GRAPHIC APPLICATIONS OF SOME INTERPOLATING WEIGHTED MEAN FUNCTIONS

VITTORIA DEMICHELIS

ABSTRACT. Our aim in the present paper is to prove that some results about interpolating weighted mean functions are a useful tool for the design of curves.

In [1], a method is considered to construct weighted mean functions, with interpolation property. A few examples are given; they include the Shepard formula.

In the present paper we introduce the weights of interpolating means in a well-known Walsh theorem. In this way we can impose a finite number of interpolation constraints to an approximant (for example, a Bernstein-Bezier curve) with a preassigned error.

In [5] a class of piecewise weighted mean functions is introduced for the interpolation of a finite set of real values $f_i = f(x_i), i = 1, \ldots, n$, given at the points $x_1 < \cdots < x_n$. At any point $x \in [x_i, x_{i+1}], i = 1, ..., n-1$, the interpolant is a weighted mean of the values f_i and f_{i+1} . These piecewise weighted mean functions are at least C^1 in $[x_1, x_n]$, satisfy a variation diminishing property and preserve positivity and monotonicity of the sequence f_1, \ldots, f_n . In the present paper we use them to solve a histopolation problem.

0. Introduction. In the present paper we consider some graphic applications of interpolating weighted mean functions [1, 5], which interpolate a set of real values $f_i = f(x_i), i = 1, ..., n$ at distinct points $x_1, \ldots, x_n \in I \subset R$.

In the first section we introduce weights of interpolating means in a Walsh theorem, in order to get a hybrid scheme for simultaneous approximation and interpolation with a preassigned error.

In the second section we recall some properties of piecewise weighted mean functions, which include functional precision, regularity class in $[x_1, x_n]$, variation diminishing. A further property is that positivity and monotonicity of the sequence f_1, \ldots, f_n are preserved. In the third

Received by the editors on June 30, 1992, and in revised form on November 17, $\begin{array}{c} 1993. \\ {\rm AMS} \ Subject \ Classification. \ 41A05, \ 65D05, \ 65Y25. \end{array}$

section we use a piecewise interpolating mean to solve a histopolation problem.

1. Approximating curves with interpolation constraints. A wide class of weighted mean functions, with interpolation property, is defined in [1]. For a given set of real values $f_i = f(x_i)$, $i = 1, \ldots, n$, and distinct nodes x_i , $i = 1, \ldots, n$, arbitrarily distributed in $I \subset R$, the interpolating mean is given by

(1.1)
$$u(f; x, n) = \sum_{i=1}^{n} f_i p_i(x; n)$$

where the weight functions $p_i(x; n)$, i = 1, ..., n satisfy the conditions:

(1.2)
$$p_{i}(x,n) \geq 0; \qquad \sum_{i=1}^{n} p_{i}(x;n) = 1; \\ p_{i}(x_{j};n) = \delta_{ij}, \qquad i, j = 1, \dots, n.$$

We consider in particular the weight functions $p_i(x; n)$, which can be represented by the general formula:

$$(1.3) p_i(x;n) = \frac{|\prod_{\substack{k=1\\k\neq i}}^n [\varphi(x) - \varphi(x_k)]|^{\alpha}}{\sum_{\substack{j=1\\k\neq j}}^n |\prod_{\substack{k=1\\k\neq j}}^n [\varphi(x) - \varphi(x_k)]|^{\alpha}}, i = 1, \dots, n;$$

where $\alpha \in \mathbb{R}^+$ and $\varphi(x)$ can be particularized as follows [1]:

$$\varphi(x) = x, \qquad x \in I \subset R;$$

in this case the (1.1) becomes the well-known Shepard interpolation formula [2];

$$\varphi(x) = \cos x, \qquad x \in [0, \pi);$$

 $\varphi(x) = e^x, \qquad x \in I \subset R;$

moreover, in general, $\varphi(x)$ can be any function strictly monotone and at least C^1 in I. Let g(x) be a curve which approximates f(x)in $I \subset R$ with a certain approximation degree. In order to get a hybrid scheme $g^*(x)$, which approximates f(x) in I with the same degree of g(x) and simultaneously interpolates f(x) at the distinct points $x_1, \ldots, x_n \in I$, we can use the Boolean sum operator [3] or, alternatively, a constructive Walsh theorem [4, pages 121, 122]. It provides a method for uniform approximation in the complex domain, under a finite number of interpolation conditions, by polynomials. This theorem, for a real function f(x), can be formulated in the following way [6]:

