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VARIATIONAL METHODS AND
SPECTRAL ASYMPTOTICS OF TWO PARAMETER
ELLIPTIC EIGENVALUE PROBLEMS IN A BALL

TETSUTARO SHIBATA

ABSTRACT. We consider the following nonlinear two-
parameter elliptic eigenvalue problem

Au+puP = u in B={zx € RV : |z| < 1},
u >0 in B,
u=0 on 0B,

where N > 2, p > 1 and p, A > 0 are eigenvalue parameters.
We apply two different kind of variational methods to this
problem and define the variational eigenvalues A = A(p) and
1 = p(A). Then we shall establish the asymptotic formulas
of A(p) and p(A) as p — oo and A — oo, respectively, and
the close relationship between the two asymptotic formulas
are confirmed.

1. Introduction. We consider the following nonlinear two-
parameter elliptic eigenvalue problems in a ball:

Au+puP =M in B={z € RN :|z| <1},
(1.1) u>0 in B,
u=20 on 0B,

where N > 2, p > 1 and p, A € R are eigenvalue parameters.

Since all positive solutions of (1.1) are radially symmetric (cf. Gidas,
Ni and Nirenberg [3]), we consider the ordinary differential equation

ull(,r.) + Nr—lul(r) + puP = Au, 0<r<l,

(1.2) u(r) >0 0<r<i,
u'(0) =0, u(1l) =0,

where r = |z|.
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344 T. SHIBATA

In order to describe and motivate the results of this paper, let us
briefly recall some of the known facts concerning linear and nonlinear
two-parameter problems.

There are many works concerning linear two-parameter problems.
Especially, Binding and Browne [2] considered the following equation

(1.3) u'(z) + pg1(z)u(z) = Ag2(z)u(z), ze€I=(0,1).

Under the suitable boundary conditions and conditions on g1, g2, they
established the following asymptotic formula:

(1.4) lim An (k) = esSSUP,¢; g2()

u—roo  pu g1(z)
Here A, (p) is the n-th eigenvalue for given p > 0. Motivated by these
results, Shibata [7] considered the following nonlinear two-parameter
Sturm-Liouville problem

(1.5) {u"(l‘) + pu(z) = M1+ [u(@) P Yu(z) zel,

u(0) = u(1) = 0.

By using the variational method on general level sets due to Zeidler
[10], the following asymptotic formula was established:

(1.6) fim (@)

p—00 I3

:1’

where A, (u,a) is the n-th variational eigenvalue and @ > 0 is a
normalizing parameter of general level sets. In [7], the homogeneity
of the lefthand side of the equation (1.5) played an important role. We
note here that this property does not hold for (1.2).

In this paper we apply two different kinds of variational methods to
(1.2). More precisely, as an eigenvalue problem, there are two ways of
dealing with the problem (1.2). Firstly, for a given g > 0, we define
A = A(p) as a Lagrange multiplier by using the variational method
introduced by Zeidler [10] on a general level set. Secondly, for a given
A > 0, u = p(A) is defined as a Lagrange multiplier by using the
standard variational method.

The main object of this paper is to establish asymptotic formulas of
A= Ap) and g = p(N) as 4 — oo and A — oo, respectively, and to
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show the close relationship between the two formulas, that is, the same
type of asymptotic formulas for A(u) and pu(\) will be confirmed.

We use the following notations. Let X := W,"*(B) be the usual
Sobolev space. Let

L B R B e ]
B B

We denote by N, o, the general level set:

1 K 1
1) Moo= {ue X5 H@ = lull - 2l = o},

where o > 0 is a fixed constant.

We shall define the variational eigenvalue A = A(u) for given p >
0. We call A = A(p) the variational eigenvalue if the associated

eigenfunction v = wuu(xz) € N, satisfies the following conditions
(1.8)—(1.9):

(1.8) (s AM(p),up) € Ry X R X Ny o satisfies (1.1),

1.9 v = inf ¥

(1.9) (up) = Iof U(u),

where R, = (0,00) and ¥(u) = (1/2)|ul|3.

