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QUASI-MEASURES ON
COMPLETELY REGULAR SPACES

JOHN P. BOARDMAN

ABSTRACT. Let X be a completely regular space. We give
definitions of a Baire quasi-measure on X and a quasi-state on
Cp(X), the space of bounded, real-valued continuous functions
on X. A representation theorem is developed for quasi-states
on Cp(X) in terms of Baire quasi-measures on X. We also
define various notions of smoothness for quasi-measures and
quasi-states, and then we furnish examples which demonstrate
the different types of smoothness. Finally, by considering the
space X to be embedded in its Stone-Cech compactification
X, the smoothness of a Baire quasi-measure g on X is
characterized by the behavior of g, the corresponding Baire
quasi-measure on SX.

1. Introduction. The theory of quasi-measures evolved from the
study of certain nonlinear functionals (quasi-states) on commutative
C*-algebras. The goal here is to extend to completely regular spaces
the theory of quasi-measures on compact Hausdorff spaces initiated by
J. Aarnes [1]. For definitions and results regarding quasi-measures on
compact Hausdorff spaces the reader is encouraged to consult [1, 2].
Our standard guide to work in topological measure theory is the survey
paper by Wheeler [11].

One of the main goals of this paper is to develop a representation for
quasi-states on Cp(X) in terms of Baire quasi-measures on X. This
is accomplished by generalizing results of Aarnes in [1] to completely
regular spaces. We then state definitions of various types of smoothness
for quasi-measures and quasi-states. Then, following work done by
Varadarajan [10] for ordinary Baire measures, we demonstrate the
connection between the smoothness of a Baire quasi-measure and the
smoothness of its corresponding quasi-state.

Finally, using the techniques of Knowles [6], we characterize the
smoothness of a Baire quasi-measure p on X by the behavior of i, the
unique Baire quasi-measure on $X corresponding to u. In Section 2
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and Section 3 we present the work of J. Aarnes on quasi-states and
quasi-measures [1, pp. 41-56] in the completely regular setting. We
omit those proofs which follow exactly as in [1].

This work constitutes a portion of the author’s doctoral dissertation
at Northern Illinois University [4]. The author would like to thank
Robert Wheeler and the referee for their helpful suggestions.

2. Definition and basic properties of a Baire quasi-measure.
Throughout this paper X will denote a completely regular Hausdorff
space. A subset Z of X is called a zero set if and only if it has the form
Z = f~10), where f € Cp(X). A subset U of X is called a cozero set
if and only if it has the form U = f 1(R\{0}), where f € C,(X). We
reserve the letters Z and U to refer only to zero sets and cozero sets.
The algebra of Baire sets is the least algebra of sets which contains the
zero sets. It is denoted Ba*(X). The algebra of Borel sets is the least
algebra of sets which contains the closed sets. It is denoted Bo*(X).
For a subset A C X we write A < f if f € Cby(X), f(A) =1 and
0<f<1.

A positive Baire measure p on a completely regular space X is a
nonnegative, finite, finitely additive set function on Ba*(X) which is
zero-set regular (if A € Ba"(X), pu(A4) = sup{p(Z) : Z C A}). A
(signed) Baire measure is the difference of two positive Baire measures.

For a completely regular space X, let Z(X) and U(X) denote the
collections of zero sets and cozero sets, respectively, or simply Z and
U when no confusion will arise. Also, let A =Z UU.

Definition 2.1. A real-valued, nonnegative function px on A is called
a Baire quasi-measure on X if the following conditions are satisfied:

(1) u(2) + (X\2Z) = p(X), Z € Z;

(2) 71 CZy = /,L(Zl) < [L(Zz), Zl,ZQ c Z,

(3) Z1\NZy =0 = /J,(Z]_ U ZQ) = /,I,(Zl) + /,I,(Zg), Z1,729 € Z;
(4) wU) =sup{u(2): Z CU;Z € Z} for al U € U.

For convenience, we assume that p(X) = 1.

A similar definition, using closed and open sets, can be given for a
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Borel quasi-measure on X.

Proposition 2.2 [1, 2.1]. Let u be a Baire quasi-measure on X .

(a) u(2) =0;
(b) AC B = u(A) < u(B) for all A,B € A;
(c) If Ay, Ay, ..., A, are mutually disjoint members of A whose union

belongs to A, then
M( U Ai) = ZM(Ai);
i=1 i=1
(@) w(Z)=ind{pu(U): ZCUUeU} forall Z € Z.

A natural question which arises at this point is: What is the relation-
ship between Baire quasi-measures on X and ordinary Baire measures
on X? Just as in the case of (Borel) quasi-measures, the notion of a
Baire quasi-measure is truly a generalization of that of a Baire measure.
In other words, a Baire quasi-measure is not necessarily the restriction
to A of a Baire measure. In Section 7 an example will be given of
a Baire quasi-measure on R? which is not subadditive (Example 7.3).
If a Baire quasi-measure p on X is subadditive, then it has a unique
extension to a Baire measure v on X as stated later in Theorem 4.4.

