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GRAPHIC APPLICATIONS OF SOME
INTERPOLATING WEIGHTED MEAN FUNCTIONS

VITTORIA DEMICHELIS

ABSTRACT. Our aim in the present paper is to prove that
some results about interpolating weighted mean functions are
a useful tool for the design of curves.

In [1], a method is considered to construct weighted mean
functions, with interpolation property. A few examples are
given; they include the Shepard formula.

In the present paper we introduce the weights of interpo-
lating means in a well-known Walsh theorem. In this way we
can impose a finite number of interpolation constraints to an
approximant (for example, a Bernstein-Bezier curve) with a
preassigned error.

In [5] a class of piecewise weighted mean functions is in-
troduced for the interpolation of a finite set of real values
fi = f(zi), i = 1,... ,n, given at the points 1 < -+ < zn.
At any point = € [z;,zi+1], ¢ = 1,...,n — 1, the interpolant
is a weighted mean of the values f; and f;41. These piecewise
weighted mean functions are at least C! in [z1,zy], satisfy
a variation diminishing property and preserve positivity and
monotonicity of the sequence fi,... , frn. In the present paper
we use them to solve a histopolation problem.

0. Introduction. In the present paper we consider some graphic
applications of interpolating weighted mean functions [1, 5], which
interpolate a set of real values f; = f(z;), i = 1,...,n at distinct
points z1,... ,x, € I C R.

In the first section we introduce weights of interpolating means in
a Walsh theorem, in order to get a hybrid scheme for simultaneous
approximation and interpolation with a preassigned error.

In the second section we recall some properties of piecewise weighted
mean functions, which include functional precision, regularity class in
[z1,x,], variation diminishing. A further property is that positivity
and monotonicity of the sequence fi,... , f, are preserved. In the third
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section we use a piecewise interpolating mean to solve a histopolation
problem.

1. Approximating curves with interpolation constraints. A
wide class of weighted mean functions, with interpolation property, is
defined in [1]. For a given set of real values f; = f(z;), i =1,...,n,
and distinct nodes x;, i = 1,...,n, arbitrarily distributed in I C R,
the interpolating mean is given by

n
(1.1) u(fiz,n) = fipi(w;n)
i=1
where the weight functions p;(z;n), i = 1,... ,n satisfy the conditions:

pi(z,n) = 0; pi(z;n) = 1;
(1.2) ;
pi(zj;n) = 0y, ,j=1,...,n.

We consider in particular the weight functions p;(x;n), which can be
represented by the general formula:

oale(@) - ezl

it HE;} [o(z) — p(ax)]|”

1=1,...,n;

(1.3)  pi(z;n) = 5

where @ € R and ¢(z) can be particularized as follows [1]:
o(z) =z, z €l CR;

in this case the (1.1) becomes the well-known Shepard interpolation
formula [2];

o(x) = cos, z € [0,);

o(z) = €%, z€l CR;

moreover, in general, ¢(z) can be any function strictly monotone
and at least C! in I. Let g(z) be a curve which approximates f(z)
in I C R with a certain approximation degree. In order to get a
hybrid scheme g¢*(z), which approximates f(z) in I with the same
degree of g(z) and simultaneously interpolates f(z) at the distinct
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points zy,...,z, € I, we can use the Boolean sum operator [3] or,
alternatively, a constructive Walsh theorem [4, pages 121, 122]. It
provides a method for uniform approximation in the complex domain,
under a finite number of interpolation conditions, by polynomials. This
theorem, for a real function f(z), can be formulated in the following
way [6]:

Theorem 1.1. Let the function f(x) be given on the interval
I C R; let g(z) € G be a function which approzimates f(z) on I.
Let gX(z) € G, i = 1,2,...,n, be such that g}(x;) = d;;, where
{z1,@a,...,2n} is a given set of distinct points on I.

Then
(1.4) 9" (z) = g(z) + Z[f(xi) — g(z)]g; ()

satisfies the conditions
1) g*(z;) = f(z),1=1,2,... ,n.
2) g*(z) € G.
3) If|f(z) — g(x)| < e, uniformly with respect to x on I, then

(1.5)  [f(x) —g"(x)] < |f(z) — g(z)| +€ZIQZ($)\ <e(l+ M),

where

n

M= *(z)].

r;lg;czl |9 ()]
=

In the original Walsh theorem gf(z) is the i-th fundamental La-
grange polynomial of degree (n — 1) and so M depends upon I and
Z1,%2,...,Ty. In graphic applications it’s better if the approximation
error in (1.5) does not depend upon I and z1,... ,2Z,.

Setting in Theorem 1.1 gf = p;(x;n), i =1,...,n, conditions 1) and
2) are satisfied and condition 3) holds, with M = 1 in (1.5). In this
way, we get an approximation error of the hybrid scheme g*(z) which
depends only upon the approximation error of g(z).

To illustrate the behavior of the proposed method, we set in (1.3)
o(z) = z, @ = 2 and we particularize g(x) by choosing a Bernstein
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FIGURE 1.

polynomial of degree 50. Figure 1 shows g*(z), drawn by a dashed
line, which approximates f(z) = |z|, z € [-1,1] and interpolates f(z)
at seven distinct points in [—1,1].

