

$$\mathbf{R}_{\omega}:C(B)
ightarrow\mathbf{H}_{\mu}:f
ightarrow\int_{B}f(x\cdot t)\,d\omega(x)$$

is an isometry from C(B) onto \mathbf{H}_{μ} . The set (B, T, ω) is called the Poisson flow of μ and ω is called the representing measure.

2. The Poisson boundary for an étalée measure on a connected semi-simple Lie group with finite center. In this section we give a nonprobabilistic proof of Furstenberg's result using ideas developed in [3] and [2].

Definition 2.1. A measure μ is *spread out* (étalée) if either of the following equivalent conditions is satisfied:

- (i) there exists an integer n such that μ^n is not singular with respect to Haar measure m on T;
- (ii) the set \sum_{μ} is not empty where \sum_{μ} is the set of elements t of T for which there exists an integer p such that μ^p dominates a multiple of m on some neighborhood of t.

Remark 2.2. It can be shown that \sum_{μ} contains an open neighborhood

whence $\sum_{\mu}^{-1} \cdot \sum_{\mu}$ contains an open neighborhood of e in T (see [6] or [1]).

Remark 2.3. Let (X,T) be an arbitrary factor of (B,T) the Poisson flow and ω the representing measure induced on X from B.

Theorem 2.4 [3]. Let $p \in P$ be such that $\omega p \in B$ and $(t_{\alpha}), (s_{\alpha})$ nets in T such that $t_{\alpha} \to p$ and $s_{\alpha} \to s$ in T, and $t_{\alpha}s_{\alpha}t_{\alpha}^{-1} \to t \in \sum_{\mu}^{-1} \cdot \sum_{\mu}$. Then

- (i) $\omega p \in X$ and
- (ii) $(\omega p)s = \omega p$.
- **2.5.** Notation and review. For a detailed discussion of these topics, see [7] or [8]. Let T be an analytic semi-simple Lie group with finite center and no compact factors.

Let \underline{t} be the Lie algebra of T, $\underline{t} = \underline{k} + \underline{p}$ a Cartan decomposition of \underline{t} , \underline{a} a maximal abelian subspace of \underline{p} and Δ the roots of the pair $(\underline{t},\underline{a})$. Order Δ and let Δ^+ be the positive elements of Δ .

For $\lambda \in \Delta$ set $\underline{t}^{\lambda} = \{Y \in \underline{t} \mid [H,Y] = \lambda(H)Y, H \in \underline{a}\}$ and define the Lie subalgebras n^{\pm} by $n^{\pm} = \sum_{\pm \lambda \in \Delta^{+}} \underline{t}^{\lambda}$, and let K, A, N^{\pm} be the analytic subgroups of T corresponding to $\underline{k}, \underline{a}, n^{\pm}$, respectively. Let $\underline{a}^{+} = \{H \in \underline{a} \mid \lambda(H) > 0, \lambda \in \Delta^{+}\}$ and A^{+} the positive Weyl Chamber. Then K is compact, $KA^{+}K = T = KAN^{+} = KAN$.

Definition 2.6. Let $M = \{k \in K | kak^{-1} = a, a \in A\}$. In other words, M is the centralizer of A in K. Let M_0 be the connected component of the identity in M. Let P = NAM. We can now state Furstenberg's result.

Theorem 2.7. Let μ be spread out in M(T), T a semi-simple Lie group. Let M_0, M, A, N and K be as above, and let X be a metric-factor of (B, T, ω) . Then

- (i) There exists $x_0 \in X$ such that $x_0 \cdot s = x_0$, $s \in M_0AN = P_0$
- (ii) K acts transitively on X, whence K acts transitively on B.

- (iii) G/P_0 is a finite extension of G/P.
- (iv) The Poisson boundaries of μ correspond to G/P', P' a subgroup of P and $P' \supset P_0$.

Lemma 2.8. There exist sequences (k_n) in K and (a_n) in A^+ such that $\omega k_n a_n \to x_0 \in X$, with $\overline{x_0 T} = X$.

Proof. Let (t_n) be a sequence in T such that $\omega t_n \to x \in X$ and $\overline{xT} = X$.