3. Definition and basic properties of a quasi-state. For
f € Cp(X) we let A(f) denote the smallest uniformly closed subalgebra
of Cp(X) containing f and 1 (the function identically equal to one on
X).

Definition 3.1. A real-valued function p on Cy(X) is called a quasi-
state if the following conditions are satisfied:

(i) plg) 2 0if g 20, g € Cop(X);
(ii) p is linear on A(f) for each f € Cp(X);
(iii) p(1) = 1.

Lemma 3.2 [1, 4.1]. Let p be a quasi-state on Cy(X), and let 0 < f,
g € Cyp(X). Then
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(a) p(f +9) = p(f) +plg) if f-9=0;
(b) p(f) < plg) if f < g;
(c) lp(f) = p(@) < IIf = gl-

Let u be a Baire quasi-measure on X, and let f € Cp(X) be arbitrary.
We establish the following notation: Sp (f) = f(X) is the closure in R
of the range of f, ZI={ze X : f(z)>a},Vi={zc X: f(z)>al,
fla) = u(Z]), f(a) = (V).

We have Zf € Z, Vf € U, so the functions f and f are well defined
for all real . If Sp(f) C [)\1,)\2] then f and f map [A1, Az into [0, 1],
they are both decreasing, f < f, f(A1) =1, f(A2) = 0.

Proposition 3.3 [1, 3.1]. Let f € Cy(X) be arbitrary.
(a) f is continuous at o if and only if f is continuous at a.

(b) f and f coincide at every mutual point of continuity, hence at all
but countably many points of R.

Proof. Let @ € R be fixed. If 8 < v < a3 < a, we have
ngl - V,Yf - Zg. Therefore

and

hold. Since f and f are both monotone, (a) follows. From the proof
of (a), we see that f and f must coincide at every mutual point of
continuity since each is monotone. As for the second part of (b), f and
f must be continuous at all but countably many points of R since the
jumps at points of discontinuity must be summable. ]

Remark. In the case when X is compact, Aarnes proved that f is
continuous from the left and f is continuous from the right. In the
setting of a completely regular space this is not necessarily true, as we
shall see in the following example.
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Example 3.4. Let X = (0,1] and define f € Cy(X) as follows:
f(z)=0forallz >1/2, f(0") =1 and f is defined linearly on (0, 1/2].
Consider X to be embedded in its Stone-Cech compactification 8X.
Now the finite intersection property implies

mCl,BX(O, 1/”] # 9,

n

so let pu = d,, where zg € N,clgx(0,1/n], o ¢ X. It is now easy to
check that f(a) =1 for all @ < 1 and f(1) = 0. Therefore f is not
left-continuous.

From this example we can also see that f is not necessarily the
cumulative distribution function of a regular Borel measure. It is
for this reason that we are unable to retain the spectral theory and
functional calculus that Aarnes developed in the compact setting.

4. The representation theorem for quasi-states. In the
following theorem we show that any Baire quasi-measure determines
a quasi-state, and that all quasi-states arise in this way. We keep the
notation and conventions of the two preceding sections. Compare the
following with Theorem 4.1 of [1].

Theorem 4.1. Let X be a completely reqular space.

(a) To each quasi-measure p in X satisfying p(X) = 1, there corre-
sponds a unique quasi-state p such that, for any f € Cy(X), we have

(1) o) =n+ [ f(a)da,

A1

where [A1, A2] 2 Sp(f).

(b) Conwversely, for any quasi-state p on Cy(X) there is a unique
quasi-measure p on X satisfying u(X) = 1 such that p is the quasi-
state corresponding to . Specifically we have, for any zero set Z C X:

(2) w(Z2) =inf{p(f): Z < f; f € Cp(X)}-
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Proof. Part (a) and most of part (b) can be proven in much the same
manner as the compact case. Complete details are given in [4]. For part
(b), let p be a quasi-state on Cp(X). Using the techniques of Aarnes
it can be shown that p, as defined in (2), is a Baire quasi-measure on
X. Now suppose p' is the quasi-state on Cy(X) corresponding to p as
described in part (a). It is left to show that p' = p.

We first set notation to be used in the following two lemmas. Let
f € Cp(X) be arbitrary. Choose A1, A2 € R such that (A1, A2) 2 Sp (f);
in this way [A1, A2] 2 Sp (f) and f is continuous at A; and Ag. Then

A2

PN =M+ [ fla)da

A1

On the other hand pf : ¢ — p(¢(f)) is a positive linear functional
on C([A1,A2]) and determines a unique regular Borel measure vy on
[A1, A2] such that

p(B())) = ps(6) = /S | dla) ()

Let F denote the cumulative distribution function of v so that F(t) =
vf((—oo,t]) for t € R. It is easy to show that supp (v¢) C Sp(f). By
virtue of this fact, we have

F(A2) = vp((=00, A2]) = v([A1, Ad]) = p(¢(f)) = p(1) = 1

where ¢(t) = 1 for all ¢.

