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DISTRIBUTIONAL CONTROL FOR OPERATORS
ON VECTOR-VALUED L?-SPACES

NAKHLE H. ASMAR AND BRIAN P. KELLY

1. Introduction. Throughout this paper, (2, F, ) will denote an
arbitrary measure space, and X will be an arbitrary Banach space
with norm denoted || - ||. A function f : Q@ — X is said to be
strongly measurable if there exists a sequence { f,,} of X-valued simple
functions on Q such that lim,_, fn(w) = f(w) p almost everywhere
on . For each p € [1,00), let LP(Q, pu,X) denote the set of all
strongly measurable functions which satisfy [, || f(w)|[? du(w) < oo.
Identifying functions that are equal p-almost everywhere, this is a
Banach space with norm || ]|, = ([;, [If(w)|P du(w))'/?. Similarly, the
set of essentially bounded, strongly measurable functions from §2 into
X, after identifying functions which are equal p almost everywhere,
becomes a Banach space with norm ||f||cc = ess sup{||f(w)|| : w € Q}
and is denoted by L>(Q, s, X). For all p € [1, 00], LP(Q, u, X ) will also
be denoted by EP. A function f : Q — X is called weakly measurable if
for each z* € X*, t — z*(f(t)) is a measurable scalar-valued function.

In Section 2 we define distributional control for operators and repre-
sentations. We show that an operator T that is distributionally con-
trolled can be extended to an operator T® on the norm-closure of
E'NE>® in EP for 1 < p < co. We obtain structural information
for such operators that is motivated by the scalar-valued results in [2].
With these results, we construct a distributionally controlled operator
on L'(Q)NL>(Q) that dominates 7. This concept is related to the lin-
ear modulus of an operator as introduced in [3], and the LP-majorant
for operators on vector-valued LP-spaces as introduced in [4].

In the case of scalar-valued LP-spaces, representations consisting of
distributionally controlled operators have been used to derive general
ergodic theorems (see [1] and [2] for illustrations). With this in mind,
we have specialized some of our results to representations of locally
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compact abelian groups which are distributionally controlled.

In Section 3 we investigate a natural question concerning the strong
continuity of distributionally controlled representations. The principle
result obtained in Section 3 can be roughly stated as the following:

A representation which is uniformly bounded on EP* and EP2,
1 < p1, p2 < 00, is strongly continuous on EP if and only if it
is strongly continuous on EP2,

The proof we give requires representation results for elements of
(LP(,X))*, 1 < p < oo. Much of what we present regarding
(LP(2,X))* appears in [7], and we include it here for completeness
of the exposition.

Throughout the sequel, X* will denote the Banach space dual of X.
If z € X and z* € X*, then z*(z) will be denoted by (z,z*) where
convenient. If A is any set and f : A — X, the mapping w — || f(w)]|
will also be denoted by N(f)(w). When f is a real-valued function on
Q and B is a Borel subset of R, {w € Q : f(w) € B} will occasionally be
denoted by {f(w) € B}. For A C , 14 will denote the characteristic
function of A.

2. Fundamental properties of distributionally controlled op-
erators and representations. In this section we list the fundamen-
tal properties of u-distributionally controlled operators and representa-
tions. In several cases, the proofs follow the same lines as those found
in [1] for the case of operators acting on scalar-valued functions. We
presented the proofs in those cases where we felt the additional details
were needed.

If f:Q — X, the distribution function of f is defined for all y > 0
as

o(f :y) = d(N(f) 1 y) = n({w € Q: [|[f(@)] > y}).

The following is a simple variation on known properties of distribution
functions which we state for ease of reference.

Proposition 2.1. Let f, f1, f2, f3,...  fn,... be strongly measurable
X -valued functions. Then the following implications hold:
D If [fa@)] 2 Nf ()| ¢ almost everywhere on Q, then lim,_, «
&(fn:y) =&(f :y) for each y > 0.
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it) If fn — f in measure we have
a) &(f :y) <liminf, ¢(fy : y) for all y > 0,
b) limsup, ¢(fr :¥') < ¢(f : y) whenever 0 <y < y'.

Proof. This is a consequence of the version for scalar-valued functions
(see [1, Proposition (2.1)]). Simply note that from the inequality
lFn @)l = [If (@)l < Ifn(w) = f(w)] it follows that N(fn) = N(f)
pointwise p almost everywhere, respectively, in measure, whenever
fn — f pointwise p almost everywhere, respectively in measure. o

Let Y be a vector space over R or C. Suppose G is a locally compact
abelian group with the group operation being written additively. The
group of bijective linear mappings of Y to itself with composition for
the group operation is denoted Aut (Y). A group homomorphism R :
G — Aut (Y) is called a representation of G on Y, and it is customary
to write R(u) as R,. The following definitions are motivated by [2,
Definition 2.1] for representations acting on scalar-valued functions.

Definition 2.2. An operator T : E'! N E® — E!' N E* is said to
be p-distributionally controlled if there exist positive constants ¢ and «
such that for all y > 0 and for all f,g € E' N E*:

) ¢(Tf:y) <co(f:ay)and
ii) @(min{[|Tfl, 179} : y) < cop(min{|[f], 9]} : ay).

We say a representation u — R, of G on E'NE> is u-distributionally
controlled if there exist positive constants ¢ and « such that, for all
u € G,

1) ¢(Ruf:y) <cod(f:ay), and
ii) ¢p(min{[|Ruf|, [|Rugll} : y) < chp(minf||f], llgll} : )
for all y > 0 and for all f,g € E* N E*>.

