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COMMUTATIVE ALGEBRAIC GROUPS
AND REFINEMENTS OF THE
GELFOND-FELDMAN MEASURE

DEANNA M. CAVENY

ABSTRACT. The main theorem of this paper is a mea-
sure of algebraic independence for numbers associated with
a one-parameter subgroup of a commutative algebraic group
defined over a number field. Qualitative results in this setting
have been given by M. Waldschmidt, R. Tubbs and M. Ably,
who provided measures as well. We refine Ably’s quantita-
tive results, separating the degree and the height in the limit
case when the group contains a copy of the additive group
of complex numbers, i.e., G4. This new results provides sev-
eral interesting corollaries, in particular, a generalization of
G. Diaz’s refined Gelfond-Feldman measure to higher dimen-
sions and an improvement of Tubbs’ elliptic Gelfond-Feldman
measure.

1. Introduction and statement of result. We begin with
a review of the standard objects in this general setting. Although
our presentation is slightly different, this is essentially the setting of
[1] or [43]. Let G be a commutative algebraic group of dimension
d > 1 defined over a number field K. Let G, denote the additive
group of complex numbers and G,,, the multiplicative group of complex
numbers. We assume that G decomposes as

G =G% x GI x Gy

with dy € {0,1}, d; > 0 and G5 a commutative algebraic group of
dimension dy = d — dy — dy, defined over K, and with no linear factor.

We let ¢ : C — G(C) be a one-parameter subgroup, i.e., an analytic
homomorphism whose image is Zariski dense in G(C). Given complex
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numbers yi,... ,Ymn wWhich are linearly independent over Q, we define
Y=Zy1+ -+ Zyy, and T = ¢(Y). We let | = rankz (Y Nker ), we
suppose that [ < m, and we assume, without loss of generality, that
Ym—I+15---,Ym € ker ¢

To provide an algebraic independence result, we’ll need an embed-
ding, say X, of G into multiprojective space. We’'ll specify X more
carefully below. Having fixed an embedding, we will give a measure
of algebraic independence for a point w, specified below, whose coordi-
nates are simply coordinates of the points X o ¢(y;) with 1 < j < m —I.

We also need to impose conditions which insure that we have “enough
points” to generate a transcendence result. To simplify these condi-
tions, we introduce quantities y* and & as in [47, p. 388] and [1]. We
let mo and 7; be projections of G onto G% and G, respectively. For
every algebraic subgroup G’ C G defined over K, we let r = dim(G/G’),
ro = dim(G% /m(G")), 71 = dim(G9 /71 (G")), and 7o = 7 — 19 — 71.
With this in mind, we let

# . {rankzF/(FﬂG')—i—rl +27‘2}
u* = min
G'CG 7

)

and by taking G’ = 0, we see that

ﬁ< m7l+d1+2d2

= d
We also define
o /,Lﬂd — d1 — 2d2
A =/myuk
We must make further assumptions on the points yi, ... , Ym, namely

assumptions regarding the distribution of the points of I' = ¢(Y") among
certain algebraic subgroups of G. This technical hypothesis, referred
to as (H), will be carefully outlined below.

Lastly, we will use Deg(J), Ht(J), T(J) and ||J||w, respectively,
to denote the degree, height, size and absolute value at w for an
ideal J C K[X1,...,X,] and a point w € C". Precise meanings for
these notions, discussed more carefully below, have been provided by
Yu. Nesterenko and P. Philippon.

We’re now in a position to state the main result.
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Theorem 1. Suppose K,G, ¢ and yy,... ,Yym as above are given, that
the corresponding r satisfies k > 1, that u* > 2 if G is nonlinear, and
that hypothesis (H) is satisfied. Suppose G is embedded into projective
space and w is specified as below. Then there exists a constant C > 0,
depending on K,G,®, y1,... ,Ym, N, K, u¥, and the embedding X, such
that for all ideals J C K[Xy,...,X,] of codimension n + 1 — k, degree
Deg (J), height Ht (J) and size T'(J), we have

log ||J|| > — exp(CDeg (J) %~/ =T (J)).

Letting [ = 0 and assuming p* is maximal yields the qualitative result
of [43, Main Theorem]. Using the criteria of algebraic independence
of Jabbouri and Philippon [16] and ideas of [34], M. Ably was able
to quantify that result and weaken the technical hypothesis. We state
his complete result [1, Théoréme Principal] as Theorem 2 below. Note
that in the case where dy = 1 we have separated the degree and height,
thereby providing a refinement of his measure.

As Ably, we use the standard construction and the Philippon-
Jabbouri criteria for algebraic independence. In order to take full
advantage of this criteria, however, we choose parameters which ez-
plicitly depend on the degree and height of the ideal J. This idea was
used by Diaz [12] to separate the degree and height in the classical
Gelfond-Feldman measure.

You may note that Ably provides a measure in the nonlimit case as
well. In our result, we have stated only the limit case, as our method
does not allow a separation of degree and height in the nonlimit case.
The proof and construction given here suggest that it is impossible to
make a similar refinement in this case; we address this in a closing
remark.

Theorem 2 [1]. Suppose that hypothesis (H) is satisfied and that
k > 1; if G is nonlinear, we also suppose that puf > 2. Let k be an
integer > 0 such that kK > k 4+ 1. Then there exists a real number

03203(G7X7¢7 [K:Q]vwlv"' s Ldys Yty - - - 7ym7k) >0

such that
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(1) if Kk = k+1, the function
'~I>1(T) = eXp(C'g,Td/(d_ndo))

18 a measure of algebraic independence of w in dimension k,

(2) if kK > k+1, the function
(I>2(T) _ Cg(T/(lOg T)(d—ndg)/nd)n/(n—k—l)

18 a measure of algebraic independence of w in dimension k.

Before continuing with the preliminary details, we offer brief historical
remarks. It is imperative to note the significant contributions of Masser,
Wiistholz and Philippon on zero estimates, as well as Nesterenko and
Philippon for the introduction of commutative algebra to transcendence
theory and the development of criteria for algebraic independence.
Their contributions were monumental as well as fundamental. As a side
remark, the first quantitative results when not all of the numbers are
algebraically independent were given by Nesterenko [27] and Philippon
[31] as results of their independent work on criteria for algebraic
independence.

Before Theorem 2 was provided by Ably, the Gelfond-Schneider prob-
lem and further generalizations had already been studied, indepen-
dently, in the commutative algebraic group setting, by R. Tubbs and
M. Waldschmidt. For instance, [39] contains a general result (The-
orem 3) which includes Gelfond’s algebraic independence of o, o
when o € Q with aloga # 0 and 3 cubic over Q as well as the elliptic
analogue which was provided by Masser and Wiistholz. More gener-
ally, Tubbs’ work on algebraic groups provides a variety of corollaries
establishing small transcendence degree for values of exponential and
elliptic functions. In particular, he requires that G be defined only over
an arbitrary subfield K of C, not necessarily a number field. And he
exploits general hypotheses such as periodicity or that some or all of
the points under consideration have coordinates which are algebraic or
which correspond to torsion points on the algebraic group. See [39,
41, 42] for such results.

The study of transcendence results in the commutative algebraic
group setting was initiated by Waldschmidt after much work by himself
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and others in the exponential and elliptic settings. In particular,
large transcendence degree for the Gelfond-Schneider problem in the
commutative algebraic group setting was first established in [45, 46|
under a strong technical hypothesis. Strengthened results are provided
in [43] under a similar hypothesis. (A very general result, the theorem
of the algebraic subgroup, is given in [47].)

2. Further preliminaries.

Specifying the embedding and the point w. First we consider the
map ¢ : C — Go(C) given by the projection of ¢(C) onto the G2
component of G(C). We make the following observation. If ¢ is
nontrivial and T, (C) is the tangent space to G2 at the origin, then
we have ¢ = expg, oLie, where Liet) : C — Tg,(C) is the tangent
map of ¢ at the origin.

We let X3 : G2(C) — Ppn(C) be a K-embedding of G2(C) into
projective N-space as defined by J.-P. Serre in [36]. Then X» o expg, :
T,(C) — Py (C) is given by analytic functions with order of growth
at most two. We will note these functions by ©¢, ©1,... ,0x.

Given X2, we let X be the natural K-embedding of G(C) into
P4, (C) x Py, (C) x PN (C). Then X o ¢ can be represented as

(1) (1727 L, ezlz’ s 7ezdlz; GO(Llew(z))v s 7®N(Llew(z)))

Here the coordinates corresponding to P4, P4, or Py do not appear
when dy,d; or da, respectively, is zero. We note here that zi,...,zq4,
are Q-linearly independent since ¢(C) is Zariski dense in G(C). Our
technical hypothesis (H) will include a quantification of this linear
independence as well.

With this embedding in mind, we would like to consider the algebraic
independence of the coordinates of X o ¢(y;) for 1 < j < m—1. We may
assume, by virtue of a linear transformation, that ©g(Lie(y;)) # 0
for 1 < j <l —m. Then we let

(2) w= (1, yj; 1, exp(x1y;), ... ,exp(xq,y;);

"Op(Liety(y;))” 7 Og(Liew(y;)) I<j<m-— l),
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where here, as above, we omit the corresponding irrelevant coordinates
if dy =0, d; =0 or do = 0. We also note that Pyy x Pg, x Py — P,
via the Segre embedding.