Lemma 4.2. Let A\ < ag < g such that f(a) 18 continuous at ay.
Then

vi([ao, A2]) = f (o).

Proof. For each n = 1,2,..., let ¢, be a continuous function on
[A1, A2] satisfying 0 < ¢, < 1, dn(a@) =0 for @ < a9 —1/n and ¢, (o) =
1 for a > ap. Then ¢,(f)(z) = ¢n(f(z)) = 1 for f(z) > ap and
¢n(f)(z) =0 when f(z) < ag — 1/n. Hence ZI < ¢n(f) < z!

ap—1/n"
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It now follows from the definition of p from p in equation (2) and
Lemma 3.2(b) that

wzL,) < p(dn(f) < m(ZI )

By assumption f is continuous at ap which implies lim,,_, o p(on(f)) =

)
f(ap). On the other hand, we clearly have v ([ag, Ao]) =limy, 00 pf (Bn)-
]

Lemma 4.3. The following three conditions are equivalent:
(1) f is continuous at a;

(2) F is continuous at ap;

3) vs({ao}) = 0.

In addition, each of these implies:
(4) plz € X : f(z) = ap} =0.

Proof. It is straightforward to show the equivalence of (1)—(3) using
the additivity properties of the regular Borel measure v and the fact
that F is necessarily right-continuous.

To complete the proof it is enough to show that (1) = (4). Suppose f
is continuous at a; then f(ag) = f(ap) by Proposition 3.3. Therefore,

by Proposition 2.2(c),
p{z € X : f(z) = ao} = u(Z{,\VY,)
— p{z € X f(z) > ao}

Remark. In the lemma above, (4) does not necessarily imply (1)—(3).
For instance, (4) does not insure (1) as demonstrated in Example 3.4.

As defined previously, p(é(1)) = pr(¢) = Js, s 6(@) dvy(a). By
letting ¢(t) = t, we get p(o(f)) = p(f) = fsp(f)aduf(a). This
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integral is an ordinary Riemann-Stieltjes integral over the interval
Sp (f). Applying the remarks after the statement of Proposition 3.2
in [1], we obtain

A2

(3) p(f) = A2 +/ —F(a)da.

A1

Finally we will show p’ = p. By Lemmas 4.2 and 4.3, along with the
fact that F(A2) = 1, we have

flao) = vi(lao, Aa]) = F(A2) = Flag ) =1 - Flayg)

for all A1 < ag < Ay with f continuous at ag. Also, by Lemma 4.3, we
know that f is continuous at «ayp if and only if F' is continuous at ay.
Therefore, for all A\; < ap < Ay with f continuous at «y,

f(a()) =1- F(ao).

Finally, using equation (3) and the fact that f is continuous at all but
a countable number of a € [A1, A2], it can be shown that p'(f) = p(f).
Since f € Cp(X) was arbitrary, p = p’. The uniqueness of y in part (b)
follows as in [1].

Remark. The representation theorem presented here is indeed a
generalization of the Alexandroff representation theorem [11, Theorem
5.1], i.e., a quasi-state on C(X) is linear if and only if the corresponding
Baire quasi-measure extends to a measure on the entire Baire algebra
Ba*(X). In that way, Example 7.3 also provides us with a quasi-state
on Cy(X) which is not linear.

In Section 6 of [1] Aarnes provides an example of a quasi-measure on
the unit square in R? which is not subadditive, thus demonstrating that
some quasi-measures are not the restrictions of ordinary measures. In
the next theorem we note that subadditivity is not only necessary, but
also sufficient to establishing the existence of an extension of a Baire
quasi-measure to the entire Baire algebra.

This result is due to Wheeler [12, 3.1, 3.3] for Borel quasi-measures
and is stated here for the convenience of the reader.



QUASI-MEASURES 455

Theorem 4.4 [12, 3.1, 3.3]. Let X be a completely regular space.
Let v be a Baire quasi-measure on X and let p be the quasi-state on
Cy(X) corresponding to . Then the following are equivalent:

(1) p is linear (hence a positive linear functional on Cyp(X));

(2) If f,9 2 0 in Cp(X), then p(f + g) < p(f) + p(9);
(3) ’Lf Zl, Zy € Z, then ﬂ(Zl U Zz) < /L(Zl) + M(Zz),
(4) if Ur, Uz €U, then p(Uy UUz) < p(Ur) + p(U2);

)

(5) pu admits an extension to a finitely-additive zero-set regqular mea-
sure v on the Baire algebra of X (the extension is unique, by regularity).

Remark. In [12] Wheeler presents his result for normal spaces and
Borel quasi-measures; the proof is virtually identical. For this and other
results about quasi-measures on normal spaces, consult [12].

It is often useful to extend a quasi-measure defined on a subspace
to a quasi-measure on the entire space. This arises in a couple of our
examples in Section 7 and the next result addresses this issue.

Theorem 4.5. Let X be a normal space. If A is a closed subset of
X and p is a Borel quasi-measure on A, then A(B) = p(B N A) is a
Borel quasi-measure on X.