Next we shall define the variational eigenvalue p = p()) for fixed
A > 0. Let

1
Mypi = {ue X g(u) = gl

1 1
= = Ail/‘y 3
P+ I’BA p+1ﬁ }

(1.10)

where 8 > 0 is a constant and v = 4/(N + 2 — p(N — 2)). We call
p = p(A) the variational eigenvalue if the associated eigenfunction
u = uy(z) satisfies the following conditions (1.11)—(1.12):

(1.11) ((A), A\ ur(z)) € R x Ry X My satisfies (1.1),
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(112) (I))\(U)‘) :uei}\l/If;\,@(I))\(u)’

where 1
P (u) = 5(\|U|l§c + Alfull3)-

Now we state our main results.
Theorem 1.1. Let 1 < p < 1+ 4/N. Then there exists the

variational eigenvalue A(p) for p > 0. Furthermore, the following
asymptotic formula holds as p — oo:

N+2-p(N -2 2 v(e—1)/2
p( ) o > H7+0(N7);

1.13) A =
R T —

where Wo, 15 the ground state of scalar field equation

Aw+uwP—w=0 in RV,
(1.14) w >0 in RN,

Theorem 1.2. Let 1 < p < (N +2)/(N — 2). Then there exists
the variational eigenvalue p(\) for A > 0. Furthermore, the following
asymptotic formula holds as A — oo:

_ 2(p+1) w2
(1.15) ud) = (((N+2) —p(N — 2))/3” oollz2(R2)

Y 4 0()\1/7)‘

>(p—1)/(p+1)

We note here that the formulas (1.13) and (1.15) are closely related,
namely, we can choose 8 > 0 so that the coefficients of the top term of
(1.13) and (1.15) are the same.

The remainder of this paper is organized as follows. In Section 2
we study the existence of A(u) and the positive radially symmetric
eigenfunction associated with A(p). In Section 3 we prepare some
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fundamental lemmas for the proof of Theorem 1.1. Section 4 is devoted
to the proof of Theorem 1.1. Finally we shall prove Theorem 1.2 in
Section 5.

2. Existence of \(1) and u,. Hereafter, C' denotes various positive
constants independents of ;. We shall show the existence of A(x) and
the associated positive eigenfunction of u,(z). To this end, we shall
apply the existence result of Zeidler [10, Proposition 6a]. We have only
to check the following condition

(2.1) Lya={ueNuo:(1/2)ul? < A} C X

is bounded for all constants A > 0 and fixed 4 > 0. All the other
conditions assumed in [10, Proposition 6a] are easily checked. For
u € L, 4, by using interpolation inequality

(22)  Julbfy < Cllullgllul5 d=N— (N -2)(p+1)/2
we obtain by (1.7) and (2.1) that

L2 H p+1
Z =~ -2
lule = 2 Il - 2a
N’ p+1
(2.3) < m”unpﬂ
H d/2 p+1—d
< ——Ci(24 .
S ot 1(24)% "l

Since p+1—d < 2 is equivalent to p < 1 +4/N, our assertion immedi-
ately follows from (2.3). Therefore, we can apply [10, Proposition 6al)]
to obtain the existence of A(p) and associated eigenfunction u, € Ny 4.
Then, by a standard argument of regularity (cf. Berestycki and Lions
[1, Lemma 1]), we have u, € C?(B).

Next we shall show the existence of positive radial eigenfunction u,(z)
associated with A(u). Put v, = |u,|. Since ||v,||% < |luul% (cf. Gilberg
and Trudinger [4, Lemma 7.6]), we obtain

—ay:=H(v) < H(u) = —q;
namely, a1 > «. Now we shall show that a; = «. To this end, we

assume that oy > o and derive a contradiction. We define v, ; := tv,,,
0 <t <1, and h(t) := H(vu,). Then

1, 2 H +1 p+1
h(t) = 52uallk = g el
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It is clear that h(0) = 0, h(1) = —a; and h(t) is strictly decreasing
if h(t) < 0. Therefore, we see that there exists 0 < ty < 1 uniquely
satisfying h(to) = —c, namely, v, s, € Ny o. Then, by (1.9),

(v10) = (10)*W(v,) = (10)*¥(w) < _inf ()

This is a contradiction. Hence, we obtain a; = «, that is, v, € N, 4.
Moreover, it is obvious that ¥(v,) = ¥(u,). Therefore, we see that v,
also satisfies the equation in (1.1) with the same A(x) as that of w,,
since A(u) is represented explicitly by

(2.4 Ay 22T 1|)uljr%||§il/(p +1)

Thus, we obtain the existence of nonnegative solutions of (1.1) which
satisfy (1.8)—(1.9).