Defining the degree, height, size and “absolute value at a point” for an
ideal. As mentioned above, we need notions of the degree and height of
an ideal as well as “the absolute value of an ideal evaluated at a point.”
Such ideas were provided by Yu. V. Nesterenko, via the introduction
of resultant ideals (otherwise known as U-resultants, Chow forms, or
“U-éliminante forms”) and were extended by P. Philippon. In [24],
we find the notion of the degree of a homogeneous prime ideal over
a Noetherian ring, and in [26], the height of such an ideal over Z.
In [25, 27], Nesterenko defines the absolute value at a point for any
unmixed homogeneous ideal h of rank n —d < n in the polynomial ring
Z[Xy, X1, ..., Xy,], provided h N Z = {0}. These ideas were extended
by Philippon in [32] to ideals over an arbitrary number field, using the
Mabhler measure, and thereby providing an invariant height.

Following the latter, we let v be a place of our number field K and
n, the local degree (i.e., the degree of K, over Q,). We also let C,
be the completion of the algebraic closure of K, and ¢, an embedding
of K into C, extending the canonical embedding of K into K,. For a
polynomial P with coefficients in K, we let M, (P) be the maximum
absolute value of the coefficients of o, (P) if v is finite and the Mahler
measure of o,(P) if v is infinite. Then the height and invariant height,
respectively, of P are defined by

A(P) = ﬁ S 1, max{0, log M, (P)}

h(P) := ﬁ > " ny log M, (P).

More generally, consider a homogeneous ideal I C K[Xy, X1, ... , X,
of codimension n 4+ 1 — r and an index d € N”. Again, following [32,
Definition 1.14], we define

and
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where fr is a “U-éliminante form” of I of index d and d° is the total
degree. We omit the subscript d when the indexis 1 = (1,...,1) € N".
Further, for z € P,(C,), we give [32, Définition 1.15] morphisms 0, 4
(also noted as 0, or 0) and then define the “absolute value of index d
of I at 2”7 by

1l g,0.d = Mo@g,a(£1))/Mo(fr)-

For an ideal J of K[X1,... ,X,] of codimension n+1—r and § € CZ,
we let

171lg == 11" J]|

9,v,d>

where
0=(1:01:---:0,)

if 0 =(60,...,0,) and
Deg (J) := Deg ("J) and T(J):= Ht("J)+ Deg("J),

where ".J is the homogenization of J in K[Xy, X1, ... ,X,] generated
by the homogenizations of the elements of J.

When we’re considering polynomials P(X) instead of ideals, we fall
back on the more familiar notation d(P) to denote the maximum
partial degree and deg(P) to denote the total degree. When P is
also in Z[Xy, ..., X, ]\{0}, we use H(P) to denote the usual height,
i.e., the maximum absolute value of the coefficients of P, and we use
t(P) = max{1 + d(P),log H(P)}.

Specifying the technical hypothesis. Before specifying the technical hy-
pothesis, we need an additional definition. We recall our K-embedding
X of G into Py, x Py, x Py. As in [33, p. 358], for positive real
numbers Dg, D1, Do, we say that a subvariety V of G is incompletely
defined in G by equations of multidegree < (Dy, D1, D) if V is an
irreducible component of G N Z(I), where Z(I) C Py, X Py, x Py is
the set of common zeros of an ideal I generated by polynomials over
K of multidegree at most (50,31, 52) with respect to the coordinates
of Pdo X Pd1 X PN.

For h = (hy,... ,hm) € Z™, we define h-y = hyys + -+ - + hmym and
for positive real numbers S, we let Z™(S) = {h € Z™ : |h;| < 5,1 <
j < m}. We also let T¢(C) be the tangent space of G at the origin
with associated tangent map Lie ¢, and we fix a norm || - || on Tz(C).
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We specify the following technical hypothesis which is very similar to
(H) of [1].

(H) There exist positive constants ¢g and Sp such that for all S > Sy
and for all algebraic connected subgroups G' C G C Py, x Py, %
Py, incompletely defined in G by equations of multi-degree at most
(S%#* (log S), S**~1(log S)%/?, 251" =2(log S)%/4), and all h € Z™(S),
we have:

(1) if h #0, then |h-y| > exp(—cpSlogS) and

(2) either ¢(h - y) € G'(C) or for all u € Tg(C) such that
expg(u) € G'(C), we have

|u— Lieg(h - y)|| > exp(—S"*" log S).

Remark . For the proof, it is not necessary that hypothesis (H) be
satisfied for all the subgroups of G mentioned above. It suffices, in fact,
if (H) hold for certain such subgroups indicated more precisely below.

3. Special cases: new corollaries and previous results. In
the pure exponential and elliptic cases, Theorem 1 has some interesting
corollaries which refine the present measures of algebraic independence.
We discuss these below, along with a review of previous quantitative
results and some discussion of the progress on qualitative results, so as
to provide an historical perspective.

3.1. Exponential setting. One popular example corresponds to the
group G = G, x G4 (so d = dy + 1) and the one-parameter subgroup
#(z) : C — G(C) given by (z,e"'%,...,e"1%). In this case, the
exponential map expg : C? — G(C) is given by expg (20, 21, - - - , 24,) =
(z0,€*,...,e*1) and we have ¢ = exp, oLie ¢ where clearly Lie¢ :
2z (2,212, ,24,2).

If z1,...,2q, are Q-linearly independent complex numbers, then
#(C) is Zariski-dense in G(C). Suppose we also have a second set

of Q-linearly independent complex numbers yi,... ,y,. With this in
mind, we will consider the following technical hypothesis (Hj).

(Hy) Suppose there exist Cy > 0 and Sy > 0 such that for all S > Sy,
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for all A\ € Z%(S) and all h € Z™(S), we have
|)\ . m| > exp(_Smd/(2m+d72))
and
|h - y| > max{exp(—CyS log S), exp(—§md/ (m+2d=1))1

This technical hypothesis insures that (H) is satisfied for certain sub-
groups of G, x G4 as noted.

Here we consider the algebraic independence of the coordinates of
W = (Y1y--- ,Ym, €7V, ..., €"Ym . eThVl . ePa¥m)  We have
k = md/(m +d—1) and p! = (m +d — 1)/d, and the statement
of the theorem is as follows.

Corollary 3. Suppose K = md/(m +d —1) > 1 and (H1) holds.
Then there exists a positive Cs, depending only on G, x and y such
that for w = (Y1,..« ,Ym, €Y, ..., e¥Ym V1 eTdi¥m) gnd
for all ideals J of K[Xy,... ,Xma] of codimension md + 1 — k, degree
Deg (J), and size T(J), we have

log|| /|l > — exp(Cs (Deg J)™ “T(J)).

From Theorem 2, we see that the previous measure was
exp(CyT(J)(m+du)/d),

In particular, consider o € C\{0} with loga # 0 and 8 € Q of
degree d; > 2. Letting z1,...,z4, be loga, Bloga,...,B%" Lloga
and y1,...,ym be 1,5,...,8%71, we can choose w = (a,aﬂ,aBZ,... ,
aﬁdl_l).l The technical hypothesis easily follows from a Liouville esti-
mate, and we have the following corollary which is a generalization of
the well-known Gelfond-Feldman measure.

Corollary 4. Let o be a complex number such that aloga # 0,
and let B be an algebraic number of degree dy at least two. Then there
exists a positive constant Cg, depending only on o and B such that for
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all ideals J of K[X4,. .., X4,] of codimension (d1+1)/2, degree Deg (J)
and size T'(J), we have

10 11| o o2 qis—1) = —exp(Co(Deg J)T()).

This is a refinement of the measure exp(C37(J)?) given in [1].

In the case where « is also algebraic, the Gelfond-Feldman measure
is essentially as in Corollary 4, with the exception that we may also
consider ideals of dimension at most (d; — 1)/2 evaluated now at the
(dy — 1)-tuple (o, 05, ... af™ ).

These results bring us to the limit of the current method. We take
a few pages to provide a history of the exponential Gelfond-Schneider
problem and improvements of the original Gelfond-Feldman measure.
Unless otherwise noted, we assume that a € Q with aloga # 0 and
B € Q of degree d; > 2.

Having established the transcendence of o, A.O. Gelfond [14] went
on to provide a transcendence measure as well. He also considered the
algebraic independence of the d; — 1 numbers o, aﬂz, e ,aﬁdFl with
a and (8 as above, now known as the Gelfond-Schneider problem, and
thereby established the well-known algebraic independence of o and
o over Q when 3 is a cubic irrational [13] and [14, Theorem 1, pp.
132-133]. In 1950, Gelfond and N.I. Feldman [15] used his transcen-
dence measure for o to provide a measure of this new algebraic inde-
pendence. They gave the following result: For every e > 0, there exists
a t(¢) > 0 such that for every nonzero polynomial P(X,Y) € Z[X,Y]
with t(P) > t(e), we have log |P(a?, af*)| > — exp(t(P)*+¢).

In 1977, D. Brownawell [3] improved the original measure, separat-
ing the degree and the height to get something slightly better than
— exp(Cr7d(P)3t(P)) for some positive constant C7. Actually, this
strengthened measure followed from the proof of a more general result,
namely a lower bound for pairs of relatively prime integral polynomials
evaluated at (a, o, aﬁ2) when a € C (not necessarily algebraic) and 3
a cubic irrational number, improving similar lower bounds given in [2].
The main ingredients of Brownawell’s proof were the semi-resultants of
G.V. Chudnovsky and a simultaneous approximation result for a and
a® when b € Q\Q and a € C with aloga # 0. The second of these
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ingredients was provided by M. Mignotte and M. Waldschmidt in [23];
Brownawell [2] and [44] refer to other such results.