Proof. Properties (1), (2) and (3) of a quasi-measure are immediate.
If U is open in X and € > 0, choose a closed (in A) subset F of UN A
such that u(UNA) < pu(F) +e. But F is closed in X (since A is), and
A(U) < A(F) + ¢. Hence (4) holds. o

Notice that the theorem is stated for spaces X which are normal.
This method of proof cannot be easily extended to the completely
regular setting since, for X completely regular, the closure in X of
aset Z € Z(A) is not necessarily a zero set of X.

5. Smoothness properties of quasi-measures. Let X be a com-
pletely regular space. Throughout this section we use the term quasi-
measure to mean either a Baire quasi-measure or a Borel quasi-measure,
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defined on the open and closed subsets of X as in Definition 2.1.

Definition 5.1. Let u be a Baire quasi-measure on X and A C X.
Then
we(A) =sup{u(2): Z C A, Z e Z}

is called the inner quasi-measure of .

Definition 5.2. Let p be a Baire quasi-measure on X and B C X.
Then

p*(B) =inf{p(U):U 2 B,U € U}

is called the outer quasi-measure of p.

Similar definitions can be constructed for Borel quasi-measures by
replacing the zero sets Z and the cozero sets U with closed sets and
open sets, respectively.

Definition 5.3. A quasi-measure g on X is said to be:

(i) o-smooth if whenever {Z,,} is a sequence of zero sets with Z,, | &
then p(Z,) — 0;

(ii) 7-smooth if whenever {Z,} is a net of zero sets with Z,, | @ then
1(Za) = 0;

(iii) tight if for any § > 0 there exists a compact subset K of X such
that p.(X\K) <4.

Remark. In contrast to the setting of ordinary Baire measures, it
is not clear whether a set function demonstrating the o-smoothness
property and satisfying (1)—(3) of Definition 2.1 necessarily satisfies
(4) of Definition 2.1, the regularity condition. More can be said when
a stronger smoothness property is assumed. See the remark after
Definition 5.10.

Definition 5.4. A quasi-state p on Cp(X) is said to be:

(i) o-smooth if whenever {f,} is a sequence in Cy(X) with f, | 0
then p(fa) - 0
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(ii) T-smooth if whenever {f,} is a net in Cp(X) with f, | O then
p(fe) = 0;

(iii) tight if whenever {f,} is a net in Cp(X) such that ||fy]| < 1 for
all & and f, — 0 uniformly on compact subsets of X then p(f,) — 0.

Before getting to the first theorem of this section we introduce the
concept of a regular sequence. We say that a sequence {Z,} is regular
if the following two conditions are satisfied: (1) Z, T X and (2) for any
n there exists a cozero set U,, such that Z,, C U,, C Z,,41.

The following theorem is essentially due to Varadarajan.

Theorem 5.5 [10, pp. 171-172]. If u is a quasi-measure such that
for any regular sequence {Z,}, u(X\Z,) — 0 as n — oo, then p is
o-smooth.

Theorem 5.6. A quasi-state p is o-smooth if and only if its
corresponding quasi-measure [ S 0-5mooth.

Proof. =. Let p be a o-smooth quasi-state and {Z,} a regular
sequence. By [10, Theorem 14] there is a sequence {f,,} in Cp(X) such
that f, 1 0,0 < fn, < land X\Zni1 C f;'(1). So p(fn) > (X \Zn 1)
by Theorem 4.1(a) and since p is o-smooth, p(f,) — 0 as n — co. Thus
it follows that u(X\Z,) — 0 as n — oo.

<. Let {fn} C Cu(X) so that f, | 0. Let Ay € R such that
Sp (f1) C [0, A2] which implies Sp (f,) C [0, A2] for all n. By Theorem

4.1,
Az

p(fn) = fn(a) da.

0
Let € > 0 be given. Since 0 < fn < 1 for all n, we have

€ Ao R
o) = / fr@das [ fi(a)da

Ao R
<e+ fn(a) da.

€
Fix a € [g,A2] and let Z* = {z € X : f,(z) > a}. Now Z | @
as n — 00, so u(Z%) — 0 as n — oo since p is o-smooth. Therefore
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fa(a) = 0 as n — oo for all a € [g, \y]. By the Lebesgue dominated
convergence theorem,

A2 " )\2 ~
lim fn(a)da = / lim f,(a)da=0.
n— oo e e n— oo

Thus lim, 00 p(frn) < lim,oo(e + f:\z fn (a)da) = e. Therefore,
lim,, o p(frn) = 0 since € was arbitrary. a

In the second half of the proof above we split the definite integral
0)‘2 fn(c) da into the sum of two definite integrals, namely [ fn () dor

and f:‘z fn(a)da. This is the only significant difference between our
proof and that of Varadarajan for ordinary Baire measures [10, p.
172]. This technique allows us to use Varadarajan’s arguments for
the following two theorems so we omit the proofs.