Next we shall show the existence of nonnegative nonincreasing ra-
dially symmetric solutions of (1.1) which satisfy (1.8)—(1.9). By the
argument above, we may assume that u, > 0. Let uj, be the Schwarz
spherical rearrangement of u,. Then uj € X and is a nonnegative
nonincreasing function of r = |z|, z € B, which satisfies

(2:5) Mupllprr = llwpllprrs  luglle = lluullzs llegllx < llullx.

For these properties, we refer to Berestycki and Lions [1, Appendix].
Therefore,
—Qy 1= H(u;) < H(u,) < a.

Now, applying the same argument as that used to derive the nonnega-
tivity of u,, just above, we can also obtain az = a, that is, uy, € Ny .
Then, by (2.5), we find that u’ is a desired nonnegative solution of
(1.1) which satisfies (1.8)—(1.9).

Finally, we show that u;, > 0 in B. Since uj, is radially symmetric
and nonnegative, uj, satisfies the equation (1.2). Let

1o := sup{r € [0,1] : u;(s) >0 forall s<r}>0.

Then it is clear that u}, > 0for 0 <7 < rgandu}(r) =0forrg <7 < 1.
If ro < 1, then since the equation (1.2) is a regular ODE near r = r,
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by the uniqueness theorem of ODE, we obtain that u;, = 0 near r = r.
This is a contradiction. Thus, we obtain that u;, > 0 in B.

Therefore, in what follows, we consider the positive radially symmet-
ric nonincreasing function w,(r) as the associated eigenfunction with
A(u) and consider the equation (1.2).

3. Fundamental lemmas. In this section we prepare some useful
lemmas for the proof of Theorem 1.1.

Lemma 3.1. As p — 0o, A(u) — oo.

Proof. Let uy be the unique positive radial solution of the equation

—Auy=u? in B,
(3.1) u>0 in B,
u=0 on 0B.
Then it is clear that u, # ug. We defined a function J(t), ¢t > 0, by
1 1 .
(3:2)  J(t) = Hltuo) = 3 uollx — 7wt luol 1.

Then by simple calculation we find that there exists t = ¢, uniquely
such that J(¢,) = —c, that is, t,ug € Ny . Then it follows from (1.9)
that

1 1
(3-3) U(un) = 5luuls < U(tuuo) = Stalluoll3.
We shall show that there exists a constant C' > 0 such that for p > 1,
(3.4) t, < Cp~YE+,

It is easy to see that J(t) is decreasing when J(t) < 0. Therefore,
J(Cp=Y/®+1)) < J(t,) = —a implies that Cp~Y/ P+ > ¢ - We can
choose C' > 0 so large that for > 1

(3.5)
_ 1 1 _
J(Cu 1/(p+1)) =2 (5# 2/(p+1)||uO||§( _ - 1Cp 1””0”21%)
1
2 2 1 +1
< &l - — 707 )

< —a.
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Thus, we obtain (3.4) by (3.5). Now it follows from (2.4), (3.3) and
(3.4) that

2 > 2a 2a
I
uulls = lluoll3t? CQHUoH%

Thus the proof is complete. u]

2/(p+1).

Ap) >

We put v,(r) = (Au)/u)"/®Yu,(r). Furthermore, let t =
AMp)/?r and w,(t) = v,(r). Then it follows from (1.2) that w,(t)
satisfies the following equation:

wy () + Fwy, (8) + wy (8)?
_ _ _ 1/2
(36) wH( ) 0 te IH (O’ >‘(:u’) )7
wy(t) >0 tel,,
w,(0)=0,  wu(A(p)"/?) =0.

