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ON MARTINDALE’S THEOREM

P.N. ANH AND L. MARKI

ABSTRACT. Martindale’s theorem characterizes prime rings
which satisfy a generalized polynomial identity. In the present
paper we give further characterizations in terms of the ring
only, eliminating thereby the central closure from the formu-
lation of Martindale’s theorem.

The definition of a generalized polynomial identity (GPI) and Mar-
tindale’s characterization of a prime ring satisfying a GPI both make
use of the central closure of the ring. Here we give internal charac-
terizations, eliminating thereby the central closure. The possibility of
such a characterization may belong to the ‘folklore’ for specialists in
the field; we could not find it in the literature, however, and we think it
can be of interest for the nonspecialist because it yields a conceptually
simpler approach.

Notice also that the extended centroid, and through it the usual
definition of a GPI, is connected with the maximal ring of left quotients
of the ring and hence has a slight one-sided flavor, whereas conditions
4 and 5 of our theorem are obviously two-sided.

Theorem. For a prime ring R, the following conditions are equiva-
lent.

(1) R satisfies a GPI,

(2) R has a square-cancellable element a such that Ra is a uniform
left ideal and aRa is a domain of finite rank over its center,

(3) R has a left ideal gL such that End gL is a domain of finite rank
over its center,

(4) R has an element a such that a®> # 0 and aRa is a PI-ring,
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(5) R satisfies a GPI with coefficients from R, i.e., an identity of the
form

E Ci1 L1 CinTjy " * " Cinimini Cini+1 =0

where the c; are elements of R or the empty symbol.

(An element a € R is said to be square-cancellable if for all z € R,

a’x = 0 implies az = 0 and za? = 0 implies za = 0.)

Proof. 1 = 2. Denote by S the central closure of R. By Martindale’s
theorem, S has a minimal left ideal L with an idempotent e € L such
that eLe is finite dimensional over its center. If e is defined on 0 # V<R,
then 0 # Ve C R, so (Ve)? # 0 as R is prime, hence there is an
a € Ve C LN R such that (Ve)a # 0, and then La = L. Therefore, for
f € L with fa = a we have Lf = L, f?> = f, consequently a has an
inverse in the division ring fLf. Thus, a is square-cancellable, and if
f is defined on a nonzero ideal U of R, then by [3, Lemma 1] fUf is
an order in fLf, hence aRa is also. By Martindale’s theorem, aRa is
of finite rank over its center.

2 = 3. We choose L = Ra; then by [1, Theorem 15], R is left
nonsingular and hence by [1, Theorem 11| aRa and End gRa have
isomorphic division rings of quotients.

3 = 4. Since R is prime, there exists an a € L with La # 0. Since a
as well as every element of aRa induces an endomorphism of pL and
End L is a domain, it follows that a® # 0 and aRa is isomorphic to a
subring of End L, which is a PI-ring by the assumption.

4 = 5. If aRa satisfies an identity of the form Y c;z;, ---z;, =0,
then ) c;ax;,a® - - - a’r;, a = 0 holds in R.

5 = 1 is obvious. 0

Remark. A direct proof of 1 = 5 is implicitly contained in the proof
of [2, Theorem 3.1].
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