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MATRIX INNER PRODUCT HAVING
A MATRIX SYMMETRIC SECOND
ORDER DIFFERENTIAL OPERATOR

ANTONIO J. DURAN

ABSTRACT. In this note we characterize those positive
definite matrices of measures whose matricial inner product
has a symmetric left-hand side matrix second order differential
operator.

1. Introduction. Let W be an N x N positive definite matrix of
measures (i.e., for any Borel set A C R, W(A) is a semi-definite positive
numerical matrix). We put (, )y for the matrix inner product defined
by W:

(P,Q)w = /RP(t) AW ()Q"(£) € My,
P,Q € Pnxn,

where we denote by My« n the space of numerical N x N matrices,
by Pyxny the space of N X N matrix polynomials, and by Q* the
Hermitian adjoint of Q.

(1.1)

Orthogonal matrix polynomials on the real line with respect to a
positive definite matrix of measures have been considered in detail
in M.G. Krein [12] or, more recently, by Aptekarev and Nikishin [1],
Geronimo [7], Sinap and Van Assche [14], Duran and Van Assche [6],
Duran and Lopez-Rodriguez [5] and Duran [3, 4]. In [3, 6], a very close
relationship between orthogonal matrix polynomials and scalar polyno-
mials satisfying a higher order recurrence relation has been established.
However, as far as the author knows, no general results concerning or-
thogonal matrix polynomials and differential equations are known (for
some examples of orthogonal matrix polynomials satisfying differential
equations, see [9, 10].

In this note we characterize those positive definite matrices of mea-
sures whose matrix inner product, defined as before, has a symmetric

This work has been partially supported by DGICYT ref. PB 90-0893.
Received by the editors on July 25, 1994, and in revised form on May 24, 1995.

Copyright ©1997 Rocky Mountain Mathematics Consortium

985



586 A.J. DURAN

left-hand side matrix second order differential operator of the form
lar = AsD" + Ay D' + AyD°.

In Section 2 of this paper we establish a relationship between the
existence of a symmetric left of right-hand side matrix second order
differential operator for the matrix inner product defined by W, the
existence of a second order differential equation which the sequence of
orthonormal matrix polynomials with respect to W satisfies, and the
existence of a recurrence formula for the moments of W.

In Section 3 we prove a characterization theorem, where by reducing
the problem to the scalar case, and by applying the well-known Bochner
classification theorem for sets of scalar orthogonal polynomials which
satisfy a second order differential equation (see [2] or [13]), we show
that the positive definite matrix of measures, for which a symmetric
left-hand side second order differential operator exists, are of the form
W = D*XD where D is a nonsingular matrix and X = vI, with
v a classical scalar weight, (i.e., v is some of the Jacobi, Hermite or
Laguerre weights up to a linear change of variable).

Finally, in Section 4 we show a counterexample which proves that the
classification theorem does not work for right-hand side second order
differential operators.

The difference in the behavior between left- and right-hand side is,
of course, due to the noncommutativity of the matrix product.

2. Differential and moment equations. In this section we prove
some general results showing the relationship between:

(i) (SO): the existence of a symmetric left of right-hand side matrix
second order differential operator for the matrix inner product defined
by the matrix of measures W,

(ii) (DE): the existence of a second order differential equation which
the orthogonal matrix polynomials with respect to W satisfy, and

(iii) (ME): the existence of a recurrence formula for the moments of
w.

In the scalar case the equivalence between these three properties
is straightforward, but the noncommutativity of the matrix product
makes the situation, in the matrix case, harder (for the relation between
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(SO), (DE) and (ME) for scalar orthogonal polynomials and differential
operators of higher order, see the important paper by H.L. Krall [11]).

First of all, we introduce some notations and definitions. The matrix
second order differential operator associated to the matrix functions
Ay, Ay, Ay is defined by

lop = D"Ay + D'A; + D° Ay right-hand side
lor, = AsD" + A\ D' + AyD® left-hand side.

We say that this operator is symmetric for the matrix inner product
(, ) defined in Py if (I2P, Q) = (P,13Q) for any matrix polynomials
P Q.

