THE DIOPHANTINE EQUATION $x^2 + 119 = 15 \cdot 2^n$ HAS EXACTLY SIX SOLUTIONS

JÖRG STILLER

Introduction. F. Beukers proved in [1] that the diophantine equation

$$x^2 + D = 2^n,$$

where D is an odd integer and $x, n \ge 1$, has at most four solutions for the case $D \ne 7$. For the case D = 7 we have the well-known Ramanujan-Nagell equation which has five solutions, namely,

$$n = 3$$
 4 5 7 15
 $x = 1$ 3 5 11 181

Consider the diophantine equation

$$x^2 + D = A \cdot 2^n,$$

where D is an odd integer, $A \ge 3$ a positive odd integer, $\gcd(A, D) = 1$ and $x, n \ge 1$. Are there equations with more than five solutions? We want to prove the following theorem:

Theorem. The diophantine equation $x^2 + 119 = 15 \cdot 2^n$ has exactly the six solutions

$$n = 3$$
 4 5 6 8 15
 $x = 1$ 11 19 29 61 701

for $x, n \ge 1$.

Proof. The proof is based on ideas of P. Bundschuh [2], and all we need are some calculations that can be done by a home computer.

Received by the editors on May 25, 1994.

296 J. STILLER

Let us first consider the case that n is even. Then our equation can be written as

(1)
$$15y^2 - x^2 = 119, y = 2^{n/2}.$$

(1) has the solutions

$$x = 4$$
 11 16 29 61 104 139 236 484 821 \cdots
 $y = 3$ 4 5 8 16 27 36 61 125 212 \cdots

and the y's form the two two-sided infinite sequences

(2)
$$\dots, 125, 16, 3, 8, 61, \dots \\ \dots, 36, 5, 4, 27, 212, \dots$$

(2) can be written as

$$(3) a_{k+2} = 8a_{k+1} - a_k, a_0 = 3, a_1 = 8$$

(3)
$$a_{k+2} = 8a_{k+1} - a_k, a_0 = 3, a_1 = 8$$

(4) $b_{k+2} = 8b_{k+1} - b_k, b_0 = 4, b_1 = 27$

with $k \in \mathbf{Z}$. We have to prove that 4, 8 and 16 are the only powers of 2 in these sequences.

Let a_k , with |k| > 1 be a power of 2. Since a_k is strictly increasing with |k|, then a_k must be at least 2^5 ; in particular, $a_k \equiv 0 \pmod{32}$. The residues of the a_k 's modulo 32 form a periodic sequence of order

$$k \equiv 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad \mod 8$$

 $a_k \equiv 3 \quad 8 \quad 29 \quad 0 \quad 3 \quad 24 \quad 29 \quad 16 \quad \mod 32$

Considering the a_{3+8l} 's, $l \in \mathbf{Z}$, modulo 23 we get a periodic sequence of residues of order 3:

$$l\equiv 0$$
 1 2 mod 3 $a_{3+8l}\equiv 20$ 7 19 mod 23

Let $R(m) := \{r_m(2^n) : m, h \in \mathbb{N}\}$, where $r_m(k) \equiv k \pmod{m}$ with $0 \leq k$ $r_m(k) < m \text{ and } k \in \mathbf{Z}.$ Then $R(23) = \{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\}$ and from $R(23) \cap \{7, 19, 20\} = \emptyset$, it follows that $a_{-1} = 16$ and $a_1 = 8$ are the only powers of 2 in (3) which leads to n = 6, 8.

From (4) we get $b_k \equiv 3, 4, 5 \pmod{8}$ for all $k \in \mathbf{Z}$, so $b_0 = 4$ is the only power of 2 in (4) which leads to n = 4.

Next we consider the case that n is odd. Our equation can be written as

(5)
$$30y^2 - x^2 = 119, y = 2^{(n-1)/2},$$

and the solutions of (5) are

$$x = 1$$
 19 31 109 131 449 701 2399 2881 9859 \cdots
 $y = 2$ 4 6 20 24 82 128 438 526 1800 \cdots

and the y's form the two two-sided infinite sequences

(6)
$$c_{k+2} = 22c_{k+1} - c_k, c_0 = 2, c_1 = 20$$

(6)
$$c_{k+2} = 22c_{k+1} - c_k, c_0 = 2, c_1 = 20$$

(7) $d_{k+2} = 22d_{k+1} - d_k, d_0 = 4, d_1 = 82$

with $k \in \mathbf{Z}$.

It follows from (6) that $c_{1+2l} \equiv 0 \pmod{4}$ and $c_{1+2l} \equiv 3, 5, 6, \pmod{7}$ for all $l \in \mathbf{Z}$. $R(7) = \{1, 2, 4\}$ and from $R(7) \cap \{3, 5, 6\} = \emptyset$ we obtain that $c_0 = 2$ is the only power of 2 in (6) which leads to n = 3.

It follows from (7) that $d_{62+128l} \equiv 0 \pmod{256}$ and $d_{62+128l} \equiv 120$, 225, 241, 249, 253, 255, 256 and from $R(257) \cap \{120, 137\} = \emptyset$ we obtain that $d_{-2} = 128$ and $d_0 = 4$ are the only powers of 2 in (7) which leads to n = 5, 15.

Remark. In the same way we can prove that the diophantine equation

$$x^2 + 391 = 35 \cdot 2^n$$

has the five solutions (x, n) = (13, 4), (27, 5), (43, 6), (267, 11), (757, 14).For n even we obtain the sequences

$$a_{k+2} = 12a_{k+1} - a_k,$$
 $a_0 = 5,$ $a_1 = 52$
 $b_{k+2} = 12b_{k+1} - b_k,$ $b_0 = 4,$ $b_1 = 37$

and for n odd,

$$c_{k+2} = 502c_{k+1} - c_k,$$
 $c_0 = 4,$ $c_1 = 194$
 $d_{k+2} = 502d_{k+1} - d_k,$ $d_0 = 22,$ $d_1 = 11012$

with $k \in \mathbf{Z}$. Only the a_{3+8l} 's are divisible by 16 and $a_{3+8l} \equiv 63 \pmod{71}$ for all $l \in \mathbf{Z}$. But $R(71) \cap \{63\} = \varnothing$. Only the $b_{62+128l}$'s are divisible by 256 and $b_{62+128l} \equiv 86$, 171 (mod 257) for all $l \in \mathbf{Z}$. But $R(257) \cap \{86,171\} = \varnothing$. Only the c_{2+4l} 's are divisible by 8 and $c_{2+4l} \equiv 3,7,10,14 \pmod{17}$ for all $l \in \mathbf{Z}$. But $R(17) \cap \{3,7,10,14\} = \varnothing$. Only the d_{15+32l} 's are divisible by 64 and $d_{15+32l} \equiv 6 \pmod{17}$ for all $l \in \mathbf{Z}$. But $R(17) \cap \{6\} = \varnothing$.

REFERENCES

- 1. F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1980/1981), 389-410.
- 2. P. Bundschuh, On the diophantine equation of Ramanujan-Nagell, Semin. Math. Sci. 12 (1988), 31–40.

Breiter Weg 67, 31787 Hameln, Germany