2. Piecewise interpolating mean functions. In [5] we introduce
the “piecewise mean functions”; to do this, we suppose that the nodes
are in increasing order, namely, z; < z2 < --- < x,, and we apply a
formula of type (1.1) to the pairs of nodes z;,x;11,i=1,...,(n —1);
the resulting interpolation scheme is

i+1

(2.1) u2(f;w,n):ijpj(x;2), i=1,...,(n—-1)

where
(3:2) — lp(x) — p(@ip1)|™
22 ) = oy T ) + Ip() — el
lo(z) — )|

(2.3) piv1(w;2) = lo(x) — @(z:)|* + |p(z) — @(ziq1)]e

with a; € RT; we note that the conditions (1.2) are satisfied by the
pair of weight functions defined by (2.2) and (2.3) and so ua(f;z,n)
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interpolates the values fi1,... , f, and, in each subinterval [z;, z; 1], is
a weighted mean of the values f;, fi11. We can immediately derive
that the following properties hold:

(2.4) min(fi, fir1) < ua(f;2,n) < max(fi, fiy1), T € [z, Tiy];

and if fz = fi+1 =c, then
(2.5) uy(f;z,n) = clpi(z;2) + pivi(z;2)] = ¢, T € [z, iy1]-

Property (2.4) insures that ua(f; ,n) preserves the positivity of the
sequence fi,..., fn. Property (2.5) insures that us(f;x,n) reproduces
exactly the constant function in [z7, z,].

In [5], we prove that for a > 1,us(f;x,n) is at least C1 in [z1, z,,)-
Setting in (2.2) and (2.3) ¢(z) = z and oy = -+ = ap—1 = «, the
interpolating mean becomes the piecewise Shepard formula

_ file—zipa | + fipa|o—ai|®

2.6 S 3 Ly = , € |Ti, Tit+1]-
( ) Z(f T n) |z — 2| + |2 —2i41]® T [I I+1]

The continuity class of Sz(f;z,n) in [z1,z,] can be derived from the
following Theorem [2] for the univariate Shepard’s weights pi(z;2),
k=ii+1.

Theorem 2.1. Let 0 < p < «, then

Ok, p=20
DP . 9) = )
Pr(@532) {0, 0<p<a

with k,j =1,i+ 1.

Theorem 2.1 insures that, if & > 1, then Sa(f; z, n) has null derivative
at the points 1, ... , 2, up to order |, where | «| is the largest integer
less than «, and we can conclude that Sa(f;xz,n) is at least clel in
[Ila In]a

Following S. Karlin [8] we say that us(f;z,n) is variation diminishing
in [z1,2,) if

S[;l,zn}[u2(f;x’n)] S S_(f17f27"' 7fn)
S[;l,wn][ug(f;a:,n)] =sup S [uz2(f;t1,n), ... ,ua(f;tm, n);
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where the supremum is extended over all sets t; < to < -+ < ty,(t; €
[z1,2,]), m is arbitrary but finite and S~ (y1,¥2, ... ,¥n) is the number
of sign changes of the indicated sequence, zero terms being discarded.

We state the following theorem.

Theorem 2.2. The piecewise interpolating mean function us(f;x,n)
is variation diminishing in [z, z,] and it holds

S[;_El,zn][uz(f;x’n)] = Si(flv s )fn)

A proof of this theorem can be found in [5]. Finally, us(f;z,n)
preserves the monotonicity of the sequence fi,..., f, by virtue of the
following proposition, proved in [5].

Proposition 2.1. If f1,...,f, are monotonic, then uz(f;z,n) is
monotonic in [Ty, T,].

3. Histopolation by piecewise Shepard formula. To give a
graphic application of the piecewise means, we use Sz(f;z,n) to solve
the following histopolation problem [7]. Let F = {F,...,Fn} be
a histogram, where F; is the frequency for the uniform class interval

\

/ \

FIGURE 2. S3(F;z,16), a = L.5.
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FIGURE 3. S(F;z,16), o = 2.

[Xi 1, X;], with X; — X; 1 = h, i = 1,...,N. In many practical
applications one is interested in the construction of a function s, at
least continuously differentiable in [Xo, X |, which satisfies the area

matching condition

(3.1) / Ns(m) dx = hZFz

Xo i=1

Y \
4 \\
. N—

FIGURE 4. S3(F;,16), a = 1.5.
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FIGURE 5. So(F;z,16), o = 2.

and which, in addition, reflects the shape of the histogram. For
example, monotonicity and positivity should be carried over from the
given data F' to the approximating function s.

Let So(F;x,n), with n = N + 2, be the piecewise Shepard formula
for the set of data

Xo+X
z1 = Xo, Jf1=Fy; '1'2:%7 fo=Fy;
X;+X
963:%, fa=Fa;-- -
X0t X
%Z%, fi=Fi_1;...;
Xyo1+X
TNl = %, fn1=Fn; rN+2=XnN, fny2=FNn.

In [7] we prove that the condition (3.1) is satisfied for s(z) =
S2(F;z,n). The histopolation curve S2(F';z,n) with a > 1 is at least
clel in [z1, ], by virtue of Theorem 2.1, and carries over from the
given data F' positivity and monotonicity by virtue of (2.4) and Propo-
sition 2.1, respectively.
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TABLE 1.

i X F; X; F;
0 10.5 62.5

1 11.5 1 63.5 0
2 12.5 5 64.5 1
3 13.5 20 65.5 0
4 14.5 38 66.5 2
5 15.5 50 67.5 5
6 16.5 110 68.5 9
7 17.5 110 69.5 22
8 18.5 104 70.5 16
9 19.5 66 71.5 12
10  20.5 44 72.5 8
11 21.5 18 73.5 3
12 225 10 74.5 1
13 235 1 75.5 1
14 245 1 76.5 0

Table 1 gives the extreme points of class intervals and the relevant
frequencies for the two histograms F' and F, which are taken from [9].
The graphs of Figures 2 and 3 show the histopolation curve Sy (F; z, 16),
respectively, with a = 1.5 and o = 2. The graphs of Figures 4 and 5
show S, (F;z,16), respectively, with o = 1.5 and o = 2.
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