We assume that the positive matrix of measures W or, in short, the
matrix weight W, is nondegenerate, i.e., for any matrix polynomial

PZ£40,
(2.1) /RPdWP £0.

(Here and in the rest of this paper, we write 6 for the null matrix, the
size of which can be determined from the context. For instance, here 6
is the N X N null matrix.)

The moments of the matrix weight W are defined by pu, = [ t" dW (t),
n > 0, and they are Hermitian matrices. As in the scalar case,
it has been proved (see [11]) that a sequence of Hermitian matrices
(tn)n are the moments of a positive definite matrix of measures if
and only if (un), is positive definite, i.e., for any sequence of vectors
V9,V1,... € CN,

n
Z vipj+kvy >0, n=0,1,2,....
J,k=0

The nondegenerate condition (see (2.1)) implies that the equality holds
only for v, =6, n=0,1,....

A generalization of the Gram-Schmidt orthonormalization process for
the set
{ItI,¢*1,...}
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with respect to the matrix inner product ( , )y will give a set of
orthonormal matrix polynomials (P,), which satisfies

/Pn(t) AW () PL(E) = 6upl, nk=0,1,....

Moreover, P, (t) is a matrix polynomial of degree n, with nonsingular
leading coefficient.

We now prove the relationship between (SO) and (DE).

Lemma 2.1. If Iy is symmetric for { , Yw, then the sequence of
orthonormal matriz polynomaials with respect to W satisfies the matriz
second order differential equation

I5(P) =T,P,, n=0,1,...

for certain Hermitian matrices T'y,.

For ly g the converse is also true, but for ly 1, the converse is false.

Proof. We write l2(P,) = > _oLI'nxPs. Since ly is symmetric, we
have

Fn,k = <12(Pn)7Pk:>W = <Pn,lg(Pk;)>W =0 ifk< n,

and, for k =n, I'y,, =17, .

Now let us assume that (P,),, satisfy Iz g(P,) =TI, P, where T, are
Hermitian matrices. Since I';, are Hermitian we have (l2 g(P,,), Pm)w =
(Pryl2, rR(Pm))w. We now extend by linearity.

It is worthy to remark that to extend by linearity we need I g(C'P) =
Cly r(P) for any numerical matrix C' and any matrix polynomial P.
Since the matrix product is noncommutative, in general, I3 ,(CP) #
Cly,.(P). In Section 4, we will show a counterexample proving that
for Iz 1, the converse is false. O

From this proposition we deduce that if I is symmetric for { , )w,
then the matrix functions Ao, Ay, Ay are matrix polynomials of degree
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at most 2, 1, 0, respectively. Indeed, for n = 0,1,2, the differential
equation for the orthonormal polynomials gives (left-hand side)

Ao(t)Po(t) = ToPo(t)
Ay (t)P(t) + AgPi(t) =T1Pi(t)
As(t) Py (t) + AL Pi(t) + Ao Pa(t) = Do Pa(t).

Since Py(t), P;(t), Py (t) are nonsingular numerical matrices (they are
the leading coefficients of Py(t), Pi(t),2P>(t)), we have

Ao(t) = FO
Ay (t) = (DrPu(t) — AgPu(t))(P) (8
As(t) = (TaPa(t) — ALPy(t) — Ao Pa(t))(Py) ™1 ().

The result for the right-hand side can be proved in the same way.
We write Ag(t) = t2A272 + tA271 + A270 and Al(x) = tAl,l + AI,O

where A; ; are numerical matrices.

We now prove the relationship between (SO) and (ME).

Lemma 2.2. We assume Aop, = pn Ay, n > 0. If I is symmetric
for (, Yw, then the moments (pn)n of W satisfy the following equations

(2.2) (n—1)(Azopn + Az 1pin—1+ A2 opin—2
+ Ay 1y + Aropin—1) =0, n>1,

(2.3) Asopn + Ao 11+ A2 0ttn—2
= NnA;J + :unflA;,l + :un72A;,07 n 22,

(2.4) Arapin + Aropin-1 = pnAl 1 + pn-1479, n>1
For I3 g the converse is also true, but for lo 1, the converse is false.