Theorem 5.7. A quasi-state p is T-smooth if and only if its
corresponding quast-measure Qi 1S T-smooth.

Theorem 5.8. A quasi-state p is tight if and only if its corresponding
quasi-measure | is tight.

Let OM,(X), QM. (X) and QM,(X) denote the spaces of o-smooth
quasi-measures, T-smooth quasi-measures and tight quasi-measures,
respectively. We have

OM,(X) C OM,(X) C QMo (X) C OM(X).

The first inclusion is a consequence of Dini’s theorem, which states
that a decreasing net {f,} in Cy(X) tends to zero if and only if it
tends to zero uniformly on compact subsets of X. The other inclusions
are obvious.

At this point we mention some difficulties which may arise in the
case of quasi-measures that do not appear in the theory of ordinary
measures. Because of the lack of linearity of quasi-states it is still
unknown whether f,, | f necessarily implies p(f,) — p(f) for every o-
smooth quasi-state p. A similar problem arises for 7-smoothness. We
therefore make the following definitions with this uncertainty in mind.
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Definition 5.9. A quasi-measure p is strongly o-smooth if and only
if Z,, | Z implies u(Z,) — pu(2).

Definition 5.10. A quasi-measure p is strongly T-smooth if and only
if Z, | Z implies u(Zy) — p(2).

Remark. It is easy to show that a set function which is strongly
o-smooth and which satisfies (1)—(3) of Definition 2.1 is necessarily a
Baire quasi-measure, i.e., satisfies condition (4) of Definition 2.1.

Let QM s, and QMg denote the spaces of strongly o-smooth quasi-
measures and strongly 7-smooth quasi-measures, respectively.

Definition 5.11. A quasi-state p is strongly o-smooth if and only if
fn 4 f implies p(frn) — p(f)-

Definition 5.12. A quasi-state p is strongly 7-smooth if and only if
fo L f implies p(fo) = p(f)-

Here all functions f,, fo and f are assumed to belong to Cp(X).

Theorem 5.13. A quasi-state p is strongly o-smooth if and only if
its corresponding quasi-measure i is strongly o-smooth.

Proof. =. Let Z, | Z. Let ¢ > 0 and choose f € Cy(X),
0 < f <1, flZ = 1. For each n, choose a sequence of functions
{ggn)}fil in Cp(X) with the following properties: (1) 0 < gl(n) <1
for every i, (2) g§")|Zn = 1, and (3) gl(n) l Xz, as i — oo. Let
hy = min{gg),g,(f),... ,g&")}, n = 1,2,.... Then h, | Xz and so
[max(hy,, f)] } f. Since p is strongly o-smooth, p(h, V f) = p(f).

Now Z, < hy, and so u(Z,) < p(h,) < p(hn V f), which implies
that lim, e (Z,) < p(f). This holds for any f > Z, and so
limy, 00 u(Zn) < p(Z). Thus lim, o p(Zn) = p(2).
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<. Let f, | f. If t € R, then

(e o]

{reX: f(zx) >t} = ﬂ{azeX:fn(x)zt}
n=1
so that (since p is strongly o-smooth) f,(¢) | f(t) as n — co. Choose
A1 < Az such that Sp (f) UUSZ1Sp (fr) € [A1, A2]. Then

Az
s =M+ [ ey

A1
Az .
= lim A\ + fa(t)dt
n—r0o0 Al
= lim p(fn)
by the bounded convergence theorem. o

We do not know if the analogous result for strong 7-smoothness is
valid.

In the case of ordinary measures, the space of o-smooth measures
is the same as the space of strongly o-smooth measures. Also the
space of 7-smooth measures is the same as the space of strongly -
smooth measures. This can be seen most easily by considering the
linear functionals which correspond to the measures.

Theorem 5.14. If X is pseudocompact (i.e., every continuous real-
valued function on X is bounded), then every quasi-measure on X is
strongly o-smooth.

Proof. Let Z, | Z, and suppose lim,, u(Z,) = u(Z)+4, § > 0. Choose
a cozero set U D Z with u(U) < u(Z)+6/2. Then Z,N(X\U) | &, and
s0, by Theorem 16 of [10], there exists an ng such that Z,N(X\U) = @
for n > ng. Hence for n > ng, Z, C U so that u(Z,) < p(U) <
w(Z) + 6/2. This is a contradiction. i

Theorem 5.15. If X is discrete, then a quasi-measure on X is
o-smooth if and only if it is strongly o-smooth.
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Proof. Let p be a o-smooth quasi-measure on X, and let Z,, | Z.
Now X\Z is a zero set, since X is discrete, and Z, N (X\Z) | @, so
w(Z, N (X\Z)) — 0. Since Z, = ZU[Z, N(X\Z)], where the union is
disjoint and all sets here are zero sets, we have u(Z,) - u(Z). O

Remark. If X is discrete, then a quasi-measure on X is a finitely-
additive zero-set regular Baire measure, since every set is a zero set.
This yields an alternate proof of Theorem 5.15.