The following theorem shows that, for p € [1, 00|, a p-distributionally
controlled operator T can be extended to an operator defined on the
norm-closure of E' N E*® in EP. The norm-closure of E' N E*® in
L> (8, u, X) will be denoted by Nx.
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Theorem 2.3. Let T be a p-distributionally controlled operator on
E'N E>. Then the following hold where c and o are as in Definition
2.2.

i) Suppose p € [1,00). There is a unique bounded linear operator
T®) on EP such that T®W)f = Tf for all f € E' N E®. Moreover,
HT(p)H < l/pal,

ii) There is a unique bounded linear operator T(®) on Nx such that
T f = Tf for all f € E*' N E>=. Furthermore, |T(>)| < a™'.

Proof. Note first that for all p € [1,00), E* N E* is dense in EP,
and for p = co, E' N E* is dense in N'x. The bound in Theorem 2.3i)
follows from using Definition 2.2i) together with the identity

[ s dute) = [ T e ) dy,
Q 0

which is valid for any scalar-valued measurable function g. To prove
Theorem 2.3ii), if f € N'x, apply Definition 2.2i) with y = o= (|| f||cc +
e) for every € > 0. o

Corollary 2.4. Let u — R, be a p-distributionally controlled
representation of a locally compact abelian group G on E*'NE>. Then,
the following statements hold where ¢ and o are as in Definition 2.2.

i) Forp € [1,00), there is a unique representation u — RP of G
by bounded linear operators on EP such that for all u € G and all f €
E'NE>®, RPf = R,f. Moreover, sup{||RP|| : u € G} < c'/Pa~1.

ii) There is a unique representation u — Rq(fo) of G by bounded

linear operators on N'x such that, for all w € G and all f € E* N E>,
R f =R, f. Also, sup{||R£°°)\| tu€ Gl <al.

Proof. Let p € [1,00]. From Theorem 2.3, all that remains is to
show that u — Rq(tp )is a homomorphism. Note that all u,v € G and
all f € E*NE=, R?) f = Ryyof = Ru(R,f) = RP (R f). Since
El N E*~ is dense in the domain of R&p ) and Rq(f ) is continuous, it

follows that u — Rq(f ) is a group homomorphism of G. a
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Measurable subsets of 2, A and B are said to be almost disjoint
if u(AN B) = 0. For mappings f and g from Q to X, we say the
functions have almost disjoint supports whenever ||f(-)|||lg(:)]| = 0 u
almost everywhere. Suppose that 1 < p < co and that Fj is a subspace
of EP. An operator T : Fy — Fj is said to be separation preserving if
for each pair f, g € Fj having almost disjoint supports, then T'f and T'g
have almost disjoint supports. We say a representation v — S, of G is
separation preserving if, for each u € G, S, is a separation preserving
operator.

Remark 2.5. If T is a p-distributionally controlled operator on
E'NE®, it follows from Definition 2.2ii) that T() will be a separation
preserving operator for each p € [1,00]. In the presence of Definition
2.21), a converse of sorts holds.

Proposition 2.6. An operator T is p-distributionally controlled if
and only if T satisfies Definition 2.2i) and is separation preserving on
E'NE>.

Proof. 1In light of Remark 2.5, it remains to show that if T is
separation preserving and satisfies Definition 2.2i) with constants ¢ and
a, then 7 satisfies Definition 2.2ii). Suppose fi,f, € E* N E>, and
consider the following disjoint subsets of Q: A; = {w € Q : ||f1i(w)| <
12} and Ay = {w € Q¢ [[fu(@)] > [Ifa(@)]]}. For j = 1,2 and
k = 1,2, define f;r = f;jla,. With this notation, we have that for
almost all w € €,

(2.1) N(fi1+ f2,2)(w) = min([[ f1 ()], [| f2 (@) ]))-

Also, for j = 1,2, we have f; = f;j1 + fj2. The support of f; 1 is
almost disjoint from the supports of fi, and fo2 by construction.
Similarly, the support of f;; is almost disjoint from the supports of
fi,2 and f2a. Therefore, defining By = (suppT'f11) U (suppT'f2,1)
and By = (supp T'f12) U (suppT'fo,2), we have By and By are almost
disjoint since T is separation preserving. Note that, for w ¢ By U B,
min(|Tf1 ()], ITf()[) = 0. For j,k = 1,2, we have (T'f;)1p, =
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(Tfjx +Tfj2)1lp, = Tfjr 1 almost everywhere by definition. Hence,

min([|7f1() ||, [T f2()|)) = min(| T f1 ()], [|7'f2() )18, ()
+ min([|Tf1()[], [[Tf2(-))1B. ()
(2:2) = min(||Tf1,1 ()| 1T f22()I)
+min(||T fr2()[l, |7 f2,2()Il)
SNTfraOI+ T f2,2 O]

Note that || f1,1 ()| + |7 f22()Il = [IT'(f1,1 + f2,2)(-)|| since T is linear
and separation preserving. Thus, (2.2) implies that

(2.3) min((|Tf1[l, [T f2l]) : y) < AT (fr1 + f2,2) 2 9)-

From (2.3) and the hypothesis that T satisfies Definition 2.2i), it now
follows that

(2.4) ¢(min([[Tf1[l, [T f2l) = y) < cp(frn + fo2 : ay).

Comparing (2.1) and (2.4), we see that T satisfies Definition 2.2ii).
o

Suppose T is a p-distributionally controlled operator on E'NE>. For
each p € [1, 0], if T®) denotes the corresponding extension appearing
in Theorem 2.3, we will use F? to denote the domain of T®), Thus,
for p € [1,00), FP = EP and F>* = Nx. The proof of the following
proposition is similar to that of [1, Proposition 2.10]. We omit the
details.

Proposition 2.7. Fiz p € [1,00], and suppose that T is a p-
distributionally controlled operator. With T™®P) and FP as in the pre-
ceding paragraph, for all y > 0 and for all f € FP,

ST f :y) <ch(f: ay).