Proof. The symmetry of [5 gives

(2.5) <l2(tnI),tmI>W = <tnI, lg(tml»w, n,m Z 0.
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‘We write

Bn+m = A2,2,Ufn+m + A2,1;ufn+m—1 + A2,0ﬂn+m—2a
Crtm = A1, 1ln+m + A1,0n+m—1,
Dn+m = A0/~Ln+m-

Then, from (2.5) we have the following moment equations:

(26) n(n — l)Bn+m + TLCn+m + Dn+m

=m(m-1)B;, . +mC,, +D; ., nm2>0.
For m = 0, we get
(2.7) n(n—1)B, + nC, + D,, = D},

and for n — 1, m = 1, we have (n — 1)(n — 2)B, + (n — 1)C,, + D,, =
C} + Dy. This and (2.7) give 2(n — 1)B, + C,, = —C}, i.e.,

1
* > .
B, ———42(71 1)(Cn+Cn), n>2

Hence we have B,, = B, n > 2, and so (2.3) follows.

By hypothesis, we have D,, = D;;. Hence, from (2.7), (2.2) and (2.4)
follow.

We finally prove the converse for Iy p. From (2.2) for n 4+ m, we get

(TL - 1)Bn+m + Cn+m + mBn+m = 97
(m - l)Bn+m + Cn+m + an+m =6.

And so we have
n(n —1)Buim +nChim = m(m — 1)Bpim + mChrgm.

From (2.3), (2.4) and the assumption, we deduce that (2.6) holds.
Hence, we have

<l27R(tnI),tmI>W = <tn,l27R(tmI)>W, n,m 2 0.

We now extend by linearity.
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In Section 4, we will show a counterexample proving that for I 7, the
converse is false. i

The equations for the moments, which have been found in the
previous lemma, can be written in terms of functional equations for
the matrix of measures W. Indeed, we can consider this matrix of
measures as an operator W acting on P,y by

<VV,P>:/dW(t)P*€MN><N, for P € Pyxn.
Given a matrix polynomial P, we define the operators PW, W P and
W' by
<PVV,Q>:/PdWQ*, fOI‘QEPNXN,

(WP,Q) = / AW(H)PQ*, for Q € Pyun,
and
(28) <W’7P> = _<I/V7 Pl>7 fOI‘ P S PN><N-

With these definitions, Lemma 2.2 can be rewritten as follows

Lemma 2.3. We assume AgW = WAS. If la is symmetric for
(, Yw, then W (as an operator acting on Py ) satisfies

(AW = AW,
(2.9) AW = WA
AW = WA

For I3 g the converse is also true, but for Iy 1, the converse is false.

3. Left-hand side differential operators. In this section we
establish the main result in this note, classifying those positive definite
matrices of measures whose matrix inner product has a symmetric left-
hand side second order differential operator.

We assume that W is a matrix weight for which a symmetric left-
hand side second order differential operator exists. First of all, we
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show that we can assume the first moment po of W equal to the
identity matrix and the second moment p; of W being a diagonal
matrix. Indeed, since pg is positive definite and p; is Hermitian, a
nonsingular matrix C exists such that C*poC is the identity matrix
and C*u;C is a diagonal matrix (see [8, p. 466]). We define a new
matrix weight X by X = C*WC. The first moment of X is the
identity matrix, and its second moment is a diagonal matrix. It will be
enough to prove that the operator [ , is also symmetric for X. Clearly,
(P,Q)x = (PC*,QC*)w for any matrix polynomials P,Q. Then we

have
(I2,.(P),Q)x =

= (P,l2,.(Q))x-

The following lemma will be the key to establish the classification
theorem

Lemma 3.1. Ifly 1, is symmetric for (, Yw, then the coefficients of
As, Ay and Ay must be the identity matriz up to scalar multiplicative
constants.