In 1987, using a very general theorem of P. Philippon [31, Théoréme
2] on measures of algebraic independence, G. Diaz [10] was able to
replace the t(P)**¢ in the original Gelfond-Feldman measure with
t(P)?*¢. Furthermore, by appealing to an improved criteria due to
Philippon and E.M. Jabbouri [16], he [12] was also able to separate the
degree and height to produce the lower bound —Cjsexp(Cyd(P)t(P))
for some positive constants Cg and Cy.

Meanwhile, studies continued on the algebraic independence of
aﬂ,aﬁz,... ,aﬂdﬁl when o € Q with aloga # 0 and 3 algebraic
of degree d; > 2. More generally, authors began to consider the in-
dependence of sets of the form {z;,y;,e*¥ : 1 < i <n,1 <j < m},
{z;,e®¥ :1<i<n1<j<m} {e"¥% :1<i<n1<j<m},
as in Corollary 3 above. The best qualitative result to date for this
more general Gelfond-Feldman problem is given, independently, by
G. Diaz [11] and Nesterenko [29]. As corollaries, Diaz stated that
trdegQQ(a,aﬂ,aﬁz,... Lo ") is at least [(dy + 1)/2] when a € C
and trdegQQ(ozﬂ,a'Bz, ... ,a@P4u-1) is at least [(dy +1)/2] when a € Q.
He had introduced a trick attributed to Chudnovsky [7, pp. 375-376] to
improve the lower bound of [dy/2] given independently by Nesterenko
[28] and Philippon [32]. Other important ingredients of his proof were
the criteria of algebraic independence established in [32], a combination
of analytic estimates from [8] and [35], and a zero lemma established in
[33].2 Nesterenko [29] strengthened Diaz’s general result by establish-
ing the same lower bound on the transcendence degree under a looser
technical hypothesis.

In his work, Nesterenko uses a somewhat different algebraic ap-
proach and sometimes provides quantitative results as well. For in-
stance, the following corollary [28, Theorem 5] provides a measure of
algebraic independence in the Gelfond-Schneider setting. Let o and
B be algebraic numbers with aloga # 0, with B of degree dy > 2,
and let 7 € R with 0 < 7 < (dy +1)/2. Then there exists a con-
stant Cip = Chro(e,8,7) > 0 such that for any set of polynomials
P; € ZiXy,... ,Xq, 1], j = 1,...,N, which generate an ideal of
height dv — r in Z[Xy,..., X4, 1], where 0 < r < 7 and T > t(P;),
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j=1,...,N, we have

max {|P;(a?,0?,..., 0" )|} > exp(CyoT(a="7/(7=r)),

1<G<N
In the case where the P;’s generate a prime ideal p C Z[X7, ... , Xq, 1]
of height dy —r, the notion of height (i.e., rank) used by Nesterenko [26,
for instance, p. 9] provides that Z[X,... ,Xy,—1]/p has dimension r.

Nesterenko’s results can be compared to Theorem 2 above, particularly
in the nonlimit case, provided one pays particular attention to the
codimension as Ably’s result applies to ideals in d; variables while
Nesterenko works in Z[Xy,... , Xg, _1].

And, finally, Theorem 2 [1, Corollaire 4] brings us to the present,
providing the measures exp(C117(J)?) of algebraic independence for

(o, aﬂ,aﬂz, .. ,aﬁdl 1) in codimension (d; +1)/2 and
Cua(T()/ 1o (7)) /4424

in codimension n — k > (dy + 1)/2 for a and S as in Corollary 4.

3.2. Elliptic setting. Here we let p be a Weierstrass elliptic function
with algebraic invariants gs, g3, associated elliptic curve E, and lattice
of periods 2. We use O to denote the ring of endomorphisms of E and
k the associated field of multiplications.

Letting o be the corresponding Weierstrass ¢ function, we have a
parametrization

p(z) = (0°(2),0°(2)p(2), 0*(2)¢' ()

of the complex points on E. Here we might consider the group
G =G, x E% (so d = dy + 1), complex numbers x1,... ,z4,, and the
one-parameter subgroup ¢(z) : C — G(C) given by (1, z,p(z12),...,
p(z4,2)). If the numbers zy,... ,2z4, are k-linearly independent, then
z,0(z12),... ,p(zq,2) are algebraically independent, and thus we’ve
guaranteed that ¢(C) is Zariski dense in G(C).

As in the exponential case, we let yi,...,yn be a second set
of complex numbers which are linearly independent over Q. Here
we may consider the algebraic independences of the coordinates of
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w = (yl) e ,ym,p(x1y1), e 7p($1ym)a v 7p(xd2y1)a oo 7p(md2ym))'
We have
k=1[k:QIm(dx+1)/([k:Q]m+d—1)
and
pt = ([k: Qm+d—1)/(dz +1).
For A = (A1,...,A\d,) € 0%, we define |\| := maxi<;<4, |\i| and for

S € Rt we let 0%(S) = {\ € 0% : 0 < |\| < S} and similarly for
h € O™ and O™(S). We also define A - z = > A\;z; where the sum is

over i = 1,...,dy, and we let h -y = > h;y; where this sum ranges
over j = 1,...,m. In this setting, we consider the following technical
hypothesis.

(H3) Suppose there exist C12 > 0 and S5 > 0 such that for all
S > Sia, all A € 0%(S), and all h € O™(S), we have

A~ z| > exp(—SkEQIm/ (6w =2)+1))
and

|h - y| > max{exp(—C12Slog S), exp(—S[k:Q}m/(‘l(“u_ZH’?’))}.

In this setting we have elliptic analogues of Corollaries 3 and 4 which
will be easily anticipated by the reader.

Corollary 5. Suppose k = [k : Q)m(d2+1)/([k : QJm+d—1) > 1 and
(Hz) holds. Then there exists a positive C13, depending only on G,z
and y such that for w as above and for all ideals J of K[X1,... , X4
of codimension md + 1 — k, degree Deg (J) and size T(J), we have

log ||J|| > — exp(C13(Deg J)FAm/e1( 7)),

From Theorem 2, we see that the previous measure was
exp(CMT(J)([k:Q]m+dz)/dz)_

We have a refinement in the special case of the original elliptic Gelfond-
Schneider problem, too.
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Corollary 6. Let u be a complex number and 8 an algebraic
number of degree dy over k such that p(u), p(Bu),. .., (8% 1u) are
defined, and suppose that dy > 2/[k : Q]. Then there exists a positive
constant C1s, depending only on u and B such that for all ideals J of
K[Xy,...,Xq4,] of codimension (d2+1)/3 (if k = Q) or (d2 +1)/2 (if
[k : Q] =2), degree Deg (J), and size T(J), we have

108 |71l pw) (80),... (822 1uy) = — exp(Cis(Deg J)FU2T()).

Again, a brief history is in order. According to [37], Schneider pro-
vided the following result: Let p(z) be the Weierstrass elliptic function
with algebraic invariants. If p(u) and B are both algebraic and B ¢ k,
then p(Bu) is transcendental. — The next step, an elliptic analogue
of Gelfond’s algebraic independence result for the usual exponential
function was announced by D.W. Masser and G. Wiistholz in [19] and
established in [22]. They proved a variety of results for a Weierstrass
elliptic function p(z) with algebraic invariants g, and g3. In the case
where @ also has complex multiplication, an interesting corollary was
the Gelfond analogue which can be stated as follows. Suppose p has
complex multiplication over k # Q. Then, if u is a complexr number
such that p(u) is defined and is algebraic over Q and if 8 is cubic over
k, then the numbers p(Bu) and p(B%u) are defined and are algebraically
independent over Q. A fundamental ingredient of their proof was pro-
vided by their work concerning zero estimates on algebraic groups [21].
According to [38], “this approach was initiated by Nesterenko [24], de-
veloped in a fruitful manner by Brownawell and Masser [5], and then
extended by Masser and Wiistholz in their papers [19, 18, 21].”

Tubbs provided a variety of quantitative results in this setting, begin-
ning with a transcendence measure for p(Su) when w is a nontorsion
algebraic® point of p(z), B ¢ k is an algebraic number, and @ has
algebraic invariants. Using lower bounds for linear forms in elliptic
logarithms, provided in [17] and [9], Tubbs [38] was able to extend his
transcendence measure to provide a quantitative version of the Masser-
Wiistholz algebraic independence result. He proved: Let p(z) denote a
Weierstrass elliptic function with complex multiplication and algebraic
invariants. Suppose u is a nontorsion algebraic point for p(z) and that
B is cubic over the field of multiplications of p(z). Then for every
e > 0, there exists a real number t(e) > 0 such that for every nonzero
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integral polynomial P(X,Y) with t(P) > t(g), we have

log |P(p(Bu), p(82u))| > — exp(t(P)*F).

In the case where p has complex multiplication, £ is cubic over k and
¢ = (p(u), p(Bu), p(B%u)) is defined, Tubbs [40] also provides a lower
bound for pairs of relatively prime integral polynomials evaluated at (,
providing an elliptic analogue to [2].

The first result establishing many algebraic independent values of
elliptic functions in the Gelfond-Schneider setting was given by Masser
and Wiistholz [20]; there they considered elliptic curves with algebraic
invariants and without complex multiplication. Philippon [30], in his
thesis, provided a strong refinement, dealing with both the non-c.m.
and c.m. cases, and establishing transcendence degrees close to the
present limit of the method. Other large transcendence degree results
for the general elliptic Gelfond-Schneider problem were provided in [4,
6] along with quantitative results, and in [45, 46] as consequences of
transcendence results for commutative algebraic groups. In the first
case, Waldschmidt removes the hypothesis that g, g3 be algebraic but
imposes an additional condition on either the j-invariant j(E) of the
elliptic curve or the ratio 7 of a pair of fundamental periods of p.