We now state one of the central results of this section. In the
case that T is an invertible operator such that 7' and its inverse
are p-distributionally controlled, the following theorem provides an
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alternative formulation of p-distributional control. The proof is carried
out using arguments very close to the proof of [2, Theorem 2.6] so we
will omit the details. However, we do supply a sketch of the proof
because two estimates which appear in the proof will be crucial for the
sequel.

Theorem 2.8. Let p € [1,00), and suppose that S is an invertible
operator on EP. Then there exists an invertible p-distributionally
controlled operator T on EXNE™ with T~ p-distributionally controlled
such that S = T®) and S~ = (T~ if and only if S and S~ are
separation preserving operators and there exist constants Cp,Coo > 0
such that for each j € {—1,1},

i) [1S7fllp < Cpllfllp for all f € EP and
i) |97 flloo < Cool|flloo for all f € EP N E.

Sketch of Proof. Suppose that 7' and 7! are each p-distributionally
controlled operators satisfying Definition 2.2 with constants ¢ and «a.
Applying Theorem 2.3 and Propostion 2.7 yields that Theorem 2.8i)
and ii) hold with C,, = ¢*/Pa~! and C,, = o~ L.

Suppose that S and S~1 are separation preserving operators satis-
fying Theorem 2.8i) and ii). Let z € X with [jz]|| = 1. We obtain
the following estimates whenever § € F with 0 < p(§) < oo and
B = supp S(z1s) by using arguments analogous to those used to prove
the estimates in Theorem 2.9 and Lemma 2.11 appearing in [2].

(2.5) Clllg(w) <[|S(zls)(w)]| € Colp(w), p a.e. on Q.
(2.6) (CpCo0) Pu(B) < u(d) < (CpCo0)’u(B).-

It is important to note that (2.5) and (2.6) hold with the same
constants for all choices of x € X with ||z|| = 1. So, as in the proof of [2,
Theorem 2.6], it can be shown that T' = S|ginpe satisfies Definition
2.21) with constants ¢ = (CpCw)P and a = CZ'. Proposition 2.6
completes the proof since T is separation preserving. a

The following theorem is the analog of Theorem 2.8 for the case of
representations.
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Theorem 2.9. Let p € [1,00), and suppose that u — S, is a
representation of G on EP. Then there is a p-distributionally controlled
representation R of G such that S = R®) if and only if S consists of
separation preserving operators and there exist constants Cp, Cs > 0
such that for all u € G,

i) ||Supr < Cp”f”p for all f € EP;
i) [|Suflloo < Coollfllco for all f € EP N E>.

Remark 2.10. Suppose T and T~ ! are both p-distributionally con-
trolled operators on E! N E*. For each p € [l,00), we construct

an operator on LP(Q), To(p), satisfying the relation N(T'®) f)(w) <
TP (N(f))(w) p almost everywhere for all f € EP. When R is a
p-distributionally controlled representation of G on E' N E*, we con-
struct a representation of G on LP(2), p — R&p ), satisfying the re-
lation N(Rz(f’)f)(w) < a~'RY (N(f))(w) p almost everywhere for all
f € EP. Our construction is motivated by [8]. We first need the fol-
lowing lemma.

Lemma 2.11. Let p € [1,00). Suppose T is an invertible operator
on EP and that T~ is separation preserving. If f,g € EP are such
that supp f C suppg p almost everywhere, then suppTf C suppTg p
almost everywhere.

Proof. Suppose that f,g € EP satisfy supp f C suppg p almost
everywhere. Let o = suppTyg, and write T(f) = 1,Tf + 1,.Tf.
Clearly, the support of 1,.Tf is almost disjoint from supp 1,7 f and
suppTg. Because T~! is separation preserving, we get the following
equalities.

(2.7) p(supp T 1 (1,.Tf) Nsupp T 1(1,Tf)) = 0.
(2.8) p(supp T (1,-Tf) Nsupp g) = 0.
Since supp f C supp g, it follows from (2.8) that

(2.9) p(supp T~ (1, Tf) Nsupp f) = 0.

From (2.7) and (2.9) we obtain the equality
(2.10) p(supp T~ (15T f) Nsupp (f — T~ (1,Tf))) = 0.
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The linearity of 7! implies that
(2.11) f-TY1,Tf) =T 1(1,.Tf), pae.

Therefore, (2.10) and (2.11) imply that u(supp 7 !(1,-7f)) = 0, and
it follows that f = T-1(1,7f) and Tf = 1,Tf p almost everywhere.
This gives the desired result. ]

Remark 2.12. In order to construct the desired operator Tép ), we first
consider a set mapping induced by T. Fix zg € X, ||zo|| =1. If § C Q
with u(8) < oo, zgls € E' N E™, so T(x¢ls) is well-defined. So, in
turn,

(2.12) D1 () = supp T'(zols)
is well-defined. Suppose that § C Q, u(d) < co. Applying Lemma 2.11
twice shows that the following equality holds up to a set of measure 0

for every z € X:

(2.13) @1 (0) = supp T'(x15).

Now recall that, from the proof of Theorem 2.8, T'(!) satisfies Theorem
2.81) with C; = ca ! and Theorem 2.8ii) with Cs, = o 1. Because of
this, (2.5) and (2.13) imply that, for all z € X with ||z| = 1, and for
all § C Q, u(d) < oo,

(2.14)  alg,5)(w) < [|T(zls)(w)|| < a_llq,T((;) (w), w ae. on .
Similarly, (2.6) and (2.13) imply that, for all 6 C Q, u(d) < oo,
(215) (@1 (5)) < (6) < co 2 u(@r(5)).

The following lemma shows that ®; preserves two basic set operations.

Lemma 2.13. Suppose that T is a p-distributionally controlled
operator on E' N E>® which is invertible with T~ u-distributionally
controlled. For all 6 € F such that p(6) < oo, let 1 (6) be as in (2.12).
Suppose that, for j = 1,...,n, §; € F and p(d;) < oo. Then the
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equalities @7 (U7_16;) = Uj_1®7(5;) and @1 (N7_16;) = (M7= Pr(d;)
each hold up to sets of measure 0.