Theorem 5.16. If u € OMg,(X), then p is T-smooth if and only
if for all cozero covers {Uy} of X there exists a countable subcollection

{Uq, } such that u(X\ U2, Uy, ) =0.

Proof. Let p € QMg (X).

=. Let {Uy} cover X, U, € U for all o. Let F be the set containing
all finite unions of U,’s and order F by set inclusion. Now V3 1 X
where Vg € F for all 3. By 7-smoothness p(Vg) — u(X) = 1. So, for
each n, there exists a (3,, such that

/,L(Vgn) >1-—1/n.

Notice that U2, Vg, is actually a countable union of sets U,. So for
all n we have

u< U Vﬁn) > uw(Vg,) >1—1/n.
n=1
This implies that (U2, Vp,) =1 so, in fact, p(X\ Us2, V3,) = 0.
<. Let {Z4} C Z such that Z, | @. Then if we let U, = X\Z,
we have U, T X. By assumption there is a countable subcqllection
{Ua, }524 such that u(X\ U2, U,,) = 0. Now let V; = U,,_1U,,,,
t = 1,2,.... Then V; 1t U;Z,U,, so, by strong o-smoothness,
w(Vi) = p(Ue,U,,) = 1. Since for each V; we can find a U, D V;,
({U,} is an increasing family of sets) we have

lim p(Us) > lim p(V;) = 1.

Therefore, lim, u(U,) = 1 so lim, p(Z,) = 0. mi
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Corollary 5.17. If X is Lindeldf, then QM,(X) = QM (X).

Proof. If X is Lindel6f we can choose the countable subcollection to
be a cover of X so we only need o-smoothness in the proof of sufficiency
for the theorem. O

In the following theorem we consider a space X which is locally
compact and paracompact. Due to the nature of these spaces, the
question of smoothness of quasi-measures on X reduces to a cardinality
argument. Let Y be a discrete space with card (Y) = a. We say « is
not real-valued measurable if for every countably additive measure p
on the power set of Y with p({y}) =0forallyeY, p=0.

Theorem 5.18 (cf. [10, pp. 177-178]). Let X be a locally compact,
paracompact space. Then the following are equivalent:

(1) QM (X) = QM (X);

(2) if Y C X is closed and discrete, then card (Y') is not real-valued
measurable.

Proof. Let X = UgcaXqs, where each X, is o-compact, locally
compact and the X,’s are disjoint open subsets of X [5, p. 241]. We
will need the following lemma:

Lemma 5.19. With A as above, card (A) is not real-valued measur-
able if and only if for all closed discrete sets Y C X, card (Y) is not
real-valued measurable.

We leave the proof of this lemma to the reader and proceed with the
proof of the theorem.

(1) = (2). Assume QM,(X) = QM,(X). By the lemma it will be
enough to show that card (A) is not real-valued measurable. Let p be
a o-smooth measure defined on P(A) with u({a}) = 0 for each o € A.
Choose z, € X, for all a, and let Y = {z4}aca. For Z C Y define
MZ) = p(B) where Z = {xo}acp. As stated previously, A € M, (Y).
Now i : Y — X induces a Baire measure i(\) on X [8, 2.4]. Then i()\)
is 7-smooth and ¢(\)(X,) = 0 for all a, so i(A) = 0. Therefore, A =0,
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and so pu = 0.
(2) = (1). Let p € OM,(X). We need to show p € QM (X).

Claim. p(X) =75 c4u(Xa)

Define X : P(A) = R by

A(B) =u< U Xa>.

aEB

It is easy to show that A is nonnegative and finite. We will show that
A is countably additive. Suppose B C A, B the disjoint union of sets
Bn- Let D1 = A\B, D2 = (A\B) UBl, D3 = (A\B) UB1 @] BQ, etc.
Then D,, T A so that {Uaep, Xa} T X. By the o-smoothness of u,

nlLIIgQu( U Xa> = pu(X).

aeD,

This implies that

(9, 5) (Y %) =
Therefore
AMA\B) + 2 A(B;) = M(aeLAJ\B Xa> + Z M(ag}i Xa>
= p(X)
(U)oU)

= A(A\B) + A(B).

Thus Y7, A(B;) = A(B), so in fact A is countably additive. Since
A is discrete and card (A) is not real-valued measurable we have
A € M. (A) (see [7, Theorem 2.1]) and A(A) = >, .4 A({a}), ie.,
w(X) = > ncai(Xa). The claim is done.
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Since ), c4 #(Xa) € R there exists a sequence {a,};2; C A such
that

(4) w(X) = u(Xa,)

Let Y = U2, X, , and let A = pu|Y. Check to see that X is a o-smooth
quasi-measure on Y. By Corollary 5.17, A is 7-smooth. By virtue of
equation (4), u(Z) = M(ZNY) for all Z € Z. Therefore p is T-smooth.
]

6. Characterization of smoothness. In this section we refer
the reader to a paper by Knowles [6] where the ideas for this section
originated. Again we will omit proofs which are virtually identical to
those of Knowles for ordinary Baire measures.