The best qualitative result to date for the general elliptic Gelfond-
Schneider problem was provided, independently, by Ably [1, Corollaire
7] and Tubbs [43, Corollary of theorem 2], as consequences of their
results for commutative algebraic groups. With regards to the elliptic
analogue of the original problem, we have the following corollary:
Suppose (B is algebraic of degree do > 2/[k : Q] over k, and let u be
a complex number such that p(z) is defined at u,Bu,...,B3% u and
p(u) is algebraic. Put

t_{[“’%fl] ifk=Q

[57] k£ Q.

Then at least t of the values p(Bu),...,p(B% tu) are algebraically
independent. ~ The best quantitative result to date follows from [1,
Corollaire 5], the elliptic corollary of Theorem 2 above.?

4. Proof of main result. As mentioned above, our proof follows
the typical outline for algebraic independence results. In particular,
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we construct an auxiliary function, alter the auxiliary function as in
[11], find a zero-free region via the zero estimates of [33], and then
bound the auxiliary function by the typical interpolation lemma as in
[11]. For much of this, we follow the details of Ably [1]. Lastly, as in
[12], we appeal to E.M. Jabbouri’s [16] version of P. Philippon’s [32]
criteria for algebraic independence, choosing our parameters to depend
explicitly on the degree and height of the ideal J.

We let K,G,¢ and yi,...,yn be as given above. We may define
quantities ! and k, specify a particular point w, and prescribe the
technical hypothesis (H). All of this is done as above.

We choose a transcendence basis 61, ... ,60; and an integer ;1 over
Z[6,,... ,6;] such that K(w) = Q(f1,...,0,0:11). For simplicity of
notation, we let 8 = (64,...,6;), ' = (01,...,0:41), and similarly

X =(X1,...,X), X' = (X1,...,X¢41). For zp € C™ and positive
real numbers R, we define B"(z9, R) to be the open ball in C" with
center zy and radius R. As usual, we have the following proposition.

Proposition 7. Suppose hypothesis (H) is satisfied, « > 1, and
furthermore, p! > 2 if G is nonlinear. Then there exist positive
constants Sy, a1,asz,as and choices of the parameters Dy, D1, Do, M
and v such that:

For all S > Sy, there exists an ideal Js = (@s,1,---,Qsm(s)) in
K[Xy,...,X] such that

(a) the set of zeros of Js in B(0,exp(—r(S))) is empty,

(b) maxi<;<m(s)|@s,;(0)] < exp(—air(S)) + exp(—azM™ log 5),

(€) maxi<j<m(s) d(@s,) < as((Do — 1) + (D1 — 1)S + (D2 — 1)8?),
and

(d) max;<;j<m(s) Ht (Qs,;) < as((Do—1)log S+(D1—1)S+(Dy—1)S5?).

Proof. We run through the highlights of the proof to illustrate
what conditions arise on the parameters Dy, Dy, Do, M,r and S. As
these parameters depend on S, we may sometimes write r(S5), for
example, to emphasize this dependence. In the final stage, when we
choose the parameters, we will actually specify (50,31,52), instead
of (Dy, Dy, D), and we will define D; by D; = max{1,[D;]} where [
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denotes the integer part. Some of the more tedious details of the proof
have been omitted here but can be found in both [43] and [1].

We recall that K(w) = Q(61,...,0;+1) and 64y is integral over
Z[6,,...,0:]. Welet R(61,...,0;, X¢11) be the minimal polynomial for
0141 over Z[f:,...,0;]. We also recall that v; := ¢(y;) € G(K(w)) C
P4, x P4y, x Py. Thus, we have multiprojective coordinates for v;,
1 < 7 < m, given by

(3) (Q(@), Adoyj(el); Q(e)v Bl,j(al)v e 7Bd1yj (61);
Q(9),C1;(0),...,Cn,;(6"))

where Q(X), Aqg,,;(X'), B; ;(X') and Cs ;(X') are integral polynomials
over K (fori = 1,...,dy, s =1,...,N and j = 1,...,m) of size
at most c¢;. (Here ¢y is a positive constant which depends only on
G,0,X,Y1,-++ >Ym and 01,...,0;11.)° Furthermore, Q(#) is nonzero
and we may suppose that

‘Q(9)| > c

where c; is a positive constant depending only on G, ®, X, y1,--- ,Ym
and 01, e ,9t+1-

In establishing our zero-free region, we will want to consider  in the
ball B(6, p(S)) of C! with center 6 and radius p(S) = exp(—r(S5)). For
any 0 = (51, - ,6’~t) in this ball, we know from [46, p. 263] that there
exists a simple root §t+1 of R(0~1, o0y, X;+1) which satisfies

‘§t+1 - 9t+1| < GXP(_T(S)/Q)-

For j =1,...,m, we let 4; be the point with multiprojective coordi-
nates given by evaluating the coordinate polynomials of (3) at 6 and
0" == (61,...,60:0;41). Waldschmidt notes that 4; € G(C). Further-
more, for j = 1,...,m, there exists §; € T (C) such that 5; = expg J;
and

|9; — y;| < exp(=r(S)/2).

We will have replaced 6’ with @' in each coordinate of 7; when
expressed as in (3). Since |Q(0)| > cz, we know from a difference lemma

(see, for example, [11, p. 7]) that |Q(0)| # 0 provided r(S) > c3, where
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cs3 is a positive constant depending only on ¢z, maxi<i<|0;|, t and
t(Q). Thus, we have multiprojective coordinates

(Q(é)v Ado,]'(é,); Q(é)’ Bl,j (51)7 e aBd1,j (é/),
Q(0),C14(9"),...,Cn;(0))

for 7;.

In order to carry out our construction, we will also use multiprojective
coordinates for certain points of I' = ¢(Y) in terms of #'. For
h = (h1,... ,hy) € N™, we let ||h]| = hy + -+ + h,, and (as

above) h -y = hiy1 + -+ + hym- Multiprojective coordinates for
h -~ :=hiy1 + -+ + hypym were given by Tubbs in [41, 39] and [43]
and can also be found in [1] where the G2-coordinates are selected even
more carefully.

We consider the additive coordinates first. From the group law on

G,, we see that P4 -coordinates for the additive part of h - v can be
given by

(4a) COS WG
j=1
From the group law on G2, we see that
(4D) (Qw)'hh [IBu@),... 1] Bdl,jw»hf)
j=1 j=1

are P4, coordinates for the multiplicative part of h - 7. Projective
coordinates corresponding to the G part of h -y cannot be given so
explicitly in terms of the G3-coordinates for vy, ... ,v.,. However, we
have the following lemma which, except for notation, is taken directly
from the work of Ably. (In particular, the polynomials ny p With 8 € By,
and s =0,1,... , N correspond to uf for € By, andi=0,1,... ,N of
1, p. 212])

Lemma 8. For each h € N™(S), there exists a finite set By and
polynomials vah(X’) (for B € B, and s = 0,1,...,N) which are
integral over K and such that:
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(a) max{d(D,),Ht(D,): B € By,s=0,1,... ,N} < csS” and
(b) for every 6 € BY(8, p(S)), there exists 3 € By, such that

(4c) (D, (0),..., D5 ,(8))

is a set of Py -coordinates for the Go portion of h -4 := h1y1 + --- +
hm;?m'

There is one technicality to overcome at the start. Namely, we would
like lower bounds for the multiprojective coordinates of h - y. When
do > 0, we have to use another approach, as no such bound holds, a
priori, for the Ga-coordinates. We act as if we have already specified
D, (S) which is at least 1, and we consider cases based on whether or not
we have a suitable lower bound. This idea was used by Tubbs in [40].
In the more general algebraic groups setting, the same idea appears in
[43] and, independently, in [1] and Ably’s thesis. Tubbs uses a single
set of G-coordinates for each h - «y; this allows him to conclude that
h -4 is in Py for all but finitely many 6 “near” §. As noted in Lemma
8, Ably uses a family which contains a set of projective coordinates for
each 6 “near” 6, i.e., a complete set of nonvanishing P -coordinates
for my(h - 7). This idea was instrumental in loosening the technical
hypothesis of [43] to (H) in [1].

In the first case, we suppose that do > 0 and there exists an
h € Z™(S) such that

(5) max |D23,(8")] < exp(=r(8)/5(D2(S) — 1)).

We let PV, (0) = r(D2, (6, X41), R(0, X¢11)) for s = 0,1,... ,N and
B € B, where r denotes Chudnovsky’s semi-resultant. Then we let

Js = (P}, (X):s=0,1,... ,N; B € By).

For each 6 € B'(#,p(S)), using Lemma 8(b) and the nonvanishing

property of semi-resultants, we know that PSB h(é) # 0 for some s €
{0,1,...,N} and some (3 € By, so (a) of Proposition 7 is established.
Using other properties of semi-resultants, (b) follows from (5) provided
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c5(D2(S) —1)S? < r(S), while (c) and (d) of Proposition 7 follow from
condition (a) of Lemma 8.

