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ON THE SOLUTIONS OF FOURTH ORDER
DIFFERENCE EQUATIONS

J. POPENDA AND E. SCHMEIDEL

1. Introduction. In this note we will study fourth order difference
equations of the form

(E) A4yn = f(nv yn+2)a n € N.

We denote by N the set of positive integers, by R the set of real
numbers. For a function z : N — R, the forward difference operators

are defined as follows: Az, = z,y3 — op, n € N and AFz, =
A(AF g, for k> 1.
By a solution of (E) we mean any sequence y = {y,}2°; which

satisfies (E) for all n € N. We call the solution y the zero (or trivial)
solution if it is identically zero or if there exists v € N such that y,, =0
for all n > v.

A nonzero solution is oscillatory if, for every m € N there exists
n > m such that y,y,+1 < 0. Therefore, a nonoscillatory solution is
such a sequence, which is eventually positive or eventually negative.
We suppose that the function f: N x R — R satisfies condition () if

(%) zf(n,z) <0 forall n € N, z € R\{0}.

In his paper [2], W. Taylor considered two types of solutions of the
fourth order linear difference equations (see also [1]). Relations between
these types of solutions for the equation (E), and their oscillatory
behavior are the main purposes of this note. Some of our theorems
generalize results in the work of Taylor. This refers to Theorems 1,
2, 3 and 4 proved below and Theorems 1.3, 2.3, 2.4 and 2.5 of [2],
respectively.

Following Taylor, we define operator F' as

F(z,) = zo1A%, — Az, A%z, n € N.
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We call a solution y for which F(y,) > 0 for all n € N an F-solution.
If F(y,) < 0 for some n, then y is called an F_-solution.

We use this Taylor operator to classify nonoscillatory solutions of the
equation (E).

In fact, the operator F' divided the set of solutions into two disjoint
subsets, F; and F_ solutions. In Section 2 we shall prove that every
nonoscillatory F;-solution is monotonic and with square summable
second difference and, moreover, these relations hold in both directions.
We also prove that every F_-solution is unbounded with unbounded
first difference. In Section 3 we will study equation (E) with some
additional assumptions which allow us to determine the character
(in relation to the operator F) and thereby properties of all or all
nonoscillatory solutions. Furthermore, we formulate assumptions under
which every F-solution is oscillatory.

We use the convention that void sum is equal to zero.
2. Properties of F-solutions.

Lemma. Let the function f satisfy condition (%), and let y be any
solution of (E). Then F(y,) is a nonincreasing function on N.

Proof. By differencing F(y,), and applying equality (E), we get

AF(yn) = [yn+2A4yn + (Ayn-l-l)Asyn]
— [(Ayns1) A%y + (A%yn)?]
= yn+2f(nayn+2) - (AQyn)2 <0.

Hence, the monotonicity property of F' follows. u]
For the zero solution, F(y,) = 0 for all sufficiently large n.

Theorem 1. Let the function f satisfy condition (x), and let y be a
nontrivial Fy -solution of the equation (E). Then

(i) Yopi [A%Hy,]? < oo,
(i) limy e A2y, =0
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forj=0,1,2,....

Proof. Let y be a nontrivial F;-solution of (E). To prove (i) for
j = 0, we examine the sum 22;11 (A%y;)? and prove its boundedness
independently of the upper limit of summation. Differencing F'(y;) and
substituting f(k,yk+2) in the place of Ay, we get

AF (yk) = yreof (k, yrs2) — (M%)

Now summing from k = 1 to n — 1, we obtain

(1) F(yn) = F(y1) + i Yrv2f (K, Yrt2) — ) (A%y).
k=1 k=1

Since F(y,) > 0 and f satisfies (x), therefore

n—1 n—1
0<F(y1) + Y ykraf (b yrra) — D (A%)?,
k=1 k=1
and consequently,
n—1
(2) S (M%) < F(y), n>L
k=1

Inequality (2) remains true for all n € N. Hence,

Z(AZyk)z < F(yl) < o0.
k=1
We have proved condition (i) for j = 0.

