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ON THE NONEXISTENCE OF POSITIVE SOLUTIONS
OF INTEGRO-DIFFERENTIAL INEQUALITIES

FU-HSIANG WONG, CHEH-CHIH YEH AND SHIUEH-LING YU

ABSTRACT. In this paper we show that, under suitable
conditions on f and K, the inequalities

—,\+9/ eMK(s)ds >0 forall A >0
0

and

oo
224 a/ e*K(s)ds>0 forallA>0
0
imply the integro-differential inequalities
t
y'(t) + / K(t—s)f(y(s))ds <0 on [T,o0)
0
and
t
y'(t) — / K(t—s)f(y(s))ds >0 on [T,oc0)
0

have no positive solution, respectively, where f(y)/y > 6 > 0
in some interval (0,yo). We also point out that the function
f cannot be a superlinear function, that is, f(y) # yP for
B € (1,00).

1. Introduction. In this paper we consider the nonexistence of
positive solutions of the following integro-differential inequalities

(E) y(t) + / K(t - )f(y(s)) ds < 0,
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and

(Ea) y'(t) - / K(t - 5)f(y(s)) ds > 0.

Such a problem includes several interesting problems arisen in various
branches of applications in population dynamics, ecology and a me-
chanic system with zero external forces, zero kinetic energy; see, for
example, Burton [1]. This problem has been developed by many au-
thors; see, for example, Burton [1], Gopalsamy [2, 3, 4, 5], the book
of Gyori and Ladas [6], Philos and Sficas [8], Philos and Sficas [11],
Lellouche [9] and Lewitan [10]. To the best of the author’s knowledge,
the most significant contribution to this problem was made by Ladas,
Philos and Sficas [8, 11]. The main nonexistence results of Ladas,
Philos and Sficas [8, 11] are the following two theorems.

Theorem A. Assume that the following hypotheses hold:

(H1) K € C(]0,00);[0,00)) and there is a T > 0 such that K is not
identically zero on [0,T],

(H2) f e C(R;R) satisfies yf(y) >0 for y #0 and
0 := inf M > 0.
y>0 y

Then (E1) has no positive solution on [0,00) if the following inequality
holds:

(1) A+ 9/ e K(s)ds >0 for all A > 0.
0

Theorem B. Assume that (H1) and the following inequality hold:
(2) -2+ 9/ eMK(s)ds >0 for all A > 0.
0
Then the integro-differential inequality

(Es3) y"(t) — /0 K(t—s)y(s)ds>0 on [T,o0)
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has no bounded and positive solution on [0, c0).

Obviously, Theorem A is only a minor modification of equation (E)
with f(y) =y, and it cannot be applied to f(y) := y* for a € [0,1) or
a € (1,00). The purpose of this paper is to establish some sufficient
conditions to guarantee that (E;) and (E2) have no positive solutions
if f(y) is sublinear. These results generalize Theorems A and B.

An example is also given which explains that (E;) has a positive
solution on [0, c0) if f(y) is superlinear.

2. Main results.

Theorem 1. Suppose that (1) and the following conditions hold:

(Cl) K € C(]0,00);[0,00)) and there is a T > 0 such that K is not
identically zero on [0,T],

(C2) f e C((0,00);(0,00)) and there are two positive constants § > 0
and yo > 0 such that f(y)/y >0 in (0,y0).

Then there is no solution of (E1) which is positive on [0, 00).

Proof. Assume to the contrary that there exists a solution y(t) of
(E1) which is positive on [0,00). It follows from (C1) that there exist
to,t1 such that 0 <ty <t; < T, K(s) > 0 on [tg,t1] and

t1
A1 ::/ K(s)ds > 0.
to
Since y(t) is decreasing on [T, 00) and is bounded below by 0,
. o S
Jlim y(t) := y(o0) = 0.

