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A BOUNDARY VALUE PROBLEM FOR A SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS
WITH IMPULSE EFFECTS

PAUL W. ELOE AND JOHNNY HENDERSON

ABSTRACT. A two-point boundary value problem for a
system of first order ordinary differential equations with im-
pulse effects is studied. The method of upper and lower so-
lutions is employed to obtain the existence of a solution and
a method of forced monotonicity is employed to obtain iter-
ative improvement. The main result is illustrated with an
application to the Liénard equation with periodic boundary
conditions.

1. Introduction. Let n > 1, m > 0 be integers. Let I = [a,b] C R,
and let a =ty <t; < - <tmy1 =0bbegiven. Let f: I xR" - R",
r. : I xR" — R", k=1,...,m, be continuous. Let M and N be
n X n matrices with real entries, and let ¢ € R™. We shall study the
impulsive boundary value problem (BVP) for the system of first order
differential equations,

(11) y/:f(t,y), teI\{tlv"' 7tWL}a
(12) Ay(tk) = T'k(tk,y(t]:)), k= la cee MM,
(13) My(a) + Ny(b) = ¢,

where Ay(t) = y(t*) —y(¢t™). For simplicity, we shall sometimes denote
y(t~) by y(t) and we shall sometimes denote the boundary operator,
My(a) + Ny(b), by T'y; note that we shall consider an impulsive BVP
with fixed moments.

Bainov et al. [2, 3, 4] have developed the theory of impulsive
differential equations. An extensive literature exists and is documented
in [3]. In the case of periodic systems, Bainov and Simeonov [3] have
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thoroughly developed the theory and have obtained a Green’s function
representation for the solution of the BVP, (1.1), (1.2), (1.3), where
Ty = c has the form y(a) = y(b). In [2] and [3], they employ
a monotone iterative technique relying on upper and lower quasi-
solutions to estimate solutions of the impulsive BVP, (1.1), (1.2), (1.3).

Werner [8] has developed a method of forced monotonicity for the
BVP without impulse effects. He defined partial orders on C,(I),
the set of continuous, n-vector real-valued functions defined on I;
these partial orders are constructed naturally, once the Green’s matrix,
G(t,s), for an associated BVP, y' — D(t)y = 0, t € I, Ty = 0, is
characterized.

In this paper we shall employ Werner’s method of forced monotonicity
to study the impulsive BVP, (1.1), (1.2), (1.3). In Section 2, we shall
employ the Green’s matrix for an associated BVP, y' — D(t)y = 0,
t € I, Ty = 0, to invert the impulsive BVP, (1.1), (1.2), (1.3). We shall
then apply the natural partial orders, as constructed by Werner, and
obtain conditions for which an appropriate functional integral operator
is monotone. We shall then apply the method of upper and lower
solutions to obtain the existence of a solution of the impulsive BVP,
(1.1), (1.2), (1.3). Finally, in Section 3, we shall apply the abstract
results, developed in Section 2, to a BVP with periodic boundary
conditions. We point out that the technical details not related to the
impulse effect have been previously developed by Werner [8].

In [7], Murty et al. have applied the contraction mapping principle
to study the impulsive BVP, (1.1), (1.2), with the general boundary
conditions (1.3).

2. Partial orders and a method of forced monotonicity. Let
D(t) be an n x n matrix with entries in C(I). Let U(t) denote a
fundamental matrix for the system, y' — D(t)y = 0. Assume throughout
that the homogeneous BVP, v’ — D(t)y = 0, t € I, Ty = 0, is
uniquely solvable. Define the Green’s matrix, G(t, s), for the BVP,
Y —D({)y=0,tel, Ty=0,by

Gt S):{U(t)AMU(a)U_l(s) a<s<t<b,

’ U(t)(AMU(a) — E)U71(s) a<t<s<b,
where E denotes the n x n identity matrix, and A = (MU(a) +
NU(b))~'. That A exists follows by the unique solvability of the
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homogeneous problem. The following lemma can be verified directly,
or see [8].

Lemma 2.1. Let h € C,,(I), c € R™. u 1is a solution of the BVP,
y —D(t)y=h(t), t € I, Ty = c if and only if

u(t) = U(t)Ac+/bG(t,s)h(s) ds, tel.

Let PC,(I) denote the set of piecewise continuous, n-vector, real-
valued functions on I. Let y € PC,(I), and let yq) denote the
restriction of y on [tg,tgy1], K =0,...,m. Let

B ={y € PCp(I) : y) € Cultr,ths1],k=0,... ,m}.
Then B is a Banach space with norm,

lyll = max flygol

=0,...,

where ||y()|| denotes the C,[ty, tg+1] norm of ||yl
We first define an operator, K, by

b
Kyy(t) = U(t)Ac+/ G(t,s)(f(s,y(s)) — D(s)y(s))ds, tel.

