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ASYMPTOTIC BEHAVIOR OF ORTHOGONAL
RATIONAL FUNCTIONS CORRESPONDING
TO MEASURE WITH DISCRETE PART
OFF THE UNIT CIRCLE

K. PAN

ABSTRACT. For a positive measure p on the unit circle in
the complex plane, m points off the unit circle z1,... , 2z, and
m positive number A;, j = 1,2,... ,m, we investigate the
asymptotic behavior of orthogonal rational functions ¥, (z),
n = 0,1,2,..., with prescribed poles lying outside the unit
circle corresponding to d/,t/27r+Z;n=1 Aj 5zj , where ¢, denotes
the unit measure supported at point z. We find the relative
asymptotics of ¥y, (z) with respect to the orthogonal rational
functions corresponding to du/27 off the unit circle.

1. Introduction. Let du be a finite positive Borel measure with
an infinite set as its support on [0,27). We define LZM to be the
space of all functions f(z) on the unit circle T := {z € C : |z| = 1}
satisfying fOZTr £ (e®)[? du(0) < co. Then L7, is a Hilbert space with
inner product

)= [ HETE (o)

We define P,, to be all polynomials with degree at most n. For any
polynomial g,, with degree n, we define ¢ (z) = 2"¢,(1/z). Consider
an arbitrary infinite sequence S = {a,,} with n € N and |a,,| < 1, and

let

ar — 2 |oy
b = k=1,...
k(z) 1 — apz ag ’ ) ’
where for a, = 0 we put |ag|/ar = —1. Next we define finite Blaschke

products recursively as

Bo(z) =1 and By(z) = Bi—1(2)br(z), E=1,....
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The fundamental polynomials w,(z) are given by

k

wp(z) ;=1 and wg(z):= H(l —a;z), k=1,....

The space of rational functions of our interest is defined as

Ry = Rla, ... , ] :_{ p(2) :pEPn},

It is easy to verify that {By}}_, forms the basis of R,, i.e., R, =
span {Bk(z),k = 0,...,n}. Finally, for any r € R,, we define
r*(2) := Bn(z)r(1/z). Then it is easy to see that |r*(z)| = |r(z)|
for |z| =1 and r*(2) € R,.

One might as well consider the other basis C,, x(2) = zF/w,(2),
kE =0,...,n, for R,. We denote {¢,(2)}], the orthogonal ra-
tional functions obtained from applying Gram-Schmidt procedure to
{Cnk(2)}}_,, and they are uniquely determined by the following con-
ditions:

Pn1(2) = pni(2)/wn(z)  Png € Pr, p;, 1 (0) >0,
(@ni, Crk) =0 k=0,...,l—1, and

<‘Pn,la ¢n,l> =1

This orthogonal basis has already been studied in [15-17], not in the
form of orthogonal rational functions, but in the setting of orthogonal
polynomials with respect to varying measures. Write the numerator
of 0, 1(2) as ppi(2), then ¢, 1(2) = pni(2)/wn(z) and p,(2) is
the Ith orthonormal polynomial with respect to the varying measure
du(0)/|wn (€9))? as defined in [15-18]. We define ¢,,(2) := ¢, ().

The orthogonal rational functions are of constant interest to both
mathematicians and physicists. That is, because their significance
relates to the studies in Hankel and Toeplitz operators, continued
fractions, moment problem, Carathéodory-Fejer interpolation, Schur’s
algorithm and function algebras, and solving electrical engineering
problems (cf. [7-12, 1-6]).

Suppose 21, ... , 2, are m distinct fixed points outside the unit circle.
For m positive numbers Aj, As,..., Ay, construct v = p/(27) +
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Z;n=1 Ajé.,, where §, denotes the (Dirac delta) unit measure supported
at point z. Then L2 is a Hilbert space with inner product

(£,9)av f( “)g(e?) dp(0 +2Afz]

= o

For each n, we now define orthonormal rational functions with respect

to dl/, {d’n,l(z)}?:O’

wnl = qnl( )/wn(z) qn,l € Pla Q:L,l(o) > 07
<¢nla nk>du—0 k=0,...,l—l,and
<¢n,la"/}n,l>du =1

Note that ¢,,(z) depends on A;, j =1,2,... ,m, although this depen-
dence is not explicitly given in our notation. Define ¢y, (2) = 9 n(2).

The purpose of this paper is to study the asymptotic behavior of
¥n(2) off T under fairly mild assumptions on p. The asymptotics of
©n(2) have been investigated extensively (see, for example, [15-20 and
14]. To take advantage of this in our study of ¢,(z), we compare
¥ (z) with p,(2) in the form of relative asymptotics, i.e., we investigate

¥n(2)/@n(2)-

The main results are stated in Section 2, and their proofs are given
in Section 4. Section 3 is devoted to the lemmas needed for the proof
in Section 4.