Proof. 1t suffices to prove the lemma with n = 2. Suppose that, for
j=1,2,6; € Fand pu(d;) < co. For the remainder of this proof, any
statements of inclusion or equality between sets are to be understood
as holding up to sets of measure 0. By Lemma 2.11 and the definition
of &7, we have that

(2.16) @T((Sl) U <I)T((52) C <I>T((51 U (52)

From (2.12) and the fact that T is linear and separation preserving, we
obtain

®7(81 U d2) = supp T'(wgls, ) Usupp T'(zols,\5,)
= &7 (d1) U Pp(d2\01)

where z( is as in (2.12). Since d2\01 C &2, (2.17) and Lemma 2.11
imply that

(2.17)

(218) (DT(51 U (52) C <I>T(51) U ‘I)T((Sz).

Comparing (2.16) and (2.18) we get the desired equality: ®7 (51 Ud2) =
D1 (01) UPp(d2).

Since ®7 preserves finite unions, we have that ®7(d;) = @7(d1Nd2) U
@1 (61\02) and @7 () = Pr(d1N2) UP7(52\d1). Since T is separation
preserving, it is now easy to check that ®1(d1) N @7 (d2) = Pr(d1Nd2).
O

Remark 2.14. Suppose that f is a scalar-valued simple function,
[ = >i_ils,, where vq,...,v, are scalars and dy,...,d, are
pairwise disjoint measurable subsets of {2 having finite measure. Define
T f as follows:

(219) Tf = Z’yk]'@T(ék)'
k=1

Using (2.15) and Lemma 2.13, it can be shown that, for each scalar-
valued simple function f,

(2.20) O(T'f :y) < ca™2¢(f : y).
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The next proposition shows that T f can be extended to all of f €
LY(£2) N L*>°(Q2) while still satisfying (2.20).

Proposition 2.15. Suppose that T and its inverse are p-distribution-
ally controlled operators on E* N E>. Let T be as defined in (2.19).
Suppose that f € L*(Q) N L>(), and let {f,} denote a sequence of
simple functions converging to f in measure. Then {Tfn} 18 a sequence
that is Cauchy in measure, and so converges in measure to a function
Tf that depends only on f and not on the particular sequence {fy}.
Moreover, if ¢ and o are the constants for T appearing in (2.2), then
for all f € L*(Q) N L*>(Q),

(2.21) O(T'f :y) < ca™24(f : y).

Proof. Since f € L'(Q), there exists a sequence {f,} of simple
functions which converge to f in L!(2)-norm and consequently in
measure. Thus, {f,} is Cauchy in measure. With this and (2.20),
it can be shown that the sequence {1'f,} is Cauchy in measure, and
therefore will converge to a measurable function 7'f in measure.

From (2.20), it is clear that if {f,} is a sequence of simple functions
converging to 0 in measure, then {T fn} converges to 0 in measure.
Therefore, it follows that T’ f is well-defined up to sets of measure 0
and does not depend on the particular sequence {f,}.

It can be shown that, for every f € L*(£2) N L°°(£2) and for every
y > 0, (2.21) holds. This is done using (2.20) and Proposition 2.1ii) in
an argument similar to the proof of [1, Proposition 2.10]. O

Proposition 2.16. Suppose that T is an invertible operator on
E'N E* such that T and its inverse are u-distributionally controlled.
Then the operator T defined as in (2.19) and Proposition 2.15 will be
p-distributionally controlled and satisfy Definition 2.21) with constants
d=ca"?and o =1.

Proof. By Proposition 2.6 it remains to show that T is separation
preserving and maps L'(Q) N L°°(Q) into itself since 7' satisfies (2.21).
From the construction of T and the fact that T is separation preserving,
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it is clear that if f and g are simple scalar-valued functions with almost
disjoint supports, T f and Tg will have almost disjoint supports. It will
then follow that T is separation preserving on L'(2) N L>(Q). It can
be checked that 7" maps into L'(Q) N L>(Q) using (2.21). 0

Remark 2.17. For each p € [1,00), T can be extended to a bounded
operator on LP() denoted T7'?) such that ||[T®)] < (ca2)1/? by
Theorem 2.3. It is obvious that, for each p € [1,00), T is a positive
operator on LP(Q2).

The operator To(p ) — o 17® resembles the linear modulus for an
operator acting on a space of scalar-valued functions as introduced in
[8]. There, for an operator S on L!({2), the linear modulus Sy is defined

as a positive operator on L'(f2) such that
@) 51 = 1ISoll;
(ii) forall f € L}(Q), |Sf| < So(If1);
(iii) for all f € LY(Q)*, So(f) = sup{|S(9)| : g € L' (), lg| < f}-

The operator Tép )isa positive operator, and the corresponding version
of (ii) will be established in the following proposition.

Proposition 2.18. Suppose T and T~ are u-distributionally con-
trolled operators. Let TP) be the operator on EP given by Theorem 2.3,
and suppose that T® s the operator on LP(Q) obtained in Remark
2.17. Then, for all f € EP, and for almost all w € 2, we have

(2.22) N(T®P f)(w) < a ' TP(N(f))(w).