To get (i) for j > 0 we use inductive argument. For this, we need
to express (A2T7y;)? in terms of the lower order differences. Since for
arbitrary reals a,b we have —2ab < a? + b%, therefore

(A2+jyk)2 — [A2+j71yk+1 o A2+j71yk]2
< APy 0)? 4 oAy )2,
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So
oo
ALy, 2 Z A2+i—1y

0o
Z A2+]
k=1

A2+J 1

I /\

X
i

Therefore, Y o7 (A*My,)? < oo provided that > o (AT 1y )2 <
0o. We have proved Y -, (A%y,)? < oo, hence (i) holds for all j > 0.
Condition (ii) follows directly from (i). O

Corollary 1. If, in addition to the assumptions of Theorem 1, the
function f satisfies the condition

(3) [f(n,z)| 2 ¢, for (n,z) € N x {R\{0}}

then equation (E) does not possess a nontrivial F -solution.

Proof. Suppose that there exists an F.-solution {y,}>2,. By
Theorem 1, we have lim,, o |A*y,| = 0. On the other hand, from
(3), limsup,,_,o, |f(7, Ynt+2)] > € > 0. This contradiction proves the
assertion. o

Remark 1. The following properties (see [1]) of nonoscillatory solu-
tions of equation (E) are known. Every nonoscillatory solution {y, }52 ;
can be one of the types:

(Ad+) yn >0, Ay, >0, A%y, >0, Ay, >0, Ay, <0,
(A4—-) yn <0, Ay, <0, A%y, <0, Ay, <0, Ay, >0,
(A2+) Yn >0, Ay, >0, A%y, <0, Ay, >0, Ay, <0,

(A2-) Yn <0, Ay, <0, A%y, >0, A%y, <0, Ay, >0,
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for n sufficiently large, say n > v > 1.
Suppose that the function f satisfies condition
f(na 7$) = 7f(7’L,£E) for (na CC) € N x {R\{O}}

For such a function, one can check that if {y, }22; is an (A4+)-solution
of (E), then the sequence {—y,}52, is an (A4—)-solution of (E) and
conversely. The same property holds if y is an (A2+)-solution. So the
set of nonoscillatory solutions of (E) possesses a kind of symmetry. This
remark allows us to consider only (A4+) or (A2+) solutions, especially

when the asymptotic behavior is studied. However, we do not suppose
that this condition is fulfilled.

The following two theorems give necessary and sufficient conditions
for a nonoscillatory solution of (E) to be an F.-solution.

Theorem 2. Let the function f satisfy condition (x), and let y be a
nonoscillatory solution of (E). Then y is an Fy-solution if and only if
it 1s an (A2)-solution.

Proof. We will prove the theorem for an eventually positive solution,
for negative solutions the proof is similar.

Necessity. Let y be an eventually positive F.-solution. Suppose
to the contrary that it is an (Ad4)-solution. Then from A3y, > 0,
A%y, > 0 it follows that A2y, > A%y, > 0 for n > v. But this
contradicts condition (ii) of Theorem 1, so y is an (A2+)-solution.

Sufficiency. Let y be an (A2+)-solution. We will show positivity
of the operator F' on the whole sequence y. Take some m, m > v,
where v is taken from the definition of the (A2+)-solution. Then by
(A2+) we get F(y,) > 0. By the lemma, the sequence {F(y,)} is
nonincreasing; therefore, F(y;) > F(ym,) > 0 for all j < m. Since m
was taken arbitrary, so F(y,) > 0 for all n € N, that is, {y,}5>, is an
F -solution. O

Theorem 3. Let the function f satisfy condition (x), and let y be a
nonoscillatory solution of (E). Then y is an Fy-solution if and only if
(4) > (A%,)? < .

i=1
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Proof. Necessity follows directly from Theorem 1. To prove suffi-
ciency, let y be a nonoscillatory solution of (E) for which condition (4)
is fulfilled. Suppose that y is an F_-solution. Then for some m € N
we have F(y,,) < 0. Hence, by the lemma

(5) F(yn) < F(ym) <0, foralln, n>m.