In the second case, we have dy = 0 or we may assume that

(6) max D, (8')] > exp(=r(5)/5(Ds(S) = 1))

for every h € N™(S). For each such h, we fix g(h) € Bp and
s(h) € {0,1,...,N} such that

h
DL (8] 2 exp(=r(5)/5(D2(8) = 1)),
Then, for each 6 € B*(6, p(S)), the differences lemma shows that

B(h) (g
max (D90 (0)] 0

provided r(S) > ¢S where cg depends only on c4, maxi<;<¢t1 |0i
and ¢. Then we know that

h) (G h) (G
(D55 @), DXL (@)
is a set of P y-coordinates for ma(h - 7).

Constructing the auxiliary function. In this second case, we follow
the standard construction of an auxiliary function with many zeros.
We let Ok denote the ring of integers in K. We create a homogeneous
polynomial P in Og[W,Y, Z] of multidegree at most (Dg — 1,D; —
1,D2—1) inW = (W07Wd0)7 Y = (Yo,. .. 7Yd1) and Z = (Zo, ce 7ZN)
We construct P so that the associated function

F(z) = Poxod(e),
that is,
P(1,2;1,e™%,... ;e % Q¢ (Lie(z)),... ,On(Liev(2))),

satisfies
F(h-y)=0
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for all h € N™(M).

We let {M,, : p € M} be a set of multihomogeneous monic monomials
of multidegree (Dg—1, D1 —1, Do—1) in (W,Y, Z) which is maximal with
respect to the property that the elements M, are linearly independent
modulo the ideal defining G in P4, X Pg, X Py. We may choose these
monomials so that

card (M) = ¢; DJ° D{* DS

where c¢7; depends only on G, dy,d; and ds.
Then we seek an auxiliary polynomial P(W,Y, Z) of the form

S PuO)ML(W.Y, 2),
neM

where the P, are polynomials over Ox. Werecall that R(01,. .., 0, Xiy1)
€Z[64,...,0;, X;11] is the minimal polynomial for 6y, over Q(61,...,0;).
Then for each y € M and h € N™(S), we define H, 4(X') € Og[X']
by the equation

Hyn(0) = Mu(x o ¢(h-y))

where the projective G- (G&- and G3-) coordinates of ¢(h - y) are
represented as in (4a), respectively (4b) and (4c), and where we’ve used
the polynomial R to insure that

deg x,., Hyun < degx,,, R.
Then the system of equations
(7) {F(h-y)=0:heN"(M)}
gives rise to an equivalent system

{Hn(X")=0:he N™(M)}

where Hp,(X') is defined by

Hy(X') = Y Pu(X) Hyn(X)
HEM
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for h € N™(S).

Before solving this system, we first express Hy(X') as a polynomial in
X1 of (partial) degree (with respect to X1 ) at most deg x,,, R and
with coefficients in O [X]. Setting the coefficients of these polynomials
(in X;41) to zero, each equation of (7) yields deg x,,, R equations
involving X.

This third system of equations will have a solution provided we allow
deg x, P, to be at least as large as max{deg x,(H, )} fori =1,...,t
where the maximum is over all p € M and h € N™(M). We
solve this third system formally, letting the P, be polynomials whose
coefficients are the unknowns of our system of linear equations and
whose partial degrees equal max{deg x,(Hy )} for i =1,... ,t. From
our multiprojective coordinates for ¢(h - y) in (4a)—(4c), we see then
that

max d(P,) < cs((Do — 1) + (D1 — 1)M + (Do — 1) M?).

Siegel’s lemma over number fields provides a nontrivial integral solu-
tion over K and hence a set of coefficient polynomials {P, : p € M}
in Ok [X] satisfying

max Ht (P,) < co((Dg —1)log M + (D1 — 1)M
ne
+ (D — 1)M?).

Of course, this yields a set of nonzero auxiliary polynomials
{HA(X) : h e N"™(S)}

whose coeflicients are also integers in K. We know that this application
of Siegel’s lemma is legitimate, provided that [K : Q] times the rank
of this system is strictly less than the number of unknowns.

In order to provide an upper bound for the rank of this system, we use
the work of [34, Lemme 6.7] as in [1]. For this, we introduce further
notation. For subvarieties V' of P4, X P4, X Py and real numbers
Dy, Dy, Dy > 0, we define H(V; Dy, D1, Ds) as in [33, p. 358] to be
the homogeneous polynomial equal to (dim V')! times the homogeneous
part of (maximal) degree dimV of the Hilbert-Samuel polynomial of
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V evaluated at Dy, Dy, D;. We also define I'(M) = {¢(h-y) : h €
N™(M)}. They showed, then, that the system of linear equations in
(7) has rank at most

e (M !
84im & eard (%) H(G'; Dy, Dy, Dy)
for all connected algebraic subgroups G’ C G.

Counting the number of unknowns is straightforward. Then, thanks
to the above mentioned work of Philippon and Waldschmidt (and the
details of [1]), we know that Siegel’s lemma applies provided
(€1)

e L'(M)+G'
2K : Q](deg x,,, R)8""™ % card (%
< card (M) = ¢; D D% D

>H(GI;D07D17D2)

for at least one connected, algebraic subgroup G' C G.

We note that the same inequality, essentially, had been used in
[43]. There, Tubbs imposes a technical hypothesis (referred to as
Condition 1) which allows him (roughly speaking) to replace the factor

(M !
card (%)H(G,, Do, Dl,Dz)

with H(G'; Dy, D1,2D>). To handle the case where ! is not necessarily
maximal, Ably imposes the general condition (C1) as stated above.

Altering the auziliary polynomials. FEventually, we will consider
polynomials associated with Hy(X’) where h € N™(S) and S > M.
This will be necessary to get the desired zero-free region. First, though,
we employ a trick introduced by G.V. Chudnovsky and formalized by
Diaz [11] to alter these auxiliary polynomials. This is necessary as Hp,
may vanish even at points in a small neighborhood of 6’. The trick
used here is presented in [43, 29] and [1] as well.

For i = (i1,...,i:) € N*, we let ||i|]| = iy + --- + i; and define a
differential operator

. 1 o \" o \“
b _<i1!---it!(8—)ﬁ> <6_Xt> )
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For each 6 € B'(6, p(S)), we pick i(f) such that
|3(6)|| = min{||i|| : D*P,() # 0 for some p € M}.

This choice of i(f) insures that for every i € N* with ||é|| < |[¢(6)]], we
have o
D'P,(#) =0 for every u € M.

This will be crucial later. This “trick” for altering the auxiliary
polynomials does not affect the upper bound for Ht (P,) by more than
a constant factor and does not impose any additional conditions on the
parameters.

Now we let Is = {i(f) : § € B*(#,p(S))} and for each i € Ig, we
define a new auxiliary polynomial

Hpi(X') = Y D'Py(X)H,n(X').
HEM

For every h € N™(S) and i € Ig, the polynomial Hj, ; is nonzero and
has coefficients which are integers in K.

Now we consider the set of polynomials
{Hhﬂ‘ the Nm(S),’L S Is}

in K[X1,...,X¢+1]- In the next stage, we will impose conditions on S
to insure that the stated zero-free region will exist. First, we note that
from the bounds on the degree and height of P, and the definitions of
H}, and Hj,; above, we have

max d(HhJ') S 010((D0 - ].) + (D1 - l)S + (D2 - 1)52)
heN™(S)
i€ls

for a suitable choice of ¢1g. Since
Ht(D'P,) < d(P,)log2 + Ht (P,)
we also have

max Ht (Hp ;) < e11((Do — 1) log S + (Dy — 1)S + (D2 — 1)S?)
heN™(S)
i€lg
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as well.

Establishing the zero-free region. Recall that for each § € _B'(6,p(5)),
we may choose 9t+1 as above and we define §' = (91, ., 0, GH_) We
have also defined i(f) for each § € B(6, p(S)). For any such @ (and
corresponding ¢’ and i(f) € Is), we will impose additional conditions
on S, Dy, Dy and Dy which will insure that

Hy, ;4 (6") #0
for some h € N™(S). Clearly, we will need

(C2) M < S.

We arrive at the other new condition by seeking a contradiction.
Suppose the opposite is true, say there exists § € B*(6, p(S)) such that
Hy, (') =0 for all h € N™(S).

We define a new polynomial P by

(8) PW,Y,Z)= > D @ P, ()M, (W,Y, Z).
HEM

We evaluate P at h - ¥, using the multiprojective coordinates
(@3 15,55 Q@) ™, T By @+
i=1 =1
HBdh] Dgh(él)v"' ’Dlﬂif,h(él)>

where 3 € By, is chosen so that we have Py coordinates for the G2
portion of h - 4. We note that the righthand side of (8) is

S D'OP,(@)H,u(@").

That is, the righthand side is simply H,, i(0) (é' ), which equals zero since
we solved formally. Thus, P vanishes on I'(S) = {h-5 : h € N™(8)} =
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{o(h-g) : h € N™(S)}. However, by construction, i.e., alteration, of
the auxiliary polynomial P, we know that Di(G)PH(é) # 0 and hence P
is a nonzero polynomial. Then Philippon’s zero lemma [33, Théoréme
2.1] shows that there exists a connected subgroup G’ of G, distinct from
G, and incompletely defined in G by multihomogeneous equations of
multidegree at most (Dg, D1,2D2) such that

a !
(9) card (%)H(G/;Ewﬁhﬁz) < H(G;Eo,ﬁlﬂbz)-

In order to apply our technical hypothesis (H) and get a contradiction,
it is only necessary that (H) hold for these “obstruction subgroups” G’,
or for all proper connected subgroups G’, incompletely defined in G by
equations of multidegree at most (Dy, D1,2D-) and satisfying (9) for
some perturbation T'(S) of T'(S). Then, by this weakened technical
hypothesis (H) and the fact that we have a homomorphism taking ¥ to

7, we have a well-defined map from ((I'(S)+G’)/G") into (T'(S)+G") /G’
given by h -5+ G’ — ¢(h - y) + G’ provided

(€3) r(S) > 35" log S

and o .
Dy < S** log S
Dy < §#'~(log §) %/
D, < S“L2(10g S)do/d,

This map is surjective, so

st (T (15461

Combining this with inequality (9), we have

!
card (F(S)TTG>H(G/, 30,31,52) S H(G, Eo,ﬁl, 232)

S 2d2H(G7 EOaﬁlaﬁQ)

where the last inequality follows from the homogeneity of H(G; Dy, D1, ).
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We get the desired contradiction and thus zero-free region provided

r "\ H(G'; Dy, Dy, D.
card( (S)+G> (Gﬂ 0, M1, 2)

! Y Y 3) 2d2
G H(G;D07D17D2)

(C5)

for every proper connected algebraic subgroup G’ of G.