Proof. Let f be a simple function in E?, f = Y} | yrls, where,
fork=1,...,n, y1,...,y, are nonzero elements of X, and d1,...,d,
are pairwise disjoint measurable subsets of  with u(d;) < oo. For
kE=1,...,n,let 2 = yg/|lyx||. Then (2.14) and the disjointness of the
dr’s imply that p almost everywhere

NTP ) =D IoellITP (zeLs,) O

k=1

<a™t Z 9kl 1er(50) ()
k=1
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But N(f) = Y5 lyellls, and T®(N(f)) = Y3y lysllles ) by
definition. Thus, (2.22) holds for simple functions in EP. The proof
for an arbitrary f € EP follows by using a sequence of simple functions
converging to f pointwise y almost everywhere. O

Remark 2.19. (i) Suppose that (Q,F, u) is a probability space and
that S is an operator on LP(Q,X). In [4] there are several results
showing that with additional hypotheses on S, X and p, there exists
an operator Sp on LP () such that ||S(f)(w)|| < So(N(f)(w)). Therein,
the operator Sy is referred to as an LP-majorant for S. Proposition 2.18
shows that, in a similar manner, the operator Tép) = a7 can be
referred to as an LP-majorant for 7). As mentioned in Remark 2.17,
this operator also resembles the linear modulus for an operator acting
on a space of scalar-valued functions. The operator To(p ) obtained here
has been constructed with much weaker conditions on (2, F, u) and X,
but we require stronger conditions on the operator, namely the operator
must be invertible.

(ii) We wish to give an example of the above construction. Fix ¢ €
(1,00), and let X = L(T). For each p € [1,00), define EP = LP(R, X),
where R has Lebesgue measure. For z € X = Li(T), we use Z to
denote the harmonic conjugate of  and m(z) to denote #(0). Define

the operator T® : EP — EP by T® f(w) = f(2w) + m(f(2w)) almost
everywhere on R for each f € EP. As a consequence of M. Riesz’s
theorem, the mapping = — Z is a bounded operator mapping L4(T)
into itself with a norm we will denote A;. We can also see that T® is a

bijective operator with (T®)~! f(w) = ffm) +m(f(w/2)). Clearly,
1T, [|(TW)7H] < 244 + 1.

One can verify that T is separation preserving while satisfying The-
orem 2.8i) and ii) with constants C}, = 24, + 1 and C,, = A, respec-
tively. Hence, the operator T(p)| Elngpe 1s distributionally controlled.
The corresponding operator 7' on L*(R) N L>(R) transforms simple
scalar-valued functions in the following manner: T(ZZ:1 Yela,) =
> r_1Vkl2a,. Furthermore, note that the powers of T®) are not uni-
formly bounded; thus, this operator cannot be found within a distribu-
tionally controlled group representation.

Although the form of the set mapping ® is obvious in this case, this
example illustrates how the results proved in [4] do not circumscribe
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what we have obtained here. The example T of the preceding
paragraph is never an isometry of EP, while the theorems in [4] treated
isometries. Also, for spaces such as L? (R, L4('T)), the restriction p # ¢
is needed in [4]. We do not need to make such a restriction.

(iii) Suppose u — R, is a p-distributionally controlled representation
of a locally compact group G into E' N E* with ¢ and « for the
constants appearing in Definition 2.2. Constructing R, as above for
each u € G, it follows that R, satisfies Definition 2.2 with constants
¢ =ca2and o/ =1 for all u € G. We will show that u — R, is a
representation. It is for this reason that we distinguish the operators

Ry, u € G. In the case of a representation, the set function ®p, will
be denoted simply as ®,, for each u € G.

Proposition 2.20. Let R be a p-distributionally controlled repre-
sentation of G. For each u € G, let R, be defined as in (2.19) and
Proposition 2.15. Then u — Ry is a wp-distributionally controlled rep-
resentation of G on L*(Q2) N L*>(f).

Proof. From Proposition 2.16, all that remains is to show that
u— Ry, is a group homomorphism since Definition 2.2i) holds with
constants independent of w. It will suffice to prove that Ru+u f=
Ru(R,f) for f = 15 where § € F such that u(§) < oco. This is
equivalent to proving that ®,,,(6) = ®,(®,(6)). Now P,,(8) =
supp Ry v (2ols) = supp Ry (Ry(zols)). From Lemma 2.11, it follows
that supp Ry, (R,(zols)) = supp Ry (zols,(5)) up to a set of measure 0.
But by the definition of ®,,, this is ®,,(®,(J)). O

Remark 2.21. We now give an example of the above construction
involving a distributionally controlled representation. Fix ¢ € (1, 00).
For each p € [1,00), let X, EP and A; be as in Remark 2.19ii). Let
T : EP — EP be given by T'f(w) = f(w) +im(f(w)) almost everywhere
on R for each f € EP. We can then see that T is a bijective operator

—~—

with T f(w) = — (@) — im(f(w))- Clearly, T[], |T~1| < A, + 1.
One can check that T? = —I and T* = I where I denotes the identity

operator on LP(R,X). Let Z act on E? = LP(R,X) by R¥P) =1m,
Clearly, R(®) is separation preserving and satisfies Theorem 2.91) and
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ii) with constants C, = A; + 1 and Cs = A, respectively. Hence,
the representation is distributionally controlled. The corresponding
representation R on L'(R)N L>°(R) is merely the identity operator in
this case.

3. Strong continuity for distributionally controlled repre-
sentations. For this section, consider the Banach space X as a vector
space over R. Suppose G is a locally compact abelian group with Haar
measure A, and let u — R, be a p-distributionally controlled repre-
sentation of G on E' N E*. For all p € [1,00), the corresponding
representation of G on EP given by Theorem 2.3 will be denoted as

U~ Rz(f’) or simply R®),

The main result of this section is the proposition that if, for some
po € [1,00), R®0) is strongly continuous, then for all p € [1,00), R®)
is strongly continuous. This question is motivated by the scalar-valued
case treated in [1] and arises naturally when considering operators of
the form Hyf = [, k(u)R?)fdA\(u) where k € L'(G, ). The proof
herein requires results appearing in [7] regarding the Banach space dual
of vector-valued LP-spaces. Also, some aspects of the proof involve an
approach which differs from the methods used in the scalar-valued case;
this approach uses a fundamental result from [9].