Put v, 1= w,(0) = maxg<, < w1z w(t).

Lemma 3.2. The following identity holds for t € fu:

PN -1
w',(s)* ds
1
+mw ()P — gwu(t)z
(3.7) 1
p+1 _
— 7 57
p+l © 2 1
1/2
1 1/21)2 AT N 1 2
zi(wL(A(u) /2)) +/0 . w,,(s)*ds > 0.
Proof. Multiplying (3.6) by w,(t) we obtain
N-—-1
wh (8w (8) + = w, (6)* + wa ()", (t) — wa(H)w], () = 0,
that is,
df1 "N -1
alawwr s [t eras

1 1
LU0 S
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this implies that
1 / 2 ! —1 / 2
(3.8) §(wu(t)) + Twu(s) ds
0
1
+ ——w, ()P - §wu(t)2 = constant.
Now put t = 0, A(z)*/? in (3.8) to obtain (3.7). O

From now on, for a subsequence of {w,, } we will use the same notation
for simplicity. Furthermore, we regard w,as a function in R by 0-
extension.

Lemma 3.3. The sequence {w,} converges to wo, as it — 00 on any
compact subset in [0,00).

Proof. We know from Yanagida [9] and Lemma 3.1 that {v,} is
bounded for p > 1. More precisely, if A(#1) < A(p2), then v,, > 7,,.
Then it follows from (3.7) that, for p > 1,

1 2 1 +1 +1 1 2 2
R < o O () — 5 (E (1))
1
(3.9) < SOk @)
1
< = ~pt+l i
Sl <C

Next we shall show that |wj,(t)| is bounded for x> 1. Obviously, the
equation (3.6) is equivalent to:

(3.10) (Y w(t)) + VT (wa ()P — wu(?)) =0,
which implies that, for ¢t € R,

‘ wy(t)

O = o [ ) = wtomas

t
< t_N/ CsV1ds
0

(3.11)
<C.
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Then it follows from (3.6) and (3.11) that {w}} is bounded. Since we
obtain by (3.9) and (3.11) that {w,}, {w}}, {w}} are bounded, we can
apply Ascoli-Arzela’s theorem to extract a subsequence of {w,} such
that as p — o0,

(3.12) wy(t) — wi(t), w,, (t) — wa(t)

uniformly on any compact subsets in [0, 00). Clearly, for fixed ¢ > 0

wW(t) = w, (0) = / w',(s) ds;

by letting u — oo, we obtain

wi(t) — w1 (0) = /0 ws(s) ds;

this implies that w}(t) = wa(t) and wi(t) € C'(R). For any k €
C§°(]0,00)), we obtain by (3.10) and integration by parts that

(3.13) — /oo N lw! (K (t) dt + /thl(wu(t)P —wy,(t)k(t) dt = 0;

by letting u — oo in (3.13), we obtain

(3.14) —/Oo tN =T (0K (t) dt+/tN_1(w1(t)p —wy(t))k(t)dt = 0.

This implies that w; is a weak solution of the equation in (1.14).
Since w; € C'(R), by a standard regularity argument, we see that
wy € C?(R). We shall show that w; = w., the unique ground state
of (1.14). We denote by w = w(r,d) the solution of the initial value
problem

(3.15) { W' (t) + 2w () + w(t)? —w(t) =0 ¢ >0,

w(0) =4 >0, w'(0) = 0.

Then the positive initial data can be classified as follows (cf. Kwong [5,
Theorem]):

N = {§: there exists R > 0 such that w(R,§) =0} = {§ > do},
G={6:w(r,d)>0for r >0 and lim w(r,d) =0} = {0},

P={§:w(r,§) >0 for r >0 and there exists R > 0 s.t. w'(R,d) =0}
= {0 << 60}
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Clearly, {7,} C N and since A\(u) — oo as u — oo by Lemma 3.1,
we obtain that dp = Yo = lim,_00 vy, that is, 7o € G. Since
Yoo = w1(0), we obtain that w; = ws. Thus the proof is complete.
O

Lemma 3.4. There exzists z(t) € L?*(RY) N LPYY(RY) such that
wy(t) < z(t) for p>1 and t =|z| > 0.