Write $t_n = k_n \cdot a_n \cdot l_n$ with $(k_n), (l_n) \subset K$ and $(a_n) \subset A^+$. We may assume that $l_n \to l \in K$ and $\omega k_n a_n \to \rho \in M(X)$. Then $\omega t_n = \omega k_n a_n l_n \to \rho l$. Hence, $\lim \omega k_n a_n = \rho = x l^{-1} \in X$. Set $x_0 = x l^{-1}$. Then $\overline{x_0 T} = \overline{x_0 l^{-1} T} = \overline{xT} = X$.

Remark 2.9. Recall that \sum_{μ} contains an open set and hence $\sum_{\mu}^{-1} \cdot \sum_{\mu}$ contains a neighborhood O of e (the identity of T).

There exist arbitrarily small open neighborhoods U of e in T for which $U = U_K U_A U_N$ and $U_K \subseteq K$, $U_A \subseteq A$ and $U_N \subseteq N$ $(U_K, U_A, U_N$ all open and containing e).

For the rest of this section, we let $(a_n), (k_n)$ denote fixed sequences in A^+ and K, respectively, such that $\omega k_n a_n \to x_0 \in X$ with $\overline{x_0 T} = X$. We shall also assume that $k_n \to k \in K$. We want to show $x_0 K = X$.

Lemma 2.10. There exists a neighborhood U_A of e in A such that

$$x_0 \cdot U_A = x_0.$$

Proof. Let $k_n \to k$. Then $\operatorname{ad}(k_n) \to \operatorname{ad}(k)$ (where $[\operatorname{ad}(k)](t) = ktk^{-1}$). Now $\operatorname{ad}(k)$ is continuous on T and $\operatorname{ad}(k)(e) = e$.

Therefore there exists a neighborhood U of e in T such that $[ad(k)](U) \subseteq O$ and $U = U_K \cdot U_A \cdot U_N$ where U_K, U_A and U_N are neighborhoods of e in K, A and N, respectively. Then $k \cdot U_A \cdot k^{-1} \subseteq O$.

Now A is abelian, $k_n a_n a = k_n a a_n = k_n a k_n^{-1} k_n a_n$. Hence, if $a \in U_A$ and we take $(t_n) = (k_n a_n)$ and $(s_n) = a$, then $(k_n a_n) a (k_n a_n)^{-1} = a$

 $k_n a k_n^{-1} k_n a_n a_n^{-1} k_n^{-1} = k_n a k_n^{-1} \rightarrow k a k \in O$. Therefore, by Theorem 2.4.

$$\omega p \cdot a = \omega \cdot p.$$

Lemma 2.11. There exists a neighborhood U_M of e in M such that $x_0 \cdot 1 = x_0$ ($l \in U_M$), whence $x_0 \cdot 1 = x_0$, $1 \in M_0$.

Proof. As in the preceding proposition, let $k_n \to k$. Then $\operatorname{ad}(k)$ is continuous on T, hence there exists a neighborhood U_M of e in M such that $\operatorname{ad}(k)(U_M) \subset O$.

Now if $l \in M$, $k_n a_n l = k_n l a_n = k_n l k_n^{-1} k_n a_n$. Now $k_n l k_n^{-1} \to k l k^{-1}$. Hence, if $l \in U_M$ and we take $(t_n) = (k_n a_n)$ and $(s_n) = (l)$, then $(k_n a_n) l (k_n a_n)^{-1} = k_n l_n^{-1} k_n a_n a_n^{-1} k_n^{-1} = k_n l k_n^{-1} \to k l k \in O$. Therefore, by Theorem 2.4,

$$\omega \cdot p \cdot l = \omega \cdot p. \qquad \Box$$

Lemma 2.12. Let $Y, H \in \underline{t}$ with $[H, Y] = \lambda Y$ for some $\lambda \in \mathbf{R}$. Then $(\exp(H))(\exp(Y))(\exp(-H)) = \exp(e^{\lambda}Y)$.

Proof. Standard.

Lemma 2.13. Let $-\lambda \in \Delta^+$. Then there exists a neighborhood U_{λ} of e in $\exp[t^{\lambda}]$ such that $x_0 \cdot t = x_0$ for all $t \in U_{\lambda}$.