Up to Theorem 3.4, the discussion which follows is preliminary
material necessary for a statement of the results from [7] used herein.
Much of the terminology and notation is adopted from [7]. The reader
who is familiar with the representations of (LP(€, X))* may omit
Definition 3.1 through Remark 3.6 and proceed to Lemma 3.7.

The integration theory in [7] is based upon an upper integral I(-) de-
fined for all nonnegative extended real-valued functions and a suitable
collection of functions R which receives special consideration. Letting
R, denote [0, c0], the precise conditions required for 7(-) and R follow.

Definition 3.1. If A is a set, a mapping I : (R.)* — R, is called
an upper integral on A if the following hold for f, g1, ge,... € (Ry)*:

i) 1(0) =0:
ity I(\f) = AI(f) for all A > 0;
iii) if f <3507 gn, then I(f) < 3207, I(gn);
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iv) if {gn} is an increasing sequence, then I(sup,, g») = sup,, I(gn).

Suppose I satisfies Definition 3.1. Let R denote a vector space of
real-valued functions on A satisfying the following conditions.

i) for every f e R, I(|f]) < oo;

ii) for each continuous p : R — R such that p(0) =0, po f € R for
every f € R;

(iii) if f,g € R are such that f > 0 and g > 0, then I(f +g) =
I(f) + 1(9)-

In this paper, if [ is an upper integral on the set A and R is a vector
space satisfying conditions (i)—(iii), the triple (A, R, I) will be called an
upper integral space.

For p € [1,00), let I,(f) = I(|f|?)'/? for all real-valued functions
on A. The collection of all f : A — R for which there exists a
sequence {f,} C R such that lim, I,(f — f,) = 0 will be denoted
as LP(A,I,R). Then LP(A,I,R) is the space of equivalence classes
obtained by identifying pairs of functions f,g € LP(A,I,R) whenever
I(|f —g]) = 0. By the remarks following Definition 1.2.2 in [7],
LP(A,I,R) is a Banach space with norm I,,(-).

Suppose that (9,F,u) is a complete measure space, and let R,
denote the set of u-integrable simple functions. For f : Q — R, let
R denote the set of sequences {g,}5>; C R, such that each g, > 0
and >°, g, > f. Define I,, : (R;)? — Ry by

Lu(f) = inf{;/ggn dp: {gn} € Rf},

with the convention that inf@ = oco. It can be shown that (2, R, I,,)
is an upper integral space. If g € R, and g > 0, it is clear that
Lu(g) = [q g dp.

It can be shown that, for each p € [1,00), the spaces L?(Q2,I,,R,)
and LP(Q, F, ) are identical. Furthermore, the upper integral I, has
the additional property of being regular in the following sense. For
every f: Q — Ry, let Dy denote the collection of g € L(£2, F, u) such
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that g > f. Again, with inf @ = oo, it can then be shown that
(3.1) Iu(f):inf{/ggd,u:geDf}.

Suppose that (Q, Fp, o) is a o-finite measure space. There are
several concepts defined in [7] for a general upper integral space
(A,R,I) for which there are equivalent formulations in terms of the
measure space (€, Fo, 4o) when the upper integral space is in fact
(Q0,RpuysLy)- The set A is called I,,,-negligible if I,,,(14) = 0; this
occurs if and only if po(A) = 0. The set A is called (1,,,, R, )-integrable
if 14 € L0, 149, Ry,), which is equivalent to stating that 4 € Fy
and po(A) < oo. The set A is called (I,,, R,,)-measurable if AN B
is (I, Ry, )-integrable for each (I,,,, R, )-integrable set B. Since the
measure space is o-finite, this is equivalent to stating that A € Fy.
In the sequel, when such notions arise, they will be expressed in the
terminology of the measure space (g, Fo, to)-

The algebra of all bounded f : Qo — R for which there exists
{hn} C Ry, such that lim, h,(z) = f(z) o almost everywhere on €
will be denoted M>°(Qo, I,,,, Ry,). For every f € M>(Qq,1,,,Ry,),
define Io(f) = inf{a : {t : |f(¢t)] > a} is I-negligible}. Then
I (+) is a semi-norm on M>(Qq,I,,,Ry,). Since the measure space
is o-finite, L*(,I,,,Ry,) can be characterized as the space of
equivalence classes obtained by identifying pairs of functions f,g €
M= (Q0,1,,,R,,) whenever f = g po almost everywhere.

For a general upper integral space (A,R,I), the mapping I :
(Ry)A» — R defined by I(f) = sup{I(gf):g € Rand 0 < g < 1} is
another upper integral on A. The upper integral space (A, I, R) is said
to be strictly localizable if the following hold:

() 1(f) = (f) for all f € (R}
(ii) there exists B a collection of (I, R)-measurable subsets of A such

that, for every (I, R)-integrable set A, there exists B4 C B such that
B4 is a countable set and A\(Ugep, B) is an I-negligible set.

It is clear that (Qo,1,,,R,,) is strictly localizable since the measure
space is o-finite. For the remainder of this paper, the upper integral
1,,, will be denoted simply as I and R, will be denoted by R.