Since y is nonoscillatory then applying Remark 1, y can be an (A2) or
an (A4)-solution. We exclude both of the cases. For an (A4)-solution,
we get the contradiction E;’;l(AQyjf = oo. If y is an (A2)-solution,
then there exists a v € N such that F(y,,) > 0 for all n > v. This time
we obtain contradiction with (5). Thus, y is an F'-solution. o

Remark 2. Theorem 2 shows that the operator F' divides the set of
nonoscillatory solutions of (E) into two disjoint subsets: F'-solutions
which are the same as (A2)-solutions and F_-solutions which are the
same as (A4)-solutions. Theorem 3 describes another property of
elements of these sets. Namely, for every element y of the first set

Y21 (A%y;)? < oo, while for the second Y772 (A%y;)* = co.

The next theorem characterizes F_-solutions of (E).

Theorem 4. Let the function f satisfy condition (x), and let y be
an F_-solution of (E). Then y has an unbounded first difference.

Proof. Let y be an F_-solution. We will consider separately two
possible cases of y:

(a) y is oscillatory,

(b) y is nonoscillatory.

Case (a). Suppose that the sequence {Ay,}5° ; is bounded, that is,
for some constant Cf,

(6) |Ay,| < Cp, forall n € N.
To shorten the notation, we introduce an operator H defined by

(7) H(yn) = ynAQyn - (Ayn)Z: n € N.
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We will show that H(y,) tends to minus infinity, and following this
together with (6), {y,} is an unbounded sequence. As a result of this
and the oscillatory character of {y, }, we obtain contradiction with (6).
Differencing (7) yields

AH(yn) = ynt148%5 + Ay, A%y,
- (Ayn+1A2yn + AynAZyn)
= yn+1A3yn - Ayn-i-lAzyn
= F(yn) — (A%y,)?% n € N.

Since y is an F_-solution, then for some p, F(y,) < 0; moreover, by

the lemma,
F(yn) < F(yu)a for n > M.

Hence,
(8) AH(yx) < F(yu), fork > p.

Summing inequality (8) from p to n — 1, we get
n—1
H(yn) < H(yu) + Y Fyu) = H(yu) + F(yu)(n — p);
k=p
allowing n to tend to infinity we obtain

9) H(y,) > —c0 asn — oo.

This property of the operator H together with (6) leads us by definition
(7) to the conclusion

(10) lim y,A%y, = —oco.
n—oo
Using once more the estimate (6), we obtain

sup ‘AZyn| = Sup |Ayn+1 - Ayn‘
neN neN

< sup |Ayp1| + sup |Ay,| < 2C.
neN neN
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Therefore, (10) yields

lim |y,| = oo,
n—oo

and so for any constant C' there exists n(C') € N such that |y,| > C
for all n > n(C). Since {y,}22, is oscillatory, then there exists an
increasing sequence of integers {ny}5>; such that y,, yn,+1 < 0 and at
least one of y,, , yn,+1 is different from zero.

Let H = inf{k : ng, > n(C)}. Therefore, for k¥ > H we have

ynkynk+1 < 0

and by the oscillatory behavior of y in the points ny, we get |Ayy, | =
|Yni| + |Ynp+1] = 2C. The constant C was taken arbitrary, so we
can choose an increasing sequence of integers {ng,}$2; such that
limy o0 |Aynkt| = 0.

This is a contradiction with (6).

Case (b). By Theorem 2, the nonoscillatory F_-solution has to be
an (A4)-solution. Then, for an eventually positive solution, we obtain

A2yj > A%y, >0, Jj>v;
thus, after suitable summation,

AynZAyu_’_(n*V)AZyw n2v.

Hence, Ay, — 0o as n — oo. O

Remark 3. The above theorem shows that every F_-solution is
unbounded. It is evident because, supposing that the solution y is
bounded, that is, |y,| < C for some constant C' and all n € N, we get
[AYn| < |Yn+1| + lyn] < 2C; that is, boundedness of the first difference,
which is impossible by Theorem 4. Therefore, every bounded solution
is an F-solution. But we did not prove that all unbounded solutions
are F_-solutions.