Note that y is a solution of the BVP, y' — D(t)y = f(¢,y) —D(t)y, t € I,
Ty =c¢, if and only if y € C,(I) and y(t) = Ky(t), t € I. Now, define
K:B— Bby

(2.1)

Ky(t) = K1y(t) + U(t )[AMU ZU Ytr)re (tr, y(t)

(AMU Z U~ tk: Tk tkh (tk:)) )
k=j+1
t € [tj,tj=1],
j =0,...,m, where, if j = 0, the first sum is zero and, if j = m, the

second sum is zero.
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Lemma 2.2. y(t) is a solution of the impulsive BVP, (1.1), (1.
(1.3), if and only if y € B and y(t) = Ky(t), t € [tr,trt1], k
0,...,m.

?

Proof. Lemma 2.2 can be verified directly. We also refer the reader
to [3, page 39], with B, =0, k=1,... , mand M = —N = E. We
do note that the solution, u, of the nonhomogeneous impulsive BVP,
Y —D(t)y=h,t € I\{t1,-.. ,tm}, Ay(ty) =11, k=1,... ,m, Ty =¢,
has the characterization, u = u; + us, where wuy satisfies the BVP,
y — D(t)y = h, t € I, Ty = ¢, and uy satisfies the impulsive BVP,
ylfD(t)y = 0) te I\{tla atm}a Ay(tk) =Tk, k= ]-7 y 1, Ty =0.
Thus, K,y plays the role of u;. To determine the characterization for
ug, we find the solution, vj, of the impulsive BVP, 3 — D(t)y = 0,
te I\{tj}, Ay(tj) =Ty, Ty = 0. Then

. U(t)al t < tj,
vi(t) = { Ult)as t>t,

where a; = (AMU(a) — E)U~(t;)r; and az = AMU(a )U_l(tj)rj
Thus, us = Z;”: v; and is represented by the second term in the
definition of K in (2.1). O

Remark. Representations of the Green’s matrix for multipoint point
boundary value problems related to y' + Dy = 0 are well-known (see [1]
or [5]). Hence, the abstract development in this paper can be readily
extended to multipoint boundary value problems.

We now introduce some partial orderings on B.

i)Fory, z € B,y = (y1,---,¥n)", 2 = (21,.-- ,2,)T, define the
relation, <, by y < z if and only if y;(t) < z;(t), j = 1,...,n,
t € [tk,tet1], K =0,...,m. Then < is a partial ordering on B and we
shall call < the natural partial ordering on B. It is readily seen that B
is a partially ordered Banach space with respect to the natural partial
ordering.

ii) Let H : B — B be an invertible linear operator. For y,z € B,
define the relation, <p, by y <y z if and only if Hy < Hz. Then
<g is a partial ordering on B and we shall say that <pg is the partial
ordering induced by H. Again, it is readily shown that B is a partially
ordered Banach space with respect to <g.
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In applying these partial orders, now assume that there exist n x n
matrices, H and J, with J invertible, such that H(AMU (a))J 1 > 0,
elementwise, and H(AMU (a)—E)J~! > 0, elementwise. Let <; denote
the partial ordering induced by HU~1(t), and let <, denote the partial
ordering induced by JU~1(¢). Throughout the remainder of the paper,
assume that f satisfies the monotone property,

(22) Y,z € Ba Yy Sl z implies f(tay) - Dy SZ f(tv Z) - DZ,

and i, k = 1,... ,m, satisfies the monotone property,
(2.3)
y,2 € B, y<jz implies 7(t,y) <orr(t,z), k=1,...,m.
Lemma 2.3. Assume that f and ri, k = 1,... ,m, are continuous,

and assume that (2.2) and (2.3) are satisfied. Then K is a monotone
operator with respect to <1 on B; that is, if y <1 z, then Ky <; Kz.

Proof. We show that if y <; z, then HU () Ky < HU~'(t)K 2. So,
assume y <y z. For ¢ € [t;,¢;41],

HU *(t)Ky(t)
= HU(t) [U(t)Ac

+/ U(t)AMU(a)U~"(s)(f(s,y(s)) — D(s)y(s)) ds
+/ U()(AMU(a) = E)U™(s)(f(s,y(s)) = D(s)y(s)) ds
AMU iU 1 tk TL tk,y(tk))

( )(AMU E U~ tk Tk tk, (tk))
k=j+1
= HAc

+ [ HAMUG@)I U 6)((s,(s) - Disys)) ds
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b
+ / H(AMU(a) — E)J MU () (f(s,u(s)) — D(s)y(s)) ds

+HAMU 1ZJU tk Tk tk, (tk))