Bounding the auziliary function. Just as in previous work, we use
an extrapolation formula from the work of [8] and [35] to provide the
upper bound for |Hy ;(6')].

First we estimate |Hp, ;(0')] when h € N™(M). We fix i € Ig and
choose 0 € B*(0, p(S)) such that i = i(). We write

(A) Hpi(6') = Y (D'Pu(6) — D'Pu(6)) Hyn(6")
neM
(B) + Y D'Pu(0)(Hun(8') — Hyn(6"))
pneM
+ Y D'PL(O)H,n(0).
BnEM

By our construction, Hp(X') = 0 for h € N™(M). And, by the
minimality of i = i(#), we have D'H (') = 2o peM DP,(6)H, 1 (0).
So the last sum on the righthand side vanishes.

To estimate the “differences” in (A) and (B), we apply a difference
lemma again. We have

ID'P,(8) — D' P, (8)| < exp(—r(S))cys® P exp(Ht (D'P,))

where c12 is a positive constant depending only on ¢ and |f|. The
righthand side of this equation is bounded by exp(—7(S)/2) provided

8 (P exp(Ht (D' P,)) < exp(r(S)/2).

It suffices if
c14((Do — 1) log S + (Dy — 1)S + (D3 — 1)8?) < r(S),

where c14 depends only on ¢, ||, and previous constants. The same
upper bound of exp(—r(S)/2) holds for |H, ,(0') — H,, ,(0")| under the
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same condition (up to a possibly new constant ¢;5 > ¢14). Furthermore,
this condition follows from (C3) and

c15Dp < §"H°
(C4) 15Dy < S“Ll(log S)do/d
c15D9 < 5“5_2(log 5)do/d,

Now we estimate the sums (A) and (B) above. Each of these sums
is at most exp(—r(S)/3) provided (C3) and (C4) hold with a possibly
different constant, say c16 > c15, depending on c14 and cy.

We have then
|Hp,i(60")] < exp(—7(S)/4)
for h € N™(M) provided we also have r(S) > 12log 2.

We extend this bound to the larger set N™(.S) in the usual way, via
an interpolation lemma as in [11, 43, 1]. We choose real numbers
R1(S) and R(S) such that 2 < R; < R/4 and max|h-y| < Ry
where the maximum is over all h € N™(S). We choose Ry = ¢175
where ¢i7 = max{2,mly;| : 1 < j < m} and R = S'™¢ with

0 < ¢ < max{l,(k — 1)u#/2}. (We know that such an & can be
chosen since x > 1.) Since ¢ > 0, we have R > 4R; provided
S > max{1, (4c17)"/}.

We also note that the technical hypothesis (H) insures that
|h - y| > exp(—coM log M)
for h € N™(M) provided M > Sj.
Then we apply the upper bound of [11, p. 10] to the analytic function
F=Poxo¢(z)

where X o ¢(z) is represented as in (1) and P is defined as in (8). We
have, then,

_ _ (ARN\MT 18R N\MT
F <2|F —
Fla <2Fn(*R) o+ (G

Mm—l
C18 -
18 F(h-
(2c0MlogM) >, F(-y)
heN™ (M)

(10)
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where 13 = max{|y;| : 1 < j < m}.

We bound |F| by hand, noting that
|Flr < card (M) max{| D", (6)]} max{| M (X © ¢)|r}

< exp(cig((Do — 1)log R+ (Dy — 1)R + (Do — 1)R?)).

We bound |F(h - y)| for h € N™(M) by appealing to our bound for
|Hp,;(6")| where h € N™(M). We know that

E(h-y) = | 3" DIBB)M, (o 6(h-y))
peEM
(©) < Z(D%(é)D"PA&))MM(Xowh-y))\
peEM
D) £ 3 DB )Mo bl 1) .
peM

To estimate (C), we recall that
|D'P,(0) — D'P,(0)| < exp(—7(S)/2)

provided (C3) and (C4) hold as above. Then, since we know the orders
of growth of the coordinates of X o ¢(z), we have
ey D§° D9 D32 exp(—r(8)/2) exp(cz0((Do — 1) log M
+ (D1 = )M + (D> = 1)M?))
as an upper bound for the sum in (C). This is at most exp(—7r(.5)/3)

provided (C2), (C3) and (C4) hold with a (possibly) different constant
C21 Z C16 in (04)

To bound the expression in (D), we note that this sum is

O (Liet(h-y) P!
Q(O)PoIMIP (DG (8) P~

Hy, i (0")

where |DECY, (6")] > exp(—r($)/5(Ds(S) — 1)). From the properties

of theta functions, we also have

O(n) (Liep(h - y))| < exp(c2S?).
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Combining this with |Q(8)| > ¢z and our lower bound for |Df((:)),h(9/)|’

we have

Oy (Liey(h - y)) P2

< Dy, —1)5?
Q)P+ M0 (P (et | = (D27

— (Dy+mMDy) log co
+r(S)/5).
Then the sum in (D) is at most exp(—r(.5)/20) and

|F(h-y)| < exp(—r(5)/21)

provided (C3) and (C4) hold and r(S) > 4201log2.
Finally, from (10), we have

|F|g, < 2exp(cio((Dy—1)logR+ (D —1)R
+ (Dy — 1)R?))(4c178~5)M™

c23S M C24 Mt
+< M ) (m) M eXp(f’I‘(S)/zl)

where ca3 = 18¢i7/c1s and casa = c18/2¢p. The first term here is
bounded by

exp(—M™e(log S)/2)
provided S > (4c¢17)?/¢ and provided

M™elog S > 4(log2 + c19((Do — 1) log R

(C6) + (D1 —1)R + (D2~ 1)R?))

is satisfied. The second term here is bounded by
exp(—1(5)/22)

provided

(€7) r(S5) = 462(M™ log(c235))

and

(C8) M > max{Sp, cas, m*'™, e}.
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So we have

[F(h - )| < exp(—M™<(log $)/2) + exp(—r(S) /22).

Then, for h € N™(S), we note that

> D'P.(O)Hn(®)
peEM

[F(h-y)l.

- ‘ Q(g)D0+||h||D1 (Df((:)),h(el))Dz_l
Os(ny(Lieyp(h - y)) P21

By the theory of theta functions, we have |O,u)(Liey(h - y))| >
exp(—cz552), so

> DiPp(é)Hmh(G’)‘ < exp(cag((Do—1) +m(Dy—1)8
peM
+ (D2~ 1)8%) — r(85)/22)
+ exp(eas((Do—1) + m(D; —1)S
+ (D2 —1)8?)— M™e(log S)/2)
< exp(—r(S5)/23) + exp(—M™e(log S)/3)
provided (C3), (C4) and (C6) hold with (possibly) larger constants ca7
and cgg in (C4) and (C6), respectively.
Lastly, we note that

[Hpi(8")] < | D (D'Pu(8) = D' Pu(8))Hyun(9')
pnEM
+| Y D'Pu(8)Hun ()
HEM

< exp(—r(8)/24) + exp(—M™ (log 5) /3),
again provided (C3), (C4) and (C5) hold with a possibly larger constant
C29 in (C4)
Defining the ideals. For h € N™(S) and i € Is, we define Hj; ;(X) by
H;;,z(e) = T(Hh,i(ea Xt+1)7 R(aa Xt+1))a
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where R(#, X;11) is the minimal polynomial for 6;,; over Z[f, ... , 0]
and r denotes Chudnovsky’s semi-resultant. Then we define the ideal
Js by

JTs = <H;:,i :he Nm(S),Z S Is>.

From our previous work, the properties of semi-resultants, and the

conditions we’ve imposed, we see that Proposition 7 is established.

It remains, however, to show that we can choose suitable parameters
Dy, Dy, Do, M and r which, together with S, satisfy (C0)—(C8).