Theorem 1.1. Let the function f(x) be given on the interval $I \subset R$; let $g(x) \in \mathbf{G}$ be a function which approximates f(x) on I. Let $g_i^*(x) \in \mathbf{G}$, i = 1, 2, ..., n, be such that $g_i^*(x_j) = \delta_{ij}$, where $\{x_1, x_2, ..., x_n\}$ is a given set of distinct points on I.

Ther

(1.4)
$$g^*(x) = g(x) + \sum_{i=1}^n [f(x_i) - g(x_i)]g_i^*(x)$$

satisfies the conditions

- 1) $g^*(x_i) = f(x_i), i = 1, 2, ..., n.$
- 2) $g^*(x) \in \mathbf{G}$.
- 3) If $|f(x) g(x)| \le \varepsilon$, uniformly with respect to x on I, then

$$(1.5) |f(x) - g^*(x)| \le |f(x) - g(x)| + \varepsilon \sum_{i=1}^n |g_i^*(x)| \le \varepsilon (1 + M),$$

where

$$M = \max_{x \in I} \sum_{i=1}^{n} |g_i^*(x)|.$$

In the original Walsh theorem $g_i^*(x)$ is the *i*-th fundamental Lagrange polynomial of degree (n-1) and so M depends upon I and x_1, x_2, \ldots, x_n . In graphic applications it's better if the approximation error in (1.5) does not depend upon I and x_1, \ldots, x_n .

Setting in Theorem 1.1 $g_i^* = p_i(x; n)$, $i = 1, \ldots, n$, conditions 1) and 2) are satisfied and condition 3) holds, with M = 1 in (1.5). In this way, we get an approximation error of the hybrid scheme $g^*(x)$ which depends only upon the approximation error of g(x).

To illustrate the behavior of the proposed method, we set in (1.3) $\varphi(x) = x$, $\alpha = 2$ and we particularize g(x) by choosing a Bernstein

FIGURE 1.

polynomial of degree 50. Figure 1 shows $g^*(x)$, drawn by a dashed line, which approximates $f(x) = |x|, x \in [-1, 1]$ and interpolates f(x) at seven distinct points in [-1, 1].

2. Piecewise interpolating mean functions. In [5] we introduce the "piecewise mean functions"; to do this, we suppose that the nodes are in increasing order, namely, $x_1 < x_2 < \cdots < x_n$, and we apply a formula of type (1.1) to the pairs of nodes $x_i, x_{i+1}, i = 1, \ldots, (n-1)$; the resulting interpolation scheme is

(2.1)
$$u_2(f;x,n) = \sum_{j=i}^{i+1} f_j p_j(x;2), \qquad i=1,\ldots,(n-1)$$

where

(2.2)
$$p_i(x;2) = \frac{|\varphi(x) - \varphi(x_{i+1})|^{\alpha_i}}{|\varphi(x) - \varphi(x_i)|^{\alpha_i} + |\varphi(x) - \varphi(x_{i+1})|^{\alpha_i}}$$

(2.3)
$$p_{i+1}(x;2) = \frac{|\varphi(x) - \varphi(x_i)|^{\alpha_i}}{|\varphi(x) - \varphi(x_i)|^{\alpha_i} + |\varphi(x) - \varphi(x_{i+1})|^{\alpha_i}}$$

with $\alpha_i \in \mathbb{R}^+$; we note that the conditions (1.2) are satisfied by the pair of weight functions defined by (2.2) and (2.3) and so $u_2(f; x, n)$

interpolates the values f_1, \ldots, f_n and, in each subinterval $[x_i, x_{i+1}]$, is a weighted mean of the values f_i , f_{i+1} . We can immediately derive that the following properties hold:

(2.4)
$$\min(f_i, f_{i+1}) \le u_2(f; x, n) \le \max(f_i, f_{i+1}), \quad x \in [x_i, x_{i+1}];$$

and if $f_i = f_{i+1} = c$, then

$$(2.5) u_2(f;x,n) = c[p_i(x;2) + p_{i+1}(x;2)] = c, x \in [x_i, x_{i+1}].$$

Property (2.4) insures that $u_2(f;x,n)$ preserves the positivity of the sequence f_1, \ldots, f_n . Property (2.5) insures that $u_2(f;x,n)$ reproduces exactly the constant function in $[x_1, x_n]$.