Proof. For a unitary matrix I' we define the operator
la,1,0(P) = I3, (T'P)

then we have

(lo,,r(P), Q)w = (I'"l2,(T'P), Q)w = I'"(I2,. (I'P), Q)w
=I"(IP,l2,1(Q))w = (P 12,.(Q))w.
But also
(l2,0,0(P), Q)w = (I"l2(I'P), Q)w = I'"(l2,.(I'P), 'Q)w T
=T"(TP,l5,.(TQ))wT = (P,T"l2, .(TQ))w
= (P,l2,L,r(Q)w-

So we have (P,l> .(Q) — l2,1,r(Q))w = 6 for any matrix polynomials
P, Q. Since for every matrix polynomial @, I3 .(Q) — l2.1,r(Q) is also



MATRIX INNER PRODUCT 593

a matrix polynomial, we conclude (see (2.1)) that for every matrix
polynomial @, lo1(Q) — l2,.,r(Q) = 0, and hence Ay = I'A(T,
A1 = F*AJ‘, A2 = F*AQF, which giVGS FAO = A()F, FAl = A1F,
IF'd; = AsI'. This means that the coefficients of A, A; and Ay
commute with any unitary matrix, so they must be the identity matrix
up to scalar multiplicative constants. u]

We are now ready to prove the classification theorem

Theorem 3.2. The following conditions are equivalent:

(i) W is a matriz weight whose matriz inner product defined as in
(1.1) has a symmetric left-hand side second order differential operator.

(ii) A nonsingular matriz D exists for which W = D*XD where
X =vl, with v a classical scalar weight (i.e., v is some of the Jacobi,
Hermite or Laguerre weights up to a linear change of variable).

Proof. (i) = (ii). Proceeding as before, we get a nonsingular matrix
D such that the first moment of the weight X = D*W D is the identity
matrix, and its second moment is a diagonal matrix. We write (pp)n
for the moments of X. Since the operator /s, is also symmetric for
the inner product defined by X, from Lemma 3.1 it follows that the
coefficients of Ay, A; and Ay must be the identity matrix up to scalar
multiplicative constants. Because Ay = I'y (I is the Hermitian matrix
which appears in Proposition 2.1), and I’y is Hermitian, we have that
Ay = agl, with ag € R. So the assumption in Lemma 2.2 holds. Let
us write Ai’j = a,-J-I, with aij € C.

Then we have
(31) (TL — ].)A272 + Al,l = ((TL — 1)02,2 + 04171)1.

We assume the following claim, which we prove later
Claim. For everyn > 1, (n — 1)as 2 + a1,1 # 0.

For n = 1 this gives a;;1 # 0. Then, from equation (2.2), for n = 1,
we get that p; = —aiiaw[, and so p; is the identity matrix up to a
multiplicative constant.
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Again, from equation (2.2), we have
(32) pu=—((n—Dazz+ai1) ' ((n— az1pn
+ (n — 1)az0pn—2 + a1,0pn—1)-
Taking into account that the moments pg, p; are the identity matrix up

to scalar multiplicative constants, it follows that a sequence of numbers
(bn)n exists for which p, = by, I, n > 0.

It is straightforward to see that the scalar sequence (b,,), is positive
definite. Let v be a positive measure for which b, = [ t"dv(t), n > 0.
The equation (3.2) gives
(32) bn = 7((77, — 1)a272 + (L171)71((n - 1)(1271[)”_1

+ (n — 1)azobp—2 + a1,0bn—1).
And this is equivalent to the symmetry of the second order differential
operator defined by
(ag2t? + azat +az0)D" + (a1 1t + a1 O)Dl

with respect to the scalar inner product (p, q) f p(t dl/ (t). To
finish the proof, we apply the classical Bochner Cl&SSlﬁcatlon theorem
for orthogonal polynomial sets which satisfy a second order differential
equation (cf. [2] or [3]).

We finally prove the claim. Let us consider the Hermitian matrices
T,,, n > 0, which appear in Proposition 1.1. Since lz 1,(P,) = T', Py,
and the leading coefficient of P, is a nonsingular matrix, we have that
(33) Fn = 7’L(7’L - 1)A272 + nALl + Ao.