Choice of the parameters. Our objective now is to choose the param-
eters Do(S), D1(S), D2(S), M(S) and r(S) to satisfy the conditions:

(CO) S is sufficiently large,

(€1) 2K : Q](deg x,,, R)8™™
I'(M !
. card (%
< ¢ D3 DI péz

>H(GI;D07D17D2)
for some connected algebraic subgroup G’ of G,

(C2) M<S,

(C3) r > 35 log S,

9Dy < SFH
(C4) cag Dy < S'Ln_l(log 5)do/d
62952 < S“n72(10g S)do/d,

(C5) 24z

card (F(S) + Gl) H(GIEEOvEIaEQ
G H(G;Eo,ﬁl,ﬁz)

for every proper connected algebraic subgroup G’ of G,

(C6) cog((Dg —1)log R+ (Dy — 1)R 4+ (Dy — 1)R?) < M™elog S,



GELFOND-FELDMAN MEASURE 921

(€7) c3o(M™log S) <,
and
(C8) M > max{So, cs,m'/™ e}.
Given an ideal J C K[Xy,...,X,], we will define 7 below in terms

of Deg(J), Ht(J) and T(J). Given 7, we define Dy, D; and D> as
follows. If d; = 0, then we choose D; = 242+1(log §)~%/4. Otherwise,
for some sufficiently large constant v, we let

~ 1
Dy =2 m_lT(logS)*lf(do/d)
v
f ¢
- 1 guf-1+pfdo/(d—1) (] do/d(d—1)
D=2 lS : (log 5)
pm— 7do/(d—1)
f f
- 1 wt=24pfdo/(d—1) (] do/d(d—1)
D=2 1 S : (log 5) ‘
pm— 7do/(d—1)

Following the ideas of [34], much as in [1], we let

asan = (L I(S) + G'\ H(G'; Dy, D1, Da) /™ (9"
(S,G) = Wcard G/ H(G;Do,DIaD2)

and define

— mi ’
A(S) = Lo, A(S,G")

where G’ ranges over all proper connected algebraic subgroups of G.
We also define

B(S) = min{A(S), 2741 (log §)%/4}

and for i = 0,1, 2, we let

and

as mentioned previously.
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Our objective is to choose M(S) and r(S) and to impose con-
ditions on v, 7,S and 7(S) which will insure that the parameters
S, M, Dy, Dy, Dy, Dy, D1, Do, R and r satisfy the conditions (C1) through
(C8).

We consider (C1) first. Here we exploit the fact that this condition
does not have to be satisfied for every connected algebraic subgroup
G' C G but only for at least one such G'. This idea allowed Ably to
replace Condition 1 of [43] with a weaker technical hypothesis. The
verification of (C1) is essentially as in [1], with one small technicality.

Ably’s choices of D; insure that D;(S) > 1 for i = 0,1,2 and for
all S under consideration. Then he defines D; = [D;] and uses the
inequalities D; > D; > D; /2 at the point where he establishes the
condition (C1). In our case, we don’t necessarily have D;(S) > 1 for all
values of i and S. We address this by defining D; = max{1, [D;]} above;
this insures that D; > D, /2 for i = 0,1,2. We also make the following
observation. When Dy = 1 (alternatively D; = 1 or Dy = 1), we
are constructing polynomials which don’t involve any G,-, respectively
G,,,- or G3-, coordinates, so we may disregard the corresponding entry
in H(G'; Dy, D1, D). This observation allows us to assume, without
loss of generality, that D; > 1. With this in mind, we proceed with the
verification of (C1).

In the first case, we suppose that
B(S) = A(S9).

From the definition of A(S), we know that there exists a connected
algebraic subgroup Gj C G such that A(S) = A(S,Gj). We then
choose to satisfy (C1) with Gj,.

Using this choice of Gf, with the definition of A(S), we have
A(s)dim (G/Gyp) > A(S, G6)dim (G/Gé).

Exploiting this inequality, the definition of A(S,GYj), the equations
D; = D;/B for i = 0,1,2, the homogeneity of H(Gj;-,-,-), and the
equality B(S) = A(S), we have

. / 1 r t
A(S)im (G/Go) > 2d2+1card < (9) + GO)

Go
‘ H(G&;_Do,_Dl,_D2)A(S)dim(G/GE,)‘
H(G; Do, Dy, D3)
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o 1 I(S) + G
H(G;DO,Dl,D2)22d2+lcard( ( )G() 0>

- H(Gy; Do, D1, D3).

On the righthand side of (C1), thanks to Lemma 3.4 of [33], we have

doldy!d,!
do pydr pyd> _ 40°01:02°
Dy* Dy Dy = d'deg G

H(G;D()aDl’DZ)-
Furthermore, since D; > 5,-/ 2, we have
H(G;Do,Dl,Dg) Z H(G,Eo/2,ﬁl/2,ﬁg/2)
1 o
= ﬁH(G;D07DlaD2)‘

Using these two relationships followed by (11), we see that the right-
hand side of (C1) is at least

doldyldy! 1 1 <F(S) + G}

.7 Y
C7d!degG2 9d+dat1car Gy >H( 0; Do, D1, D3).

We impose a stronger condition, namely,
(c2) viIM < 8.

From this, we have

T(S)+ G, pi+1 T(M) + G}
> AT T M0
card ( Gl = card (D) 4 Gl

where T'(T') is the set of torsion points of I'. Combined with our previous
upper bound, we see that the righthand side of (C1) is at least

do'dl'dz' 1 l/d—i_1
°r d!deg G 2¢+d2+1 card T(I)
(M) + G
- card <w
Go

)H( 1+ Do, Dy, D).
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On the lefthand side of (C1), we have at most

(M) + G,

2K : Q](deg x,,, R)8%card ( e
0

>H( IO;D07D17D2)-

We note that H(Gj; Dy, D1, Da) > H(Gg; Do, D1, D), since without

loss of generality, we may assume that D; > 1 for i = 0,1,2. Then we
see that (C1) is satisfied provided

a1 2tF194d+dz2 414l (deg Gy)(card T'(T'))[K : Q](deg X1 R)

voos crdoldy dy!

In the second case, we have B(S) = 2 (42+1(log§)%/d, This
time, we choose to satisfy (C1) with the particular connected algebraic
subgroup G’ = {0} of G. With this choice, (C1) is satisfied provided

2K : Q](deg x,,, RYM™™! < ez D§° D' DS>.
Again, since D; > D, /2, we have
e

1

Snp,u(l—l/m)
2d(d2+1) ,d(m—1)

from our choices of Dy, Dy, D5 and the definitions of D; (fori =0,1,2),
B(S) and k. So we choose

1 F\'/um
MZ[WS”/]

and (C1) is satisfied provided

Ls 24(d2 A2t K : Qldeg x,,, R
—_ C7 -
Of course, (C2)' is satisfied as well provided S > 1 since xuf < m.

In order to insure the desired zero-free region, we required that (C5)
hold for every proper connected algebraic subgroup G’ C G. This
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follows easily (as in [1]) from our definitions of A(S,G’), A(S), B(S)
and the relationships between B(S), D;(S) and D;(S) for i = 0,1, 2.

To see this, we multiply each side of (C5) by (B(S))4™(G/G") and use
the homogeneity of H(G';,+,-) and H(Gj-,-,-) to observe that
H(G';Eo,ﬁl,ﬁz) H(G';bo,Dl,bz)
H(G; Dy, Dy, Dy) H(G; Do, D1,D2) "

B(S)dim (G/G") _

Then the lefthand side of (C5) times B(S)4™(G/G") is simply 242+!
times A(S, G')4™ (G/G") which is at least 2921 A(S)dim (G/G7)

On the other hand, from the definition of B(S), we have B(S) < A(S).
Recalling that we’ve multiplied both sides of (C5) by B(S)d®(G/G")
we see that the righthand side is at most 292 A($)4™(G/G") and the
condition is satisfied.

We consider condition (C3) which suggests that
r(S) = 35 log S.

At the same time, we satisfy (C7) provided pd+m > ch0/3. We work
on (C4) now. By the definitions of Dy, Dy and B(S), we have

0297'/2d2 pmbf dp =1

Dylog S <
2070708 _{CQQIOgS if do = 0

which is bounded by grnt log S if S is sufficiently large (when dy = 0)
and if 7 satisfies

2d2 Vm—l i
(I 7< —8% (logS) when dy =1.
C29
We also have
— c
029D1 S max {ﬁ
Su”71+u”do/(d*1)(10g §)do/d(d=1) (Jog §)do/d
' rdo/(d—1) ’ 029}

which is bounded by S#*~1(log §)%/? provided v™~! > cy9/2% when
do =0 and

d—1
<2d‘20527t> S# (log S)V/4 < 7
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when dy =1 and d; > 1. A similar upper bound holds for cog Do under
the same conditions; thus (C4) is satisfied provided (I) holds and

2d2 Vm—l

d—1
(IT) <Ci> S#* (log S)/4 < 7

when dg =1 and d > 2.

If we insure that
(I1I) gt /m > gdtl max{Sy, caq, m'/™, €}

we see that (C8) is satisfied. Furthermore, we have M > 1, which is
useful below.

We turn our attention to (C6) last, observing first that

028(D0 - ].) IOgR = ng(DO - 1) IOg Sl+€
S 2028(D0 — ].) 10gS S T/2

as long as ym=l > 4C28/2d2- Then, since M > 1, we may bound the
first term of (C6) by (M™elog S)/2 provided

2dzym-—1 5
> 9mym(d+1)

C29

(Iy T < min{ }SWn log S.

Secondly, we have

ng((Dl - 1)R + (D2 - I)RZ) = 628((D1 - 1)Sl+6

(12) + (D2 _ 1)524-25)‘

When dy = 0, the righthand side is bounded by
1
(13) 58" (log §)%/%) 5%

where the S2¢ is replaced with S¢ if d, = 0. On the other hand, when
dop = 1 and d > 2, the condition

max{028 ng} =1 #
2d1<4’ ) S* (log §)/4 < 7

2d2 Vm_l

(1)’
when dy =1 and d > 2
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insures that (13) is still an upper bound for the righthand side of (12).
And, finally, since 2¢ < (k — 1)u¥, we see that (C6) is satisfied for S
sufficiently large provided

2 1 1 om m(d+1)\ 4/(d—do)
(1) log$ > max{ (d+L)mlogy < v ) }
€

Kl

and v > max{Sq, cos, m*/™ e}.