2. Main results. Let

(2.1) B(:) = [[ %,

and X := |B(0)|/B(0).

We write p,n(2) = kn2"™ + -+, then k, > 0 since p;, ,(0) > 0.
Rewriting ¥, (2) = ¢n(2)/wn(2), qn( ) = Yn2" + -+ € Pp, we have
¥ (2) = nng;,(2)/wn(2). Since ¥7,(0) = ¢;(0)7m and 71,17, (0) > 0, then
Tn = q';kz(o) > 0.

We first discuss the ratio of the two leading coefficients.
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Theorem 2.1. If i’ > 0 almost everywhere in [0,27) and Yo, (1~
|oi]) = oo, then

. In 1
2.2 I — = —.
(22) dm =11
Jj=1
Remark 1. It is easy to check that
| 1
= o = AB(o0),
1 e

where B(00) :=lim,_, o, B(2).

For the ratio of the two orthonormal rational functions, we have

Theorem 2.2. If p' > 0 almost everywhere in [0,27) and Y .-, (1—
|ai]) = oo, then

im ¢n_(z) = z
(2.3) Jim 2 = AB(2),

locally uniformly for |z| > 1. Where

Remark 2. From the known results on the asymptotics of ¢, (z), we
can use Theorem 2.2 to obtain the corresponding results for ¢, (z).
For example, we can have the ratio asymptotics of ¢, (z) from that
of on(z) (cf. [20]) and, if we make a stronger assumption on p (say
Szegd’s condition), then we can get a better result (cf. [14]). We leave
the formulation of these results to the reader.

3. Lemmas. The reproducing kernel function K,,_; is defined by

Kur(20) = Y oni(2)omi(@

=0
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and by the Christoffel-Darboux formula for orthogonal polynomials (cf.
[13, p. 3]) we have

kz:opn’k(z)m _ p;,n(z)p;,n(i)__é_inm(z)pn,n(g) ;
thus,
Ko 1(2,0) = PZ,n(Z)PZ,n(C) - pn,n(z)pn,n(o
T (1- Ez)wn(z)wn(o
(3.1)
_ 270 — pu2)on)
(1-¢z)

Lemma 3.1. If 4/ > 0 almost everywhere in [0,27) and > oo (1 —
|ag|) = oo, then
anl(zaC) _ 1
m =

1 = ’
=20 o (Opn(2) (21
locally uniformly for |z| > 1 and |¢| > 1.

Proof. Tt is proved in [17, Theorem 3] that

(3.2) im #2() _ g

n—00 pn(2)

locally uniformly for |z| > 1. The lemma then follows from (3.1). O

Lemma 3.2. If i/ > 0 almost everywhere in [0,27) and lim, o0 Y po
(1 — |ag]) = oo, then

. pnt1(2) (1 — angr2)
(3:3) o) (—an)

locally uniformly for |z| > 1. Consequently,

(3.4) lim |¢,(2)] = oo,

n—o0
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locally uniformly for |z| > 1.

Proof. Formula (3.3) is from [19, Theorem 3.3]. For (3.4), let » > 1,
then by (3.3) there exists an integer L > 0 such that

1
=

1-— 6zn_|_1z

‘SOn-«—l(Z)
¢n(2)
for all n > L and |z| > 1. So, for n > L and |z| > 1,

Z = Qn41

pri1(z)| ﬁ er+1(2)(1 —ak+12 ﬁ (z — apq1)
or(z) Pir) or(2)(z — art1) o= Qk+172)
> (1 e ﬁ (2 — ok41)
—\r (1 —ags12)|

k=L

Now formula (3.4) follows from the above inequalities and the facts
that ¢r,(z) # 0 for |z| > 1 and limy, 00 Yooy (1 — |an]) = o0. m

Lemma 3.3. For alln > 0,

Tn
Kn

<1.

Proof. This lemma is the consequence of the extremality of the monic
polynomial s, *p,,(2) (cf. [2 Theorem 11.1.2]), for z = %,

1 oy du
2 T on [ PRI
< 1 qn(z) dp
- 27 Yn |wn (2)]?
< i qn(2)
’ann( )

=—/|wn )2 di
%/Wn |2d’/

1
V2

IN
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Lemma 3.4. For points zi,...,2zm outside the unit circle and
z; # zj, the following matriz

1 m
T, = <7)
Zjzg — 1 k=1

18 positive definite.