In [5], we prove that for $\alpha > 1$, $u_2(f; x, n)$ is at least C^1 in $[x_1, x_n]$. Setting in (2.2) and (2.3) $\varphi(x) = x$ and $\alpha_1 = \cdots = \alpha_{n-1} = \alpha$, the interpolating mean becomes the piecewise Shepard formula

$$(2.6) S_2(f;x,n) = \frac{f_i|x - x_{i+1}|^{\alpha} + f_{i+1}|x - x_i|^{\alpha}}{|x - x_i|^{\alpha} + |x - x_{i+1}|^{\alpha}}, x \in [x_i, x_{i+1}].$$

The continuity class of $S_2(f; x, n)$ in $[x_1, x_n]$ can be derived from the following Theorem [2] for the univariate Shepard's weights $p_k(x; 2)$, k = i, i + 1.

Theorem 2.1. Let $0 \le p < \alpha$, then

$$D^{p}p_{k}(x_{j};2) = \begin{cases} \delta_{k,j}, & p = 0\\ 0, & 0$$

with k, j = i, i + 1.

Theorem 2.1 insures that, if $\alpha > 1$, then $S_2(f; x, n)$ has null derivative at the points x_1, \ldots, x_n up to order $\lfloor \alpha \rfloor$, where $\lfloor \alpha \rfloor$ is the largest integer less than α , and we can conclude that $S_2(f; x, n)$ is at least $C^{\lfloor \alpha \rfloor}$ in $[x_1, x_n]$:

Following S. Karlin [8] we say that $u_2(f; x, n)$ is variation diminishing in $[x_1, x_n]$ if

$$\begin{split} S_{[x_1,x_n]}^-[u_2(f;x,n)] &\leq S^-(f_1,f_2,\ldots,f_n) \\ S_{[x_1,x_n]}^-[u_2(f;x,n)] &= \sup S^-[u_2(f;t_1,n),\ldots,u_2(f;t_m,n)]; \end{split}$$

where the supremum is extended over all sets $t_1 < t_2 < \cdots < t_m(t_j \in [x_1, x_n])$, m is arbitrary but finite and $S^-(y_1, y_2, \ldots, y_n)$ is the number of sign changes of the indicated sequence, zero terms being discarded.

We state the following theorem.

Theorem 2.2. The piecewise interpolating mean function $u_2(f; x, n)$ is variation diminishing in $[x_1, x_n]$ and it holds

$$S^{-}_{[x_1,x_n]}[u_2(f;x,n)] = S^{-}(f_1,\ldots,f_n).$$

A proof of this theorem can be found in [5]. Finally, $u_2(f; x, n)$ preserves the monotonicity of the sequence f_1, \ldots, f_n by virtue of the following proposition, proved in [5].

Proposition 2.1. If f_1, \ldots, f_n are monotonic, then $u_2(f; x, n)$ is monotonic in $[x_1, x_n]$.

3. Histopolation by piecewise Shepard formula. To give a graphic application of the piecewise means, we use $S_2(f; x, n)$ to solve the following histopolation problem [7]. Let $F = \{F_1, \ldots, F_N\}$ be a histogram, where F_i is the frequency for the uniform class interval

FIGURE 2. $S_2(F; x, 16), \alpha = 1.5.$

FIGURE 3. $S_2(F; x, 16), \alpha = 2.$

 $[X_{i-1}, X_i]$, with $X_i - X_{i-1} = h$, i = 1, ..., N. In many practical applications one is interested in the construction of a function s, at least continuously differentiable in $[X_0, X_N]$, which satisfies the area matching condition

(3.1)
$$\int_{X_0}^{X_N} s(x) dx = h \sum_{i=1}^N F_i$$

FIGURE 4. $S_2(\overline{F}; x, 16), \alpha = 1.5.$

FIGURE 5. $S_2(\overline{F}; x, 16), \alpha = 2.$

and which, in addition, reflects the shape of the histogram. For example, monotonicity and positivity should be carried over from the given data F to the approximating function s.