By Theorem 2, we can prove a statement similar to Theorem 4
(unfortunately for nonoscillatory solutions). Namely:

Every nonoscillatory F; -solution of (E) has a bounded first difference.
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An open question is: does there exist an oscillatory F-solution with
an unbounded first difference?

3. Existence results. In the next two theorems we give some
additional assumptions on the function f, limiting the types of the
equations which possess F; or nonoscillatory F'-solutions.

Theorem 5. Let the function f satisfy condition (x). There exists
a positive constant & such that

(11) zf(n,z) < —6/n, for everyn € N, x € R\{0}.

Then equation (E) does not possess a nontrivial Fy -solution.

Proof. Suppose, on the contrary, that there exists a nontrivial Fy-
solution y of the equation (E). Then

m—1 m—1
0< Flym) =F(y1) + > viaf(yiee) — Y (A%;)%
=1 =1
Hence,
m—1 m—1 m—1
- Z Yi+2f (G, yj42) < — Z Yi+2f (G, yj42) + Z (A%y;)?
=1 i=1 i=1
< F(y1) < oo.
Thus,

- Zyj+2f(j, yj+2) < F(y1) < oo.
=

On the other hand, by (11),

—Yjr2f (G, yja2) > 0/5.

Therefore,

j:1 j:1
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This contradiction completes the proof. ]

Theorem 6. Let the function f satisfy condition (x), and let § be a
positive constant such that

(12) sgn (z)f(n,z) < 6z 2 for every n € N, z € R\{0}.

Then every nonoscillatory solution of (E) is an F_-solution.

Proof. Let y be an eventually positive F;-solution of (E). By Theorem
2, y is an (A2)-solution. Therefore, by definition of an (A2)-solution

Ay, < Ay,, forn >v.

Hence,
n—1

(13) ynSyV+ZAyu:yu+(n_V)Ayua n > v.
j=v

The same reasoning as in the proof of Theorem 5 leads us to the
estimate

(14) - Zyj+2f(j, Yj+2) < F(y) < oo.

j=v
On the other hand, by (12),
FUryir2) < =6(yj42) 7>
Hence,
(15) =y f U yise) =D 0(yi42)
i i=v
Using (13) in (15), we conclude

_ Zyj-i-Qf(ja Yj+2) = Z&[y,, LG +2 - v)Ayg] Tt = 0o
j=v

j=v
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in contradiction to (14). O

In the theorem below we state, under suitable assumptions, nonexis-
tence of nonoscillatory F. -solutions.

Theorem 7. Let the function f satisfy condition (). If, for arbitrary
positive constant € there exists 6 = 0(g) > 0 such that

(16) |f(n,z)| >dn"2 foralln € N and |z| > ¢,

then every Fy-solution of (E) is oscillatory.

Proof. Let y be a nonoscillatory F-solution of (E). Then

(17) lim A%y, = lim A3y, =0.
We show that condition (16) yields unboundedness of A%y,,. For this,
we deduce estimation of A2y, in terms of f(n,y,12) in consequence of
which and condition (16) we obtain a contradiction.

Suppose that {y,}52, is eventually positive, say for n > v (proof
in the case of an eventually negative solution is similar). Summing
equation (E) we obtain

n—1
APy, — Ay =D (5, yjta)-
=k
Hence,
(18) Ay = Z f(,yj+2)-
i=k

Therefore the series 72, f(j,y;+2) converges. From (18) we get

n—1 oo

(19) 7A2yn + Azym = Z Z f(.]a yj+2)'

k=m j=k
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As we have noticed, there exists a finite limit of the sum on the lefthand
side of (19) as n — o0, so the sum on the righthand side has a finite
limit as n — oo. Hence,

n—1 oo n—2

Z Z fG,yjte) = Z (k+1—m)f(k,yr+2)
k=m j=k k=m

+(n—m) Y flk yrs2)

k=n+1

n—2

< 3 (k+ 1 m)f (ki)
k=m

for m > v. So we have from (19)

n—2

Ay, — Ay > = > (k+1—m)f(k, yri2)
k=m

> Z(k+l—m)5k_2:oo.