Suppose that, for certain n > 1, ((n — l)az2 + a11) = 0, ie,
(n —1)A22 4+ A11 = 0. From (3.3) we have I, = Ay. Then, for
any k > 0,

Ao / Po(t) dW ()P (1)

-T, / Po(t) dW(8) P (%)

= / (A2(1) Py (1) + Ar(1) Py (1) + Ao Po(t)) dW (£) PL(2).
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Hence, for any k& > 0, we get
0= [(A0PL(0) + Ax(OPL) AW (WP )

Since the coefficients of A; and A; are the identity matrix up to
multiplicative constants, they commutate with any matrix, so we have

0= /(Prll'(t)A2(t) + P (t)Ax (1)) dW (t) P (1)
= [ Eraa aw B0 + [ P40 w0 F ).
Taking into account the equations (2.9), we have
6 / PY(8) As(t) dW (£) P2 (8)
(3.4)
+ / PL(6)(As(t) dW ()Y PL(), k> 0.

We now prove that, for any matrix of measures Z and any matrix
polynomials P and @, then

(3.5) / (P(dZ) + P dZ)Q" = / (Pdz)Q".

Indeed, it will be enough to prove this equality for Q(t) = t"I, n > 0.
From the definition (2.8) we have that

/(PdZ)’t"I = —/nt"—lpdz
__ / (t"PY — " P')dZ
__ / (t"PY dZ + / P 47
_ / Pz + / P 47
= / P(dZ)'t"] + / P'dZt 1.
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Hence, from (3.4) and (3.5), we have
6= / (Ba(t) (AW (1)) PL(1), K > 0.

Since the sequence (Py)y is a basis in Py, we conclude that as an
operator defined in Py, (Pn(t)' (A2W(¢))’ = 0. Taking into account
the definition 2.8, we have that P,(t)'A2W(t) = 0. Since P, A, is
a polynomial, the condition (2.1) gives that P/ A; = 6. Since the
coefficients of A, are the identity matrix up to scalar multiplicative
constants, and A # 6, we conclude that

(3.6) P.=9.

Since n > 1, (3.6) is a contradiction, and the claim is proved.

The proof of (ii) < (i) is straightforward from the fact (proved at the
beginning of this section) that if [5 7, is symmetric for the inner product
defined by W, so is for the inner product defined by C*WC(C, for any
nonsingular matrix C. o

APPENDIX

In this section we show that the classification result, which has been
proved in the previous section (Theorem 3.2), does not work for right-
hand side second order differential operators. Indeed, we take the
weight

W(t) = <eo 6_(t_1)2> y Cl,b>0, a;éb,

and the matrix polynomials Ay = I,

A = <_02t fz(tof 1)>’

and Ay = 0. Since the conditions of Lemma 2.3 are fulfilled, the right-
hand side differential operator defined by Ao, A; and Ay is symmetric
for the inner product defined by W. But the weight W is not of the
form given in Theorem 3.2.

Moreover, this is a counterexample to show that the converse of
Lemmas 2.1, 2.2 and 2.3 is not true for a left-hand side second order



MATRIX INNER PRODUCT 597

differential operator. Indeed, this weight satisfies the condition of
Lemma 2.3, and so its moments satisfy the condition of Lemma 2.2; it
is also straightforward to see that the sequence of orthonormal matrix
polynomials for this weight satisfies a second order differential equation,
but the left-hand side differential operator defined by Az, A1, Ag is not
symmetric for the inner product defined by W, because W is not of the
form given in Theorem 3.2 (ii).

As the last result in this note, we show that the example given in
this Section is essentially the only possible when A; is a nonsingular
constant and Ag is the identity matrix up to a multiplicative constant:

Proposition 4.1. Let W be a matriz weight whose matriz inner
product defined as in (1.1) has a symmetric right-hand side second order
differential operator for which As is a nonsingular numerical matrix
and Ag is the identity matriz up to a multiplicative constant. Then
a nonsingular matriz D exists for which W = D*XD, where X 1is
a diagonal matriz whose entries in the diagonal are classical Hermite
weights up to a linear change of variables (possibly a different change
in every entry).

To prove this proposition, we need the following lemma

Lemma 4.2. In the hypothesis of Lemma 2.2, if A1 is a singular
matric and v is an eigenvector of A1 1 associated to 0, then v is also
an eigenvector of the matrices Az 2, A1, A2 and Ay associated to

0.