Proof. We know from Berestycki and Lions [1, Lemma 2] that there
exist constants C,dJ > 0 such that for r > 0

(3.16) 0 < weo(r) < Ce™.

We have from (3.7) that, for 0 <t < )\(,u)l/z,

(3.17) —w,,(t) =/ H(t),
where

H(1) = w0~ (07 0], (M) )
(3.18)

Let z,(t) = C(t +1)Y/(~9 where 1 < ¢ < 1+ 1/N and C > 0 is
a sufficiently large constant. Then z;(t) satisfies the following initial
value problem

(3.19) { ;zl(’)')(’z - .\/ w(t)?/{(q - 127D},

Let 0 < £ < 1 be fixed. We choose 1 > 0 so large that A(u)'/2 > tg :=

v/C/e—1. If Jw| < e, then

2
(320) w? — " 1w17+1 _ w?q/{(q _ 1)202((1—1)} > 0.

Hence we obtain by (3.17), (3.19), (3.20) and the comparison theorem
of ODE that there exists no interval J, = [t,,s,] C [tg,00) such that
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wy(ty) = z1(ty), wu(sy) = z1(sy) and wy(t) > 2z1(t) for t € J,.
Furthermore, if there exists ¢, € [tg,00) such that w,(t,) = z1(t.)
and w,,(t) < z(t) for t € [t,, \(u)/?), then for ¢t € [to,t,], we have
wy(t) > z1(t). Consequently, for > 1, we obtain w,(to) > z1(to)-
However, this is impossible because of Lemma 3.3, (3.16) and the
definition of z;(t). Thus, we obtain that, for p > 1, w,(t) < 2z1(¢)
for t € [to, 00).

Now we put, for a sufficiently large C > 0,

_ C te [O,to),
2(t) = {zl(t) € [to, 00).

This is the desired function. O

Now by Lemma 3.4 and a standard argument of compactness, we
obtain that we (t) = lim, 0 w,(t) in L2(RY) and LPFH(RY).

4. Proof of Theorem 1.1. With the aid of the lemmas proved in
the previous section, we shall prove Theorem 1.1.

Proof of Theorem 1.1. Let |S1| denote the measure of the unit sphere
in RN. By definition of wy, we have

) Ap)t/? N1 ,
w2 = S| / Ny, ()2 dt

=18, N/2 17"N71v M2 dr
) 1A () / L ()2 d

1
- \gl|,\(M)N/2—2/(p—1>ﬂ2/(p—1>/0 L, (r)? dr

= ()N 20,
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1/2

Aw)
+1 _
lwaZEE = |4] / VL, (1) dt

1
— ISiAGM [N
0

= [Sy|A(p) N2t D/ (1) |y (p+1)/ (P 1)

1
. / erluH(T)erl dr
0

= \(p)N/2- 1)/ (=) (p+1)/(p—1)||uu||17+1

K p+1

Furthermore, we have, by Pohozaev’s identity (cf. Strauss [8]), that

p+1 _ 2(p+1)
PP 2(p+1) - N(p—1)

(4.3) [[weol|

lweoll3-

It follows from Lemmas 3.3, 3.4 and Lebesgue’s convergence theorem
that, as u — oo,

(4.4) lwullz — flweollz, — Nlwpllprr — l[woo [lp+1-

Now (2.4) and (4.1)—(4.4) imply that, as p — oo,

(4.5)
() D/ (=D~ N2, =2/ (0=1) _ 2a -
lwll3 = (P = Dljwallpry/(p + 1)
N+2-p(N-2) 2a
N+4-Np [wsll3’
Thus the proof is complete. u]

5. Proof of Theorem 1.2. We begin with the existence of p()\)
for A > 0. Let us recall that g(u) and ®,(u) are defined in (1.10) and
(1.12), respectively. Let ¢’ and ®) denote the Frechet derivative of g
and ®,, respectively.