H(AMU(a) — E)J ! Z JU ()i (t, y(te))
k=j+1

< HAc+ / HAMU (a)J Y (JU () (f(s, 2(s)) — D(s)z(s)) ds
b
+ /t H(AMU (a) — E)J Y (JU(8))(f(s, 2(s)) — D(s)2(s)) ds

+ HAMU (a 1ZJU (tr)rr (tr, 2(t))

(AMU J 1 Z JU tk Tk tk, (tk))
k+7+1
=HU '(H)K=z(t). ©

Remark. The terms AMU(a) and AMU(a) — E which appear in
the representation of G(t, s) play a key role in Werner’s [8] method of
forced monotonicity. This method has been illustrated in the proof of
Lemma 2.3. Since precisely these terms arise in the characterization of
ug, discussed in the proof of Lemma 2.2, Werner’s method carries over
naturally to the impulsive BVP, (1.1), (1.2), (1.3).

We now introduce a third partial order which governs the behavior
of upper and lower solutions with respect to the boundary conditions.
In particular, let <3 denote a partial order on R™ induced by HA.

Theorem 2.4. Assume the hypotheses of Lemma 2.3. Assume that
there exist an upper solution, v1(z), and a lower solution, wi(x), with
respect to the impulsive BVP, (1.1), (1.2), (1.3), satisfying

i) wy < v,

i) Twy <3 ¢ <3 Ty,



BOUNDARY VALUE PROBLEM 791

111) wll - f(tawl) SZ 0 SZ v’1 - f(tavl)a

iV) Awl(tk) - r(tk,wl(tk)) Sg 0 SQ A’Ul(tk) - r(tk,vl(tk)), k =
1,...,m.

Then the impulsive BVP, (1.1), (1.2), (1.3), has a solution, y(x),
satisfying

(2.4) w1 <1y <1 v1.

Further, define sequences, {w;},{u}, by w11 = Kw,vi1 = Ko,

l=1,2,.... Then if y is a solution of (1.1), (1.2), (1.3), satisfying
(2.4), then
(2.5) wy <1 w1 <1 Y <1 Vg <10

for 1 > 1. The sequence {w;} converges monotonically in B, with
respect to <y, to w, {vu} converges monotonically in B, with respect
to <1, to v, where w and v are solutions of the BVP (1.1), (1.2), (1.3),
and w <3 v. Finally, if y is a solution of the BVP (1.1), (1.2), (1.3),
satisfying (2.4), then

w<yy <y

Proof. Define Q = {z € B : w; <1 z <; v1}. As outlined in [5,
Chapter III], we shall show

(2.6) wy <1 wa <1 v <1 U1

It will then follow by the monotonicity of K that K(2) C Q and the
Schauder fixed point theorem applies to give the existence of a solution,
y, of the impulsive BVP, (1.1), (1.2), (1.3), satisfying (2.4).

To that end, first note that v; is the solution of the impulsive BVP,

yl_Dy:vll_Dvlv teI\{tla"'atm}a
Ay(tk) = Avl(tk)a k= la sy M,
My(a) + Ny(b) = Mv1(a) + Nvy(b).
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Thus,
b
v1(t) =U(t)AT vy +/ G(t,s)(vi(s) — D(s)vi(s))ds
J
[AMU ) D U (k) Avr (tk)
k=1
(AMU Z U~ tk A’Ul(tk)
k=j+1
t € [tj,tj+1], 7 =0,...,m. By a straightforward argument, completely

analogous to that given in the proof of Lemma 2.3, vo = Kv; < vy,
since vy satisfies ii), iii) and iv). Similarly, wy <y Kw;. Since w; <j vy,
(2.6) follows from Lemma 2.3.

(2.5) now follows immediately from Lemma 2.3. Finally the existence
of a minimal solution, w, and the existence of a maximal solution, v in
Q, follow by application of Dini’s theorem on each subinterval, [t;,t;11],
7=0,...,m. O

3. Periodic boundary conditions. Let [a,b] = [0,w]. We now
consider the impulsive BVP, (1.1), (1.2), satisfying

(3.1) y(0) = y(w).

Given the boundary conditions, (3.1), set M = —N = E.

Lemma 3.1. Let D be an n xn matriz with real entries and with real
eigenvalues, A\; # 0, i =1,... ,n. Assume that D is diagonalizable by
H; that is, assume HDH ! = diag {\;}. Set J = —diag {sgn (\;)}H.
Then HAMU (a)J ! > 0, elementwise, and H(AMU (a) — E)J 1 >0,
elementwise.