If f is a vector-valued function on Qo, define I,(f) = L,(N(f))
for each p € [1,00). The space LP(Qo,I,R,X) is essentially the
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collection of X-valued functions which are limits of sequences in Rx =
Ok  frxk sz € X, fi, € Rfork = 1,...,n} where the limit is
taken in the I,(-) seminorm. The space LP(§,I,R,X) is obtained
by identifying pairs of functions in £P (€, I, R, X) which are equal pg
almost everywhere. Theorem 6 in Chapter VI of [7], implies that the
space LP(p,I,R,X) is identical to LP(Qo, 1o, X)-

A function f : Qy — X* is called weak*-measurable if, for each
z € X, t — (z, f(t)) defines a Fy-measurable scalar-valued function.
Suppose p € [1,00). Let £%.(Qp,I,X) denote the collection of f :
Qo — X* which are weak*-measurable functions and satisfy I,,(f) < oo.
Identifying pairs of functions f,g whenever (z, f(t)) = (z,g(t)) po
almost everywhere for all z € X, a space of equivalence classes is
obtained which will be denoted by L% (Qo, I, X) or simply L%.. (o, X).
Using f to denote the equivalence class containing f as well as f itself,
Proposition 3 in Chapter VI of [7] shows that this is a Banach space

with norm || f{|z , (o, x) = Ip(f)-

Since (Qo, Fo, po) is o-finite, M. (X;Qo, I, R) can be considered as
the set of weak*-measurable functions, f : Q9 — X*, such that for
each z € X, (z, f(t)) € L (). Pairs of functions f, g are identified
whenever (z, f(t)) = (z,9(t)) po almost everywhere for all z € X to
obtain a space of equivalence classes denoted L. (o, I, X) or simply
L. (Qp, X). The corollary to Proposition 1 in Chapter VI of [7] shows
that || fl|Lee, (2,x) = I (f) is a norm making this a Banach space.

The next two results exhibit the role L% (Qo, X) will play in this
paper. They appear as corollaries to Theorems 7 and 9, respectively,
in Chapter VII of [7], and the proofs can be found there.

Theorem 3.4. Let X be a Banach space and suppose that (Qy, I, R)
is strictly localizable. Then, there exists ¥y : (L'(Qo, po, X))* —
LY. (Qo, X), an isometric isomorphism of Banach spaces, such that
if T € (LY(Qo, po, X))* and g = ¥1(7), then

() = [ (70906 dualt)
0

for all f € L*(Qo, pto, X).

Theorem 3.5. Let X be a Banach space, and suppose that (Qg, I, R)
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is strictly localizable. Let p € (1,00) with ¢ = p/(p — 1). There exists
U, : (LP(Qo, po, X))* — L%.(Q0,X), an isometric isomorphism of
Banach spaces, such that if 7 € (LP(Qo, po, X))* and g = ¥,(7), then

(/) = / (1), 9(t)) dpo(2)
for all f € LP(Qq, g, X).

Remark 3.6. Note that Theorems 3.4 and 3.5 imply a version of
Hoélder’s inequality. Suppose that p € [1,00) and 1/p+1/q = 1. Then,
for each f € LP(Q, po, X) and each g € L%.(Q0, X),

/Q <f(t),9(t)>dﬂo(t)‘ S/Q 1F@)lxlg ()]l x+ dpo(t)
0 0

< 17114 (9)-

This inequality could also be obtained directly using (3.1) and the usual
Holder’s inequality for (Qo, Fo, to)-

(3.2)

Let U denote the set of weak*-measurable functions f : ¢y — X*
such that there exist M € [0, 00) and A € Fy with u(A) < oo such that
|f(@)|lx+ < M14(t). Clearly, for each p € [1,00], U C L% . (R0, X).

Lemma 3.7. Let g € [1,00). The collection U is norm-dense in
L. (Q, X).

Proof. Suppose that f € L%.(Q0,X). Since I,(f) < oo, by (3.1)
there exists g € L' () such that || f(¢)|%. < g(t) po almost everywhere
on Qo.

Let ¢ > 0 be given. Since g € L'(£), there exists A € Fy with
po(A) < oo such that 0 < g(¢t) < M for some M € [0,00) po almost
everywhere on A, and

(3.3) / S dmoe) <.

Observe that, by the choice of A, || f(¢)14(t)||%. < g(t)1a(t) < M14(t).
Since A is a measurable set, f14 is a weak*-measurable function, and
thus f14 € U.
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Using (3.1) and (3.3), we obtain that

1/q
I,(f — fla) < (/ g(t) duo(t)> <e.
Qo\A
From this, the desired result follows. ]

In order to use the preceding results when the measure space at hand
is not o-finite, the following lemma will be needed. In general, if
(Q, F, ) is any measure space and ) is a measurable subset of €,
then Fo = {ANQy : A € F} is a o-algebra of subsets of €, and
to = p|x, defines a measure on Fy.

Lemma 3.8. Suppose that X is a Banach space. Let p € [1,00)
with q satisfying 1/p+ 1/q = 1. Assume that (2, F,p) is a measure
space with Qg a o-finite measurable subset of Q and with po defined
as in the preceding paragraph. Then, for any g € L%.(Qo,1,X), the
mapping f — fﬂ[](f(w),g(w)) du(w) is a continuous linear functional
on LP(Q, p, X).

Proof. Consider the operator T : LP(Q,u,X) — LP(Qo, po, X)
defined by T(f) = flg,. Clearly, T is bounded with norm 1, and
the result follows. O

Suppose Y is a Banach space. If (Z,7) is a topological space, a
function f : Z — Y is said to be strongly continuous if f is continuous
into Y equipped with the norm topology. If f is a continuous mapping
into Y equipped with the weak topology, f is said to be weakly
continuous.

Following the terminology used in [9], when u — S, is a representa-
tion of a locally compact abelian group G into a Banach space Y,y € Y
is called a strong continuous vector for the representation if u +— S,y is
a strongly continuous function on G. Similarly, y € Y is called a weak
continuous vector for S if u — S,y is a weakly continuous function on
G. A representation is said to be strongly continuous if every vector of
Y is a strong continuous vector for the representation. We now proceed
to the main result of this section.
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Theorem 3.9. Let X be a Banach space. Suppose that G is a
locally compact abelian group and that (2, F,u) is a measure space.
Let p1,p2 € [1,00), and for j = 1,2, suppose that u — Sj. is a
representation of G on EPi such that a; = sup{||S;j .|| : v € G} < 0.
Suppose also that, for all f € EP* N EP? and all u € G, S14f = S2,uf-
Then, the representation u > Sy 4 is strongly continuous if and only if
u > Sy, s strongly continuous.