Lemma 5.1. ®, satisfies Palais-Smale condition on My g: namely,
any sequence {untnen C My g satisfying

(5.1) Py (un) < C,
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(5.2) P g(un) := @)\ (un) — g (up) — 0 in X'

contains a convergent subsequence in X. Here X' denotes the dual
space of X.

Proof. We define operators By, By, A in X by the rules

(Bou, v) :/ VuVudz, (Au,v) :/ wv dz,
B B

(Blu,v):/ P~ uv de.
B

Then (5.2) implies that, as pu — oo,

(I)/\ (un)un

5.3 P’ n) = Boupn, + AMu,, —
(5.3) A\ (Un) 0Un + AAU B

Biu, — 0 in X.

By Sobolev’s embedding theorem, it is obvious that B; and A are
compact operators. By (5.1) we see that ||u,||% < C. Hence, we can
choose a weakly convergent subsequence: u,, — up weakly in X as
k — oo. Then we obtain as k — o0,

(5.4) Auy,, — Aug, Biuy, — Biug in X.

Since ®y(up) is bounded by (5.1), by using (5.2) and (5.4) we can
choose a convergent subsequence from {Byu,,} in X. By the Lax-
Milgram theorem, there exists a bounded inverse B, 1 of By. Hence,
we obtain that a subsequence of {u,, } converges in X as k — oco. Thus
the proof is complete. O

Since @) (u) is bounded below on M) g, we can apply the existence
theorem of Rabinowitz [6, Theorem 2.10, Remark 2.8(ii)] to obtain
that there exists (u(A), A\, uxr(z)) € R x Ry x My g which satisfies
(1.11)—(1.12), although we must show the positivity of .

Lemma 5.2. There exists a positive solution uyx € M)y g which
satisfies (1.11)—(1.12).



TWO PARAMETER ELLIPTIC EIGENVALUE PROBLEMS 357

Proof. At first we shall show the existence of the nonnegative solution.
Put yy := |uy|. Let y§ be the Schwarz spherical symmetrization of yy.
Then y; € X and by Gilberg-Trudinger [4, Lemma 7.6] and Berestycki
and Lions [1, appendix] that

ly3 % < lluallx < lluallk,
13l = llyallg = lluallf, (¢=2, p+1).
Therefore, y} € My g and, by (1.9), (1.12) and (5.5),

(5.5)

Iy =285 (un) = [luallk + Muall3
(5.6) <22, (y3) = llvallx + Allvill3
S 2@)\(114)‘);

this implies that 2®,(yx) = I\ and, consequently, y} is nonnegative,
radially symmetric nondecreasing and satisfies the equation (1.1) and
(1.9) for the same p = p(A) as that of uy, since multiplying uy by (1.1)
and integrating by parts we obtain

_ I
Br’
By a standard regularity argument it follows that y% € C?([0,1]). Then

by the same argument as that used in Section 3, we obtain that y3 > 0
for 0 < r < 1. Thus, the proof is complete. O

(5.7) r(A)

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We consider the equation (1.2). We put

oA(r) = (ﬁ)_l/@_”um, Eim N2,

wy(t) := va(r).

Then by replacing A(p) with A, we see that w) (¢) satisfies (3.6). Then,
by (5.7),

p(N) = 85 (luallx + Alluall?)
A

2/(p—1
— gl\l/v)\1-N/2 /=1 2 2
=p pey) (lwallx + [[wall2)-

(5.8)
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By Lemma 3.3 and Lemma 3.4, we have that, as A — oo,

+1 +1
(5.9) lwallz — llwsoll3,  llwallpy — llwsolPT1-

Multiplying wy by (3.6) and integrating by parts, we obtain by (4.3)
and (5.9) that, as A — oo,

lwallk = lwallpi = lwalls — lwslp51 = llwso I3
10 A s DT
S 2(p+ 1) -NpE-1)"
Combining (5.8)—(5.10), we get, as A — oo,
(5.11)  p(\) P/ =D AN/2=+1)/(p=1)=1/y
2(p+1)

—1 2
— 8 e w =y el

This implies Theorem 1.2. Thus, the proof is complete. o
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