Proof. Let $a_n = \exp H_n$ with $H_n \in \underline{a}^+$ for all n. Then $a_n t a_n^{-1} = \exp(e^{\lambda(H_n)}Y)$ (where $t = \exp Y$) and since $\lambda(H_n) < 0$ we have that $e^{\lambda(H_n)}$ converges to some constant c. Hence, the sequence $\nu_n = a_n t a_n^{-1}$ converges to $\nu \in T$. Let $\varphi : \underline{t}^\lambda \to T : X \to \exp(cX)$ and $\psi : \underline{t}^\lambda \to T : \psi = \operatorname{ad}(k) \circ \varphi$. Then φ and ψ are continuous. Also

$$\psi(Y) = \operatorname{ad}(k)(\varphi(Y)) = \operatorname{ad}(k)(\lim_{n \to \infty} \exp(e^{\lambda(H_n)}Y))$$

$$= \lim_{n \to \infty} \operatorname{ad}(k)(\exp e^{\lambda(H_n)}Y)$$

$$= \lim_{n \to \infty} \operatorname{ad}(k)(a_n t a_n^{-1}) = \lim_{n \to \infty} k a_n t a_n^{-1} k^{-1}$$

$$= \lim_{n \to \infty} (k_n a_n) t (k_n a_n)^{-1}.$$

Now the composition ψ of ad (k) and φ is continuous. Consequently, $\psi(X) = \lim((k_n a_n) \exp X(k_n a_n)^{-1}) \in O$, for all $X \in V_\lambda$, an open neighborhood of e in \underline{t}^{λ} . Now set $U_{\lambda} = \psi(V_{\lambda})$.

Then setting $(t_n) = (k_n a_n)$ and s = t in Theorem 2.4 shows that $x_0 \cdot t = x_0, t \in U_{\lambda}$.

Remark 2.14. Note that 2.10 and 2.13 imply $x_0 \cdot s = x_0, s \in A \cup N^-$.

Proof of Theorem 2.7. (i) This is an immediate consequence of Lemmas 2.10, 2.11 and 2.13.

(ii) Let $H = \{t \in T \mid x_0t = x_0\}$. Then H is a closed subgroup of T which contains A.

By Lemma 2.13 $\exp(Y) \in H$ for all $Y \in V_{\lambda}$ and $-\lambda \in \Delta^+$. Hence the Lie algebra of H contains that of N^- and so $N^- \subset H$. Finally, $X = \overline{x_0 T} = \overline{x_0 N^- AK} = \overline{x_0 K} = x_0 K$.

- (iii) M is compact. Hence M/M_0 is finite and so is P/P_0 .
- (iv) In [5] we see G/P is strongly proximal (a result due to C. Moore). Hence, every Poisson boundary for spread out μ has G/P as a homomorphic image. Consequently, every Poisson flow of a spread out μ is G/P' for some $P' \supset P_0$. Now the mapping $\pi: G/P_0 \to G/P: gP_0 \to gP$ is finite to one, and the number of preimages of gP is the cardinality of P/P_0 . Hence, every Poisson boundary is a finite extension of G/P.

REFERENCES

- 1. R. Azencott, Espace de Poisson des Groupes Localement Compact, Springer-Verlag, Berlin, 1970.
- 2. D. Dokken, μ -harmonic functions on locally compact groups, J. Anal. Math. 52 (1989), 1–25.
- 3. D. Dokken and R. Ellis, The Poisson flow associated with a measure, Pacific J. Math. 141 (1990), 79–103.
 - 4. R. Ellis, Lectures on topological dynamics, W.A. Benjamin, New York, 1969.
 - 5. ———, The enveloping semigroup of projective flows, ETDS, to appear.
- 6. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Annals Math. 77 (1963), 335–383.

- ${\bf 7.~S.~Helgason},~Differential~geometry,~Lie~groups,~and~symmetric~spaces,~Academic~Press,~New~York,~1978.$
- 8.~M.A.~Naimark and A.I.~Stern,~The theory of group representations, Grundlehren der Mathematischen Wissenschaften~246,~Springer-Verlag,~Berlin,~1982.

Department of Mathematics, University of St. Thomas, St. Paul, MN 55105

 $email\ address: \mathtt{DPDOKKEN@STTHOMAS.EDU}$