Proof. For any z1,xs,...,z, € C, we have
m m _ 2T m 2
i 1
Zz_fcaiwz:_/ S5 >,
== Zizj—1 2m J, = 2% —
z=¢€? o
Lemma 3.5. For points z1,22,... ,2m outside the unit circle and
zi # zj, let B(z) be defined as in (2.1). Then there exist a unique set
of nonzero complex numbers r1,7r2,... Ty such that
35) B:) = ——+ )
- )= —— —.
B(0) = 1-—2z2

Proof. The existence of the above partial fraction representation of
B(z) is obvious. The uniqueness follows from the linear independence
of the set {(1 —2z;z)~'}72,. Finally, that none of the r;s is zero follows
from comparing the poles on both sides of (3.5). O

4. Proofs of main results. Now we are ready to prove our
theorems.

Proof of Theorem 2.1. We need to show the existence of the limit in
(2.2) and calculate the value of the limit.

By Lemma 3.3, every subsequence of {7,/ 52, contains a conver-
gent subsequence. Let R > 0 be a limit point of this sequence, and let
A C{0,1,2,...} satisfy

(4.1) nlglgo Yn/kn = R.
neA
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Note that the orthonormality of ¢,(z) yields (on writing ¥,(z) =
(n/En)en(2) + p(2)/wn(2), with p € Pn_1)

or [ on(eonteidn =22,

On the other hand, the orthonormality of ¢, gives (on writing ¢, (z) =
(Kn/Yn)¥n(2) + q(2)/wn(2) with ¢ € P,_1)

%/%@a@@:/%waww

— 3 Ajta(2)¢n(z)
=1
= :—" — ZAJT,/)n(ZJ)m
n j=1
So we have
(4.2) =Y Atn(z)en(z),

i=1

We now consider the limit behavior of the summation on the right side
asn — oo and n € A. Note that wy,(2)(¥n(2) — (Vn/En)Pn(2)) € Pr_1,
so according to the reproducing property of the kernel function (cf.
[21]) and orthogonality of ¢, (z) and v,,(z), with ¢ = €*,

:%/wn(o(wn(c ~ en(C )ZPM O

/ (O En1(2,C) du(0)

= 7wn ZA]’l/Jn Zj n_l(Z,Zj),
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and so
Yn(2) _ T
(pn(z) K
m —— (52 = DKn 1(2, %)
(43) ;{ e ) () }
1
ot

By Lemma 3.1, we can write

Gzt = DB 10 23) _ g (a)pn(2) (1 + 1)

Aj¢n(zj)90n(zj)

‘Pn(zj)(Pn(zk)
— X;(1+o(1),
as n — 00, uniformly for j,k = 1,2,... ,m. On the other hand, since
A]|¢n('z])|2 < f |¢n‘2dl} = 17 .7 = 1727 cee, M, WE have
im $n()

by Lemma 3.2, and the limit is locally uniform for the choice of A; > 0,
j=1,2,...,m. So, letting z = 2, k = 1,2,... ,m in (4.3) and using
the above limit relations, we can obtain
81 = T [X (14 o(1))] 4 0(1),

where 1 := (1,1,...,1)t, T,, is defined as in Lemma 3.4, X :=
(X1,X2,...,X,,)", and the first o(1) is independent of Aj;s and the
second o(1) is locally uniform for A; > 0, j = 1,2,...,m. So, by
Lemma 4,

(4.4) X(1+o(1)) = 22T + o(1).

n

But, letting z = zx, k =1,2,... ,m in (3.5) will yield
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i.e.,

and so

Thus, by (4.4)

X(1+o(1)) = Z—"B(O)(Tl,rg, )+ o(1),

n

and so we have, by use of (4.1),

dim X; = lim A;jn(z)en(2) = RB(0)r,

(45) neA neA
ji=12... m.
Now, letting n — oo and n € A in (4.2), we see that
1 — & — 1
! 0>, = B0 (50 - )
i=
Hence, R = |B(0)]7'. Since R is an arbitrary limit point of

{Vn/kn 2 os We see that the limit lim,,_, o, 7, /K, exists and is equal to
|B(0)| 1. The proof of the theorem is complete. mi

Proof of Theorem 2.2. From (4.3) and the Christoffel-Darboux
formula, we can write

%%:%—Z&ww%w>
(4.6) ! T

(2528 1] =

So, together with (3.5), this gives for |z| > 1

Un(2) gl <|m o X

o) MOS8 T BE
+Z{|Aj¢n(zj)WAle
j=1

en(25)
San(zj)

+ ‘Ajwn(zj)m

} 1
|2 — 17
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where we have used the fact that |p}(z)/pn(z)] <1 for |z| > 1. Now,
using (4.5) (by Theorem 2.1, A there can be taken as {1,2,3,...},
R =|B(0)|7"), and so the limit values in (4.5) are Arj, j = 1,2,...,m
and (3.2) we have

lim ‘¢”(z) — A\B(z) =0,

n—o00 SOn(Z)

locally uniformly for |z| > 1. o
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