It is clear that y(co) = 0. In fact, if y(co) > 0, then there exists to > T
satisfying

0< % <y(t) < 3y(2°°)
on [ty,00). Let
inf f(y) :=m >0,

y(00)/2<y<3y(oc0)/2
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then
t
0> /(1) + / K(s)f(y(t — s))ds
t—1to
>y (1) + / K(s)f(y(t - s))ds
ty
>yt +m / K(s)ds
to
=y'(t)+A\m forallt >T) =ty +t; >0.
Thus,

y'(t) < —Aim on [T1, ),

which implies

Jim () = e

This contradiction proves that y(oco) = 0. Hence, there exists t3 > T
such that 0 < y(t) < yp on [t3,00) which implies

(3) f(y(t)) = 0y(t) on [ts,00).

Since y(t) is decreasing on [t3,00), we see that

0>y/(t) + / K(s)f(u(t — ) ds
> () + / U K()f(t - 5)) ds
O+ [ K- s

t1
>0+t 1) [ K(s)ds
to
>y (t) + M\0y(t) forallt > Ty :=t3+t, >t3>0.

This implies

[1:={A>0]|y(t) + Ay(t) <0 on [Ty,00) for some Ty > To}
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contains A\10 > 0. Moreover, if A € I'y, then [0, A\] C T';. It follows from
(E;1) and (3) that

ozwwaK@ﬂw—ﬂMs

0

zym+llK@ﬂmww»m

>y (t)+ 6 K(s)y(t —s)ds
to
t1
> y'(t) + Oy(t — to)/ K(s)ds (t—to>t—t1>1Ts)
to
=y'(t) + MOy(t —to) forallt >To +t; > Th.
Hence,

y(t) > —y(t +to/2) +y(t)
t4t0/2
= —/t y'(s)ds

t+to/2
> )\19/ y(s —to)ds
t

t t
> )\10§Oy<y — 50> forall t > Ty +t; > Ts.

Now, we claim that
2 t
supl'y <np:i=——1In )\10—0 .
to 2

Assume to the contrary that supI'y > n. Hence, n € I'; and there
exists a T* > Ty + t1 such that

y'(t) +nyt) <0 on [T* 00).
This implies

to to
MO—ylt — — t
1 2?/( 2)<y()

to to
Sexp("@)y(tﬁ)

t t
= )\19503/(25 — 5()) forall t > T* > Ty + t4,
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which gives a contradiction. Thus, 0 < A] := supI'; and there exists
Ty > T5 such that

y'(t) + Ajy(t) <0 on [T, 00).

Furthermore, it follows from (3) that, for any ¢, s with ¢ € [T}, 00) and
s €[0,t —1T5],

Oy(t) exp(A1s) < Oy(t —s) < f(y(t - s)).

This and (E;) imply, for all ¢ € [T, 00),
t
0250+ [ KOSt 5)ds
0
t—T3
>y0+ [ K- 9)ds
0
t—13
>y (t) + 9/ K(s)y(t—s)ds
0
=1y
20+ (6 K ewi9as oo
0
Finally, we claim that
t—Ty
(5) 6’/ K(s)exp(Ajs)ds < A] forallt > Tj.
0
Suppose to the contrary that there exists T3 > T3 such that
Ts—T;
A2 1= 0/ K (s)exp(A\]s)ds > A].
0

This and (4) imply that Ay € I';, which contradicts the definition of
A}. This contradiction proves that (5) holds. Hence,

-l + 9/ K(s) exp(A\js)ds <0.
0

This contradicts (1). This contradiction completes the proof. 0
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Theorem 2. Suppose that (C1l), (C2) and the following inequality
hold:

(6) -A% + 0/ e K(s)ds >0 for A > 0.
0

Then there is no solution of (E) which is bounded and positive on

[0, 0).