Let X be a completely regular space and let X denote the Stone-
Cech compactification of X. Consider a quasi-state p on Cy(X). Define
the function g on C'(5X) by:

where f is the unique extension of f to BX (or, equivalently, f is
the restriction of f to X). Since Cy(X) and C(BX) are isomorphic
as C*-algebras, p is a quasi-state on C(8X). By Theorem 4.1 above
and Theorem 4.1 of [1], p induces a Baire quasi-measure, fi, and a
Borel quasi-measure, 7, on SX. As we will see later in this section,
i is the restriction of ¥ to the zero sets and cozero sets of 5X. Our
present objective is to investigate the smoothness of i1 by examining the
measurability of X with respect to i and 7 (regarding X as a subset
of BX).

Theorem 6.1. The following are equivalent for a quasi-measure y:
(i) p is o-smooth;

(i) *(X) = A(BX);

(iii) @(Z2) =0 for all Z C BX\X, Z a zero set of BX.

Theorem 6.2. The following are equivalent for a quasi-measure j:
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(i) p s T-smooth;
(i) 7*(X) = »(8X);

(iil) every compact set K in X disjoint from X is v-null.

In order to provide our characterization for tight quasi-measures we
need the following proposition, which is due to Wheeler.

Proposition 6.3 [12, 2.3]. Let X be a normal space. If p: Z — R™*
is a Baire quasi-measure on X, then v(F) = inf{u(Z) : F C Z} is
a Borel quasi-measure on X such that v|Z = p. Moreover, v is the
unique extension of u to a Borel quasi-measure on X.

Theorem 6.4. A quasi-measure p is tight if and only if v.(X) =
v(BX).

Proof. <. Suppose 7,(X) = 7(8X). Let {f.} be a net in Cp(X),
I f«ll < 1 which converges to zero uniformly on compact sets. Let € > 0
be arbitrary. By hypothesis there exists a compact set K C X such
that 7(K) > v(8X) —e/2 = 1—¢/2. Notice that 7(K)+v(SX\K) =1
S0

P(BX\K)=1-5(K) <1— (1 —¢/2) =¢/2.

Consider f, € C(8X), the unique extension of f, to 3X, and let

Us = {z € BX : fulz) < e/2}.

Since f, — 0 uniformly on K, there exists an ag such that f,(K) < €/2
for all @ > ag. Therefore K C U, = BX\K 2 BX\U,. Since
P(BX\K) < €/2 we have 7(8X\U,) < €/2 for all @ > ag. So, for



466 J.P. BOARDMAN

any o > g,
P(fa) = ﬁ(fa)
- [ e

€/2 1
A m»mw+£¢m>@w
<e/2+ (1-2/2)- (Fa)(/2)
=¢/24+(1—¢/2) - v(BX\Uy)
<eg/2+¢e/2=¢.

Therefore, p(f,) — 0 and so, by Theorem 5.8, 4 is tight.

=-. Suppose p is tight. It suffices to show that, given ¢ > 0, there
exists an open set G with G DO SX\X and 7(G) < e (since then
7*(BX\X) < e, 50 7.(X) >1—c¢). Let € > 0 be given. Since u is
tight there exists a compact set K C X such that p.(X\K) <e.

Now we have g*(K) = inf ({p(f) : K < f} =inf{p(f) : K < f} =
p*(K), using Lemma 4.2 of [1] and Proposition 6.3 and Theorem 4.1(b)
from above. It follows that

fis (BX\K) = pa(X\K) <.

Since K is also compact in X, SX\X C SX\K = G where G is open
in fX. Finally, since 7 is an extension of i on the compact Hausdorff
space SX (compact Hausdorff implies normal), 7(G) = z.(G) < ¢ by
Proposition 6.3. u]

7. Examples of smoothness properties for quasi-measures.
In this section we will furnish examples to demonstrate the smoothness
properties introduced in the preceding sections.

We first sketch an example due to Aarnes of a quasi-measure which
is not the restriction of a regular Borel measure. We will refer back to
this example throughout this section.

Example 7.1 [1, Section 6]. Let X = S be the closed unit square
in R2?, equipped with the relative topology. Fix a point p € X, say
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p=1(1/2,1/2). A subset D of X is co-connected if X\D is connected.
A subset D of X is solid if it is connected and co-connected. For a solid
set D C X, let po(D) = 1 if either (1) 8X C D or (2) DNIX # &,
DeNIX # @, and p € D. Otherwise set po(D) = 0.

According to Theorem 5.1 of [3], 1o has a unique extension to a quasi-
measure g on S which only takes the values 0 and 1. Aarnes showed
that p is not subadditive so it cannot be the restriction to A of an
ordinary Baire measure. It can also be shown that p is minimal in the
sense that no positive, nonzero, finitely additive measure is dominated
by it.

The next example demonstrates that the definition of o-smoothness
for quasi-measures must only be stated in terms of decreasing sequences
of zero sets and not arbitrary sets from A.