Because —AZ2y,, is finite, the obtained contradiction proves our theo-
rem.

Theorem 8. Let the function f satisfy condition (x), and let f be
nondecreasing on (0,00) and nonincreasing on (—o0,0). If

(20) Zjﬂf(j, C)| = oo,

for every constant C # 0, then equation (E) does not possess a
nonoscillatory bounded solution.
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Proof. Let y be a nonoscillatory bounded solution of (E). Then, by
Remark 3, y is an F';-solution and consequently, by Theorem 2, y is an
(A2)-solution (say (A2+)-solution). Using monotonicity of the function
f, we prove convergence of the series 3°7° (j + 3)®)|f(j, C1)| which in
turn is at variance with (20). Let us denote

3. (1)
@D = ;0 (:E, - )k)!

where n*) = n(n — 1)(n — 2)---(n — k+1).

Differencing (21) using formulae for differences of sum and products,
we get Av, = (1/6)(n + 3)®) A%y, and hence

(n+2—k)BRASFy n €N,

1
Avy = £ (n+3)® f(n,yus2) = 0.

Summing the above equality from v to n — 1, we obtain

n—1

1 . .
vn—C— ¢ > G +3) 1, yi12) =0,

j=v

where C' = v,,. Therefore, we have the following equality

°L -1k (3—k) A3—k
22 Y g+ 2 - HOIAT
k=0

n—1
1 . .
= 2 Y G+ fGyse2) = C.
j=v

By definition of an (A2+)-solution, we get from (22),

n—1

1 . .

(23) Yo = g D G +3) ¥, yi42) < C.
j=v

Because y is increasing and bounded, then for some constant Cy we

have y,, < C1 and f(j,y;+2) < f(j,C1). Therefore, from (23),

n—1 n—1
G +3)P1G,C) < =D G +3)D f(,yj42)
j=v i=v

< 6C +6C = Cs.
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Hence,
n—1

> G +3)Pf(G,C) < Cay forn > v

j=v
Tending with n to infinity, we obtain

(e o]

> G +3)PNf )l < O,

j=v
but (5 +3)®) = (5 +3)(j +2)(j +1) > j°, so we obtain contradiction
with (20). O

4. Examples. Consider the equation
(EX) A4yn = anyi—l—% n € N,

where

—24(n +2)3
(n+4)®)(n+1)3(n+3)3’
For this equation f(n,z) = a,z®, we see that condition () is fulfilled.
By Theorem 1, for any nontrivial F'-solution u of (Ex), we have

Ap = n € N.

245, 12 . 244, _
(24) ZI[A up]® < oo and nl;ngo Ay, =0.
If, furthermore, u is nonoscillatory, then u should be an (A2)-solution.
An easy calculation will show that u, defined by

(25) u, =n— 1/n, n N

is a nonoscillatory, F;-solution of (Ex). Differences of sequence (25)
are given by the formula

i!

i i+1
Alup, = (1) (n 4 )

fort>2, neN,

for which conditions (24) are satisfied. Moreover, since

1
Aup =1+ —, N
Y +n(n+1) ne
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this sequence is an (A2+)-solution.

The condition (x) is satisfied for the functions f(n,z) = a,x where
{a,} is any sequence of negative numbers; therefore, our theorems hold
for linear equations

A4yn = UnYn+2, n e Na

with a negative sequence of coefficients.

Let us observe that the same sequence (25) (with the same properties)
is an (F4,A2+)-solution of the equation

—24[(n+2)* +1]
(n+2)2(n+4)®[y2 , +2]

Ay, = neN
for which condition () is not satisfied.

On the other hand, condition (x) does not hold for the equation
A4yn = Yn+2, n < Nv

while this equation possesses an F.-solution w, = sin(nw/3), n € N,
for which the second difference A2?u,, = — sin((n + 1)7/3) is not square
summable; that is, Y oo [A%u,]? = co. Furthermore, lim, o, A%u,
does not exist (compare Theorem 1).
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