Thus, we have verified (C1)—(C8) (and hence established Proposi-
tion 7) subject to the conditions (I)’, (II)’ and (III)" and provided v
and S are sufficiently large.

Application of the criteria for algebraic independence and proof of
Theorem 1. As in Theorem 1, let G be a commutative algebraic group
of dimension d > 1 defined over a number field K, and suppose that
G = G% x Gt x Gy with dy € {0,1}, d; > 0 and G2 a commutative
algebraic group of dimension dy = d—dy —d;, defined over K, and with
no linear factor. Let ¢ : C — G(C) be a one-parameter subgroup and
let y1,.-.,Ym be complex numbers which are Q-linearly independent.
Define pf, k and w and specify the embedding X as above. Suppose
that x > 1, that u* > 2 if G is nonlinear, and that the technical
hypothesis (H) holds. Lastly, suppose that J C K[Xy,...,X,] is an
ideal of codimension n + 1 — &, degree Deg (J), height Ht (J) and size
T(J).

To establish Theorem 1, we’ll apply the following criteria for alge-
braic independence from [16], using (essentially) the polynomials of
Proposition 7.

Proposition 9. Let K be a number field, w = (wy,...,w,) € C,
and k an integer belonging to {1,...,n+ 1}. Let 1 < §,7,0 and U
be positive real numbers with TV/% > ¢ > 1, 7 > dxlog(n + 1) and
U >6(4[K : Q] + k — 1)7. Suppose that, for all integers T satisfying

(a) 7/o" < T <U/o",
there exists a finite family of polynomials (Qg7j)j:17_..7m(5)
C K[Xy,...,X,] such that

(b) d°(Q5;) <9,
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(c) Ht(Q,;)+drlog(n+1) <,
(

0 H*
4) maxsc;<ms){1Q% @)/l © %} < exp(~To™),
(e) the polynomials Qs j=1,... ,m(S), have no common zero in
the ball of C™ with center w and radius exp(—To"*1).

Then for all ideals J C K[X1,...,X,] of codimension n + 1 — k, of
hetght H and of degree D, satisfying

(f) (@[K : Q]+ k+1)(270)(HS" + (r + dlog(n +1))Dé*~ 1) < U

we have

log ||l = —U.

To apply the criteria, we let o = 6p(4+D™+1 and for a sufficiently
large constant 7, we define

exp(n(Deg J) %/ (1=R)T(]))

0= T(J)\/* ’
_ 4r(log(n + 1))0T(J)%
= (Deg J)do ’

and
U=4[K:Q]+k+1)(270)"(5klog(n + 1))T(J)d"
= (4[K : Q]+ k+1)(270)" (5K log(n + 1))
- exp(nr(Deg J) %R/ =R (J)).
We note that 0,0, 7 and U are at least one provided » > 1 and n > 1.
Furthermore, 7 > ¢" as long as v > 6 and n > 2k((d+ 1)m + 1)(logv).
Our choice of 7, as defined in terms of §, also insures that = 2
drlog(n + 1) and our choice of U guarantees that condition (f) of th
criteria is satisfied.

For each integer T in (7/0%,U/c"], we define a corresponding S to
be the real number satisfying

(14) T = grut log S.

n+1

Now we turn our attention to the polynomials of Proposition 7.
We may suppose, without loss of generality, that 6y,...,0; € K|w].
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Expressing 64, ...,0; in terms of the coordinates of w, we have new
polynomials Q% ;, j = 1,...,m(S), in K[Ay,...,A,] such that their
set of common zeros in B™(w, exp(—2r(S))) is empty and they satisfy

e 1@ 5 (w)l/w] 95 < exp(—air(S))

+ exp(—ayM™ log S),

Lmax  d(Q3,) < a4(Do = 1)+ (D = 1S + (D2~ 1S,

and

)< g -
1§?2r}f(s) Ht (Q5,;) < a3((Do — 1)log §

+ (D1 —1)S + (D2 — 1)5?).

Using our choice of r(S) and the relationship (14) between T
and S, we see that the zero-free ball B™(w, exp(—2r(S))) has radius
exp(—c""1T). We may also insure that

, L m grut log S
exp(—ajr(S)) + exp(—agM™log S) <exp | — @ Dmit
provided, for instance, v(¢tD™+1 > 2/3q¢) v > 2m+1/g) and S > 4.
Then

* d°(Q% . K
e 1Q5,0)1 /ol *(@5) < exp(—0"T).

Now we focus on the degrees and heights of the polynomials QF ;.
We have

ay(Dy —1) < ~(log S) !

w3

provided v™~! > 3a}/2%. Since T' > 7/0", we know that 65K log S >
To = 6v(¢t)m+ e and thus

log S > 4k (log(n 4 1))(Deg J)%r/(d=r)1( J)
provided n > 8x%uflog(n + 1). Then we may conclude that

T<dlog$
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and thus
az(Dy — 1) < 4/3.

Considering the G,,, and G2 contributions to the degrees and heights
of our polynomials Q% j» We note that

ay((Dy = 1)S + (Dy — 1)S%) < 26/3
provided

3al, /242 ym—1)d—1gu*d logS) <6417 ifdy=1andd>2
(IV) ° )
(3ay/292ym—)GK" < § if dy = 0.

Finally, we note that

QL)< 6
| max (Qg;) <

and

20
max Ht (QE,J) < -+ 3 <.

1<j<m(S)

w3

By the criteria for algebraic independence then, we conclude that
log||Jlu > —C1 exp(Ca(Deg J) @/ (*=IT())

provided C; > (4K : Q] + £ + 1)(270)"(5klog(n + 1)) and Cy > nk.
Thus, Theorem 1 is established subject to verification of conditions (I),
(I1)', (ILI)’ and (IV).

Verification of final conditions. Condition (I)' is easily established
since T > 7/0". We simply need to insure that v satisfies

2d21/(d+1)m+mfl+1 cv
min ,— ¢ > L.
C29 2m

Similarly, (III)’ is satisfied provided

2mym(d+1) > d/(d—do)

772/-’»#”(
g
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Conditions (II)" and (IV) are much more sensitive. For both, we
observe that 7' < U/c" so

S (log §)V/4 < (Uo /6)V/*(log §)(1/D=(1/x)
To simplify the tedious inequalities, we let ¢33 = ((4[K : Q] + k& +
1)27%(5x log(n 4+ 1))/6)'/* and then note that
(15) S (log S)V/? < 510 FV/RT(1) /5§ (log §) /D - (1/R),

When dy = 1, then ker ¢ = {0}, so | = 0; consequently, x < d with
strict inequality when d > 2. On the righthand side of our previous
inequality, we then see that the log S term has a negative exponent
when dg =1 and d > 2. We know that

gret s To/6logS

and thus 1
log S > W log T
provided o > 6. In inequality (15) then, we have

d)—(1/k
gH (logS)l/d < 6310(”+1)/”T(J)1/”(5 log 7 e
- 2kt
< C3lo_(n+1)/nT(J)1/n5

n(Deg J)don/(d*N)T(J) (1/d)—(1/k)
3kl '

Exploiting this last inequality, we see that (II)" holds, provided

2d71

d—1
csi  (max{cos, cao} /A (3400 (1)~ (1/d)
4k log(n + 1) ym—i2dz

< W/m)-(1/d),

Since k < d when necessary, we may insure this condition by choosing
n sufficiently large. Similarly, (IV) holds provided

e 3af d_lod(;ﬁ-l)/n(3nuﬁ)(d/n)—1
4k log(n + 1) \ 2d2pym—1

<=1 ifdy=1and d > 2
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and

3 !
<—2d255’1l>0310(n+1)/:~z(3,wﬁ)1/n < 771/,4 i dy = 0.

Hence, our results are established.

Warning. The reader should note that these final inequalities are a
bit misleading. In particular, the constant c3; hides many things while
o hides many powers of v. Furthermore, the constants cgg, cog and a}
have not even been completely specified.

Closing remarks regarding the nonlimit case. In considering the sep-
aration of the degree and height in our measure of algebraic indepen-
dence, the earlier inequality

T < dlogS

seems crucial for it allows us to bound the degree and heights of the
polynomials ngj separately when applying the criteria of algebraic
independence. In the nonlimit case, we would like to choose 7 and §
to be “essentially” powers of T'(J) and Deg (J). This inequality forces
the powers to be equal. For simplicity then, write U = c320"T(J)d".
Now, to insure inequality (IV) when dy = 1, we would need

Vm—l

d—1
( C33 > 0340d(n+1)/nT(J)d/n(Deg J)do (log S)l—(d/n)
< 4r(log(n + 1))T(J)%

which seems impossible unless 7 is exponential in T'(J) and Deg J.

ENDNOTES

1. Throughout, we let loga denote a fixed determination of the logarithm of
a € C\{0}, and for B € C, we define o def eploga,

2. For more about the intermediate results and the essential contributions, see
[44] and [4].

3. A complex number u is called an algebraic point of p if either u is a pole of
or p(u) € Q.

4. Again, for further discussion of the substantial contributions which made all
this work possible, see [4, 6, 44].
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5. Throughout the remainder of the paper, c1, ¢z, ¢3, etc., and a1,a], az2,a}, a3, a}
will denote positive constants which are independent of the parameter S and may
depend, at most, on K, G, ¢, y1,...,Ym, X and 01,... ,0:41.
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