Proof. Without loss of generality, we will suppose that u — Sa,, is
strongly continuous. Let f € EP1NEP? and fix K a compact symmetric
neighborhood of the identity element for G. Let C = K + K, and let
J = {S2uf :u e C} C EPr N EP2. The set C is compact by [5,
Theorem I1.4.4], so J is norm-compact in EP2. Thus, there exists a
countable subset Jy = {S2,u, f : n € N} which is EP2-dense in J. It
follows that there exists an increasing sequence of y-measurable subsets
{Bi}321 C Q, each having finite measure, such that if Qy = U2, 5;,
each g € J vanishes p almost everywhere outside of 2g. The subspace
of EP* consisting of functions which are supported on 2y will be denoted
by E}*. We shall consider two cases.

Case 1. Suppose p; = 1. The proof is essentially the same as that
appearing in [1, Proposition 3.2] for the context of representations
acting on LP-spaces of scalar-valued functions. We sketch the details
in order to exhibit the adaptations required when the functions are
vector-valued.

We first show that u +— Sy, f is strongly measurable on C. It can
be shown that J is a separable metric space in the E'-metric using
an argument completely analogous to that used in the proof of [1,
Proposition 3.2]. So, by Pettis’s theorem [6, Theorem 7.5.10], it suffices
to prove that u — Sy, f is a weakly measurable mapping on C.

Let 6 € (E')*, and define 6y = 0| 1. By Theorem 3.4, there exists
¥ € LL.(Qo, X) such that, for all g € E},

(3.4) 0(g) = bulg) = / (9(w), () du(w).

Therefore, for all u € C, 0(S1,uf) = [ (S1,uf(w), ¥ (w)) du(w). The
dominated convergence theorem implies that, for each v € C, letting



82 N.H. ASMAR AND B.P. KELLY

¢j = ¢l/3j7

(3.5) lim (S1,uf ) dp = 60(S1,uf).

J—00 Qo

It is clear that, for each j € N, ¢; € U C L%.(Qo, o, X). Hence,
by Lemma 3.8, the mapping g — fﬂo (9,%;) dp belongs to (EP2)*.
From this point on, the proof is similar to that used in the context
of scalar-valued LP-spaces. The crucial point being that by (3.5) and
the hypotheses on S; ., the mapping u — 6(S1,.f) is the pointwise
limit of continuous functions on C'. Hence, it is A-measurable on C.
Since the argument holds for every 8 € (E')*, u — Sy, f is a weakly
measurable mapping on C'.

Having shown that u +— Sy, f is strongly measurable, an averaging
argument similar to that employed in [1, Proposition 3.2] can now be
applied to show that u — S}, f is strongly continuous at the identity of
G. Using translations in G, it then follows that uw — S, f is strongly
continuous on all of G. Therefore, every f € E! N EP? is a strong
continuous vector for u — S1 . Since E'NEP:2 is norm-dense in E! and
the representation u — S , is uniformly bounded, routine calculations
show that every f € E' is a strongly-continuous vector for Sj.

Case II. Suppose that 1 < p; < 00, and let g1 = p1/(p1 — 1). Choose
¢ € (EP1)*, and define ¢g = (f)\Egl so that ¢y € (ES')*. By Theorem
3.5, there exists h € LY. (0, o, X) such that, for all g € Ef*,

(3.6) 6(9) = dolg) = / (9(w), h(w)) du(w).

Since J C Ef*, (3.6) holds for all g € J.

Let e > 0 be given. By Lemma 3.7, there exists a sequence {h, }52, C
U such that h, — h in L%, (2, X) norm as n — co. For each u € C
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and for each n € N,

B(S1uf) — 6(f)] = \ [ sirman- [ inm dp‘

< ‘ [ (St o)
Qo

+ ‘ /Q (Sraf — fhn) du‘

+‘/Qo<f,hn—h>du‘-

Now (3.2) and the hypothesis that a; < oo together imply that (3.7)
does not exceed

(38)  (art DIl Lo (b — ho) + \ [ (108 = 1) du‘-

For ng sufficiently large, the first term of (3.8) is less than £/2. Since
f € EPrNEP2 and Sy, f = S, f for all u € G, we have that, for all
u € G,

(3.9) \ [ (it = fhgyan = | [ <52,uf—f,hno>du‘-

But hy,, € U C L%.(Qo, o, X). Thus, by Lemma 3.8, the mapping g —
fQo (9(w), hpy(w)) du(w) belongs to (EP2)*. Since the representation
u > Sy, is strongly continuous, there exists an open neighborhood V;
of the identity in G such that, for all u € V7,

(310) ‘ A <52,uf - fa hno> dp, < 5/2'

Let V5, be an nonvoid neighborhood for the identity of G such that
Vo € KNV, From (3.10) and the choice of ng, we get that for all
u € Vo, |¢(S1,uf) — #(f)| < e. Because the preceding argument holds
for any ¢ € (EP*)*, it follows that the mapping u — Si,f is weakly
continuous at the identity in G. It then follows that u — Sy .f is
weakly continuous on all of G using translations in G.
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The preceding argument holds for all f € EP* N EP2, Since EP* N EP?
is norm dense in EP1, it follows that EP* N EP? is a weakly dense subset
of EP consisting of weak continuous vectors for v — S ,,. By Theorem
1 in Chapter 1 of [9], there exists a norm-dense subset of EP? consisting
of strongly-continuous vector for u — Si ,. As in Case I, the existence
of such a set and the fact that the representation is uniformly bounded
imply that every f € EP! is a strongly-continuous vector for Sj. ]

Corollary 3.10. Let u — R, be a p-distributionally controlled
representation of G on E* N E®. If u Rq(fl) is strongly continuous
for some p; € [1,00), then u +— Ri(,p) is strongly continuous for all
p € [1,00).
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