Example 7.2. Let p be the Aarnes quasi-measure on the unit
square S in R? (Example 7.1) with fixed point (1/2,1/2). Construct
a sequence of zero sets {Z,}, each with two connected components,
which increase to S as follows:

Let R, = {(z,y) :1/2-1/n <2z <1/2+1/n;1/2-1/n <y <1},
Zpi = (Rn)\{(2,1) : 1/2 < 2 < 1/2+4+1/n} and Z,» = {(1/2,y) :
1/2<y<1-1/n}. Thenset Z, = Z,,1 U Z, 5.

Now Z, 1S but u(Z,) = 0 for all n.

Claim. If {Z,} is a sequence of solid zero sets such that Z, 1 S,
then u(Z,) — 1.

Proof. Suppose Z, is a sequence of solid zero sets such that Z, 1S
but u(Z,) = 0 for all n. The point (1/2,1/2) must be in Z, for some &
since Z,, 1 S. However, Z;, cannot contain any points on the boundary
of S for any k' > k since u(Z/) = 0. This contradicts Z, 1 S. The
claim is done. |

This claim illustrates the fact that the sequence of zero sets con-
structed above is minimal in the sense that we cannot construct a
counterexample with solid zero sets.
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This next example provides a Baire quasi-measure on R? which is not
the restriction of a positive Baire measure and also is not o-smooth.

Example 7.3. Let S,, denote the solid square in R? which is centered
at the origin and contains the points (n,0) and (0,n) on its boundary.
Define u, on S, as Aarnes (see Example 7.1) does using the point
(0,0), for n = 1,2,.... By Theorem 4.5, p, can be considered as a
quasi-measure on R2. Let p, be the quasi-state corresponding to j,,,
and let p,, be the quasi-state on C'(BR?) defined by

Pu(F) = pu(f) for all f € C(SR?)

where f is the restriction of f to R2. Since the set of all quasi-states
on C(BR?) is compact in the topology of pointwise convergence on
C(BR?) (see [2]), the sequence p,, has a cluster point py. Let po be the
quasi-state on C,(R?) defined by

po(f) = po(f) forall f € Cy(R?)

where f is the unique extension of f to SR2. It can be shown that
po is a quasi-state on Cy(R?) which is not a state and that po is not
o-smooth.

In the following example we create a o-smooth Baire quasi-measure
which is not the restriction of a positive Baire measure and also is not
T-smooth.

Example 7.4. Let L denote the extended long line (cf. [9]) and
let X = L x L\{(w1,w1)} with the relative product topology. Here w
denotes the first uncountable ordinal. It can be shown that X = Lx L.

Let S, denote the square with vertices (0,0), (0, ), («,0), (o, @) and
define p, on S, in the same manner as Aarnes using the fixed point
(1/2,1/2). This is possible as in Example 7.3. Let p, be the quasi-state
corresponding to p,, and let p, be the quasi-state on C(8X) defined
by

5a(f) = palf) for all f € C(BX)

where f is the restriction of f to X.
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Since the set of all quasi-states on C(8X) is compact in the topology
of pointwise convergence on C(8X), there exists a cluster point of the
net {p,}, say po. Now let py be the quasi-state defined by

po(f) = po(f) for all f € Cy(X)

where f is the unique extension of f to 3X. It can be shown that pg
is a quasi-state on Cj(X) which is not a state and that py is (strongly)
o-smooth but not 7-smooth.

We now provide an example of a 7-smooth Baire quasi-measure -~y
which is not tight (y is also not subadditive so it cannot be the
restriction of an ordinary Baire measure). This example involves a
product quasi-measure, so we refer the reader to Chapter 5 of [4] for
details.

Example 7.5. Let X be the Sorgenfrey line, and let Y = [0, 1] %[0, 1].
Let A denote Lebesgue measure on X, and let u denote the Aarnes
quasi-measure on Y (cf. Example 7.1). For each set E C X x Y and
zeX,let B, ={ye€YY:(z,y) € E}. Define y on X x Y as follows:

A(E) = /X w(E,) dA

for each set £ C X x Y which is either open or closed. Then 7 is
a 7-smooth Baire quasi-measure on X x Y which is not tight. See
Example 5.3.4 of [4] for details.

Our last example in this section demonstrates that the Aarnes quasi-
measure p on the unit square S (Example 7.1) is minimal in the sense
that no positive, nonzero, finitely additive measure is dominated by it.

Example 7.6. Let pu denote the Aarnes quasi-measure on the unit
square .S with the fixed point (1/2,1/2) (Example 7.1).

Claim. If X\ is a finitely additive measure such that 0 < A < u, then
A=0.

Proof. Let A\ be a finitely additive measure with 0 < A < pu.
Since S is compact A is necessarily 7-smooth (even tight). Therefore,
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supp (A) # @ [7, 2.1]. Let « € supp (A); then choose an open set G > =
such that u(G) = 0, which can be done by the nature of p. This implies
that A(G) = 0, contradicting = € supp (A). Thus A = 0. o
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