Let $S_2(F; x, n)$, with n = N + 2, be the piecewise Shepard formula for the set of data

$$\begin{split} x_1 &= X_0, \qquad f_1 = F_1; \qquad x_2 = \frac{X_0 + X_1}{2}, \qquad f_2 = F_1; \\ x_3 &= \frac{X_1 + X_2}{2}, \qquad f_3 = F_2; \cdots; \\ x_i &= \frac{X_{i-2} + X_{i-1}}{2}, \qquad f_i = F_{i-1}; \dots; \\ x_{N+1} &= \frac{X_{N-1} + X_N}{2}, \qquad f_{N+1} = F_N; \qquad x_{N+2} = X_N, \qquad f_{N+2} = F_N. \end{split}$$

In [7] we prove that the condition (3.1) is satisfied for $s(x) = S_2(F; x, n)$. The histopolation curve $S_2(F; x, n)$ with $\alpha > 1$ is at least $C^{\lfloor \alpha \rfloor}$ in $[x_1, x_n]$, by virtue of Theorem 2.1, and carries over from the given data F positivity and monotonicity by virtue of (2.4) and Proposition 2.1, respectively.

TABLE 1.

i	X_{i}	F_{i}	\overline{X}_i	\overline{F}_i
0	10.5		62.5	
1	11.5	1	63.5	0
2	12.5	5	64.5	1
3	13.5	20	65.5	0
4	14.5	38	66.5	2
5	15.5	50	67.5	5
6	16.5	110	68.5	9
7	17.5	110	69.5	22
8	18.5	104	70.5	16
9	19.5	66	71.5	12
10	20.5	44	72.5	8
11	21.5	18	73.5	3
12	22.5	10	74.5	1
13	23.5	1	75.5	1
14	24.5	1	76.5	0

Table 1 gives the extreme points of class intervals and the relevant frequencies for the two histograms F and \overline{F} , which are taken from [9]. The graphs of Figures 2 and 3 show the histopolation curve $S_2(F;x,16)$, respectively, with $\alpha=1.5$ and $\alpha=2$. The graphs of Figures 4 and 5 show $S_2(\overline{F};x,16)$, respectively, with $\alpha=1.5$ and $\alpha=2$.

REFERENCES

- 1. G. Allasia, R. Besenghi and V. Demichelis, Weighted arithmetic means possessing the interpolation property, Calcolo 25 (1988), 203–217.
- 2. R.E. Barnhill, R.P. Dube and F.F. Little, *Properties of Shepard's surfaces*, Rocky Mountain J. Math. 13 (1983), 365–382.
- 3. C.K. Chui and H. Diamond, A general framework for local interpolation, Numer. Math. 58 (1991), 569-581.
- ${\bf 4.}$ P.J. Davis, $Interpolation\ and\ approximation,$ Blaisdell Publishing Company, New York, 1965.

- $\bf 5.~\rm V.~\rm Demichelis,~\it Interpolation~\it by~\it piecewise~\it weighted~\it mean~\it functions,~\it Rendiconti$ di Matematica e delle sue Applicazioni, Serie VII, $\bf 11~(1991),~883–891.$
- 6. ——, A method for uniform approximation under interpolation constraints, Intern. J. Computer Math., 49 (1993), 85–91.
- 7. ——, Positive and monotone histopolation by piecewise weighted mean functions, submitted for publication.
- 8. S. Karlin, *Total positivity*, Vol. I, Stanford University Press, Stanford, California, 1968.
- 9. R. Morandi and P. Costantini, *Piecewise monotone quadratic histoplines*, SIAM J. Sci. Stat. Comput. 10 (1989), 397–406.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÁ DI TORINO, VIA CARLO ALBERTO 10, 10123 TORINO, ITALY