Proof. Assume to the contrary that there exists a solution y(t) of (Es)
which is bounded and positive on [0, c0). It follows from the lemma of
Philos and Sficas [11] that y(t) is decreasing on [T, 00). Let tg,t; and
A1 be defined as in the proof of Theorem 1. Since y(t) is decreasing on
[T, 00) and is bounded below by 0, we see that

lim y(t) := y(c0) > 0.

t—o0

We claim that y(co) = 0. In fact, if y(co) > 0, then

t
0<y" (1) [ Kl 9)ds
0
t—ts
<y [ KO- )ds
t
°
<y'(t) - m/ K(s)ds
to
=y"'(t)—A\m forallt>T) :=ty+t; >0,
where m, T} and t2 are defined as in the proof of Theorem 1. Hence,
lim y'(¢) = oo,

t—o0

which gives a contradiction. Thus, y(co) = 0 and hence (3) holds on
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[t3, 00) for some t3 > T'. Since y(¢) is decreasing, we see that

Ogy%ﬂ—élﬂﬁﬂwﬂﬂnw

gy%w—l K(s)f(y(t — s)) ds

<y'(t)-0 K(s)y(t — s)ds

sw@—@a—mz"K@w

(]

<y"(t) — MOy(t) forallt>Ts:=t3+t >t3>0.
This implies the set

Py i={X>0]y"(t) = Ny(t) > 0
on [Ty, 00) for some T\ > Tr}
contains (A\10)'/2 > 0. Clearly, if A € T', then [0, \] C T'y. Moreover,
using the same technique of Philos and Sficas [11], we see that 'y C
I';. Thus, A5 := supl's € I'y and there exists 75 > T, such that
y'(t) + A3y(t) <0 on [Ty, 00). Moreover, as in the proof of Theorem 1,
we see that, for any ¢,s with ¢ € [T, 00) and s € [0,¢ — T3],

0y(t) exp(Ass) < By(t — 5) < F(y(t = 5)).
This and (E,) imply for all t € [T}, c0) that

09" 0) - [ K6)sule— o) ds
gy%w—AFnK@vwa—$Ms
sww—eAFEK@mu—@@

<y 0= (o[ K ew0e) ds)uto)
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Finally, we claim that
t—T 1/2
(8) {9/ K(s) exp(\3s) ds} <Ay forallt>Ty.
0
Suppose to the contrary that there exists T35 > T4 such that
1/2

Ty—T5
Az = {9/ K(s) exp(A\3s) ds} > A
0

This and (7) imply A3 € T'z, which contradicts the definition of Aj.
Thus (8) holds, and hence

—(A5)* + 9/ K(s)exp(A\5s)ds < 0.
0
This contradicts condition (6); thus we complete the proof. O

Remark C. The condition (C2) in Theorems 1 and 2 is indispensable.
For example, let f(y) :=y® for y > 0 and K(s) :=e ° for s > 0. It is
clear that f does not satisfy (H2) and (C2). Moreover, for any given
0 > 1, we see that

“A+ 0/ e K(s)ds >0 for all A > 0.
0

Let y(t) :== e~ * for all t > 0. A simple calculation shows that

t
1
y'(t) +/ K(t—s)f(y(s))ds = —§(e_t +e73)  on [0,00).
0
Thus, (E1) has a positive solution on [0, c0).

Remark D. There are many functions f satisfying (C2) but which do
not satisfy the hypothesis “inf,~¢ f(y)/y > 0 > 0” in Theorem A; see,
for example, f(y) :=In(y + 1), f(y) := y™ +cy®, f(y) := 1 — exp(—y),
f(y) == exp(y) + cy®, or f(y) := |siny| for y > 0, where a € [0,1] and
¢, 8 € [0,00). Therefore, Theorems 1 and 2 generalize Theorems A and
B, respectively.
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Corollary 3. Let o € [0,1] and n =1, (n = 2 respectively). If (C1)
and the following inequality hold:
(9) =" +/ e K(s)ds >0 for all A >0,
0
then the following integro-differential inequalities
t
(E4) -~y () +/ K(t —s)y*(s)ds <0 on [T, 00),
0
and
t
Bs) ()"0 + [ K- ep(y(s)ds <0 on [7,50),
0

have no solution which is positive (bounded and positive, respectively)
on [0, 00).
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