Proof of Lemma 4.2. By hypothesis we have vA;; = 6 and so,
from the moment equation (2.2) for n = 1, we have vA; oup = 0,
since the matrix pg is positive definite, and hence nonsingular, we have

UA1,0 =40.
The moment equation (2.2) for n = 2, 3,4 gives that

V(A opin + Ao 1pin—1 + Ao opin—2) =0, n=2,34.
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We can write these equations as follows:

Ko K1 p2 A3 gv*
(’UA270 ’UA2’1 ’I)Az’z ) M1 M2 U3 Ag’lv* = 9

K2 3 Ha Aj pu”

Since the matrix

Ho H1 M2
H1 o p2 M3
K2 K3 M4

is positive definite, we get vAz 9 =0, vAs; = 6 and vA3 2 = 6, and the
lemma is proved. a

Proof of Proposition 4.1. We know that Ay = I'y (see Proposition
2.1). Since T'g is Hermitian, we have that Ay is the identity matrix
up to a real multiplicative constant. By using Proposition 2.1, we can
assume Ag = 0. So the assumption of Lemma 2.2 is fulfilled.

First of all we show that we can assume the first moment of W
to be the identity matrix. Indeed, we take the polynomials Q,(t) =
P,(t)Py 1(t), n > 0, which are orthonormal with respect to the matrix
weight X = PoWF§. It is straightforward to see that the sequence
(Qn)n satisfies the matrix second order differential equation

Qn(PoA2Py ") + @), (PoA1 Py ") =TnQy.

Hence Lemma 2.2 gives that the right-hand side second order differen-
tial operator

log = D"(PyAsPy ") + D' (Py Ao Py Y)

is symmetric for the matrix inner product defined by X. But it is
clear that the first moment of X is the identity matrix. We write
Bg = (P[)AQPD_I), B1 = (P()AlPO_l), Bi,j = (P()AL]'PD_I) and (pn)n for
the moment sequence of X. We remark that since A, is a nonsingular
constant matrix, so is Bs.

From Lemma 4.2, the nonsingularity of the matrix By implies the
nonsingularity of the matrix By ;. We write the moment equation (2.2)
as follows:

(41) (0 1)B{!Bsopas + pu + BriBiopa_s = 0.
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We will prove that the moments (p,), and the matrix By %3270 and
B;%BLO commute.

For n = 1, (4.1) automatically gives that Bi%BLO = —p1, and so
By B is Hermitian. Now (4.1) for n = 2 gives

Bi1Bao = —p2+p3,

and so Bi%Bgyo is also Hermitian. We now prove that Bi%Bg,o and
Bi%Blyo commute. It will be enough to prove that p; and ps also
commute. But (4.1) for n = 3, and the formulas for B;%Bzo and
By, %BI,O give

—2p2p1 + 27 + p3 — p1p2 = 0,
and from here it is easy to conclude that p; and ps commute.

The equation (4.1) shows that all the Hermitian matrices B, %BQ,O,
Bi%Blyo and p,, n > 0 commute. So they can be diagonalized
by the same unitary matrix C. We write B;%Bzo = C*"Dy,C,
Bi%Blyo = C*"D;,C and p, = C*T,,C, where D5, Dy and T;, are
diagonal matrices. Then, from (4.1), we get

(42) (TL - 1)D270Tn_2 + Tn + D170Tn_1 =40.

We take the sequences in the diagonal of T7,, i.e., (T k)n, kK =1,... ,N.
It is clear that all these sequences are positive definite. We write vy, for
the positive measure satisfying ft" dvy =Ty k5, 1 > 0.

From (4.2) we deduce that the moments (T, 1), satisfy the moment
equation

(n— 1)D20k

1yl

kIn—2kk + Tnkr + DiokeTn1kr =0,
which implies that the second order differential operator
D5 ok x D" + (z + D1 okir)D',
is symmetric for the scalar inner product defined by v, k =1,...,N.

Again, from the Bochner classification theorem, we deduce that the
measure v, are Hermite weights up to linear changes of variable,
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possibly a different change for every k. And so the proof is finished.
]
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