Proof. Note that HDJ ! = diag {—|\;|}. Let U(t) = P! be the
fundamental matrix for the system, y' — Dy = 0. Then AMU(a) =
(E—eP?)~L. Thus, HAMU (a)H ! = diag {(1 — e )~} = diag {u;}
and H(AMU( ) — E)YH™! = diag {u; — 1}. Note that if A\; > 0, then
i < 0, and if \; < 0, then p; > 1 > 0. Thus, HAMU (a )J_
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—diag {u;sgn \; } = diag {|u:|}, and H(AMU (a) — E)J ! = diag {|p; —
1]} O
)T

To be more specific, let y = (y1,y2)*, and consider the two-

dimensional impulsive BVP,

{y’l =yo — f(t,y1),

(3.2) v = —g(t,mn),

te I\{tla 7tm}7

(33) Ayl(tk) = 0’ Ay?(tk) = Tk(tkvyl(tk))v k= 1) cee oy MM,

(3.1), where each of f,g : [0,w] x R — R is continuous, f has a
continuous partial derivative with respect to each component, and g has
a continuous partial derivative with respect to the second component.
Moreover, we shall assume that f is w-periodic in . Assume for each
kE=1,...,m, that r; : [0,w] x R — R is continuous and monotone
decreasing with respect to the second component.

Theorem 3.2. Assume that there exist upper and lower solutions,

(w(t), wi () + £ (£, wi ()", (va(8), v (1) + f (£, 01(1))" € B,

with respect to the impulsive BVP, (3.2), (3.3), (3.1), satisfying

i) wi(t) <wit),

ii) wy(0) = wi(w), wy(0) > w(w), v1(0) = v1(w), v1(0) < v (w),

i) vf(t) < —(d/dt)f(t,v1) — g(t,v1), wi(t) = —(d/db)f(t,w1) —
g(ta w1)7

iv) Awy(tr) = 0 = Avi(tg), Awj(tr) — r(tg,w1) > 0 > Avi(tr) —
T(tkavl)’
where the standard partial order on [ty,tr41], kK =0,... ,m, is employed
ini) andiii), and the standard partial order on R is employed in ii) and
iv). Assume that f and g are continuous, f has a continuous partial
derivative with respect to each component, and g has a continuous
partial derivative with respect to the second component. Moreover,

assume that f is w-periodic in t. Assume for each k = 1,... ,m, that
i 1 [0,w] x R = R is continuous and monotone decreasing with respect
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to the second component. Then there exists a solution, y = (y1,y2)T of

the impulsive BVP, (3.2), (3.3), (3.1), satisfying

wl(t) Syl(t) S’Ul(t)7 te [tkvtk+l]7 k‘:O, > M.

Proof. We apply Theorem 2.4 with

0 1
D_</\2 0)7

where A > 0 is to be suitably chosen. First, apply Lemma 3.2 with

A1 - -1
n-(3 4) (3 )
and then apply Theorem 2.4 with <; induced by H e Pt <, induced
by Je~P* and <3 induced by HA.

Choose A > 0 such that for y = (y1,32)7, z = (21,22)7 € B with
wi(t) < yi(t) < z1(t) < vi(t), t € [ty tkta], k=0,... ,m, then

(3.4)
A2 (21 —y1) (&) + A(f(t, 21 (1) — £t 51 (1)+(g(t, 21(2) — g(t,11(2))) > O,

(3.6)
A2 (21 —y1) (&) = A(f(t, 21 (1) — F(t, 51 (1) +(g(t, 21(2) — g(t,11(2))) > O,

(3-7) Ave(0)—w1(0)) = [(v1(0) —wy (0)H(f(0,v1(0)) = £ (0, w1 (0))] = 0,

te [tk,tk+1], k=0,...,m.

To see that A > 0 can be selected, recall that f and g have continuous
partial derivatives with respect to the second component. Let M; >
|f2(t,c)] for 0 < ¢ < w and wy(t) < ¢ < vi(t), where fy denotes the



BOUNDARY VALUE PROBLEM 795

partial derivative of f with respect to the second component. Similarly,
let My > |g2(t,c)| for 0 <t <w and wy(t) < ¢ < wvy(t). Then

N (z1 = y1)(8) + A(f (8 21(8) — F(t,y1(2))) + (9(t, 21(2)) — 9(t, 91(2)))
> (21— y1) () (A2 = MyA — M) > 0

for A > 0 and sufficiently large. Hence, (3.4) can be satisfied and (3.6)
can be satisfied similarly. For (3.5), if v1(w) > wi(w), then (3.5) can
be satisfied similarly. If v; (w) = wy(w), then v1(0) = wy(0), and

vi(w) £ wy(w) < wy(0) < v1(0) < vj(w)-

In particular, vj(w) = wi(w) and (3.5) is satisfied. (3.7) is addressed
similarly.

In this context, we now specify the meanings of the inequalities <;, <5

and <j.
_ A0
1_
HDH " = (0 _)\> .
Thus,
_ )\ef)\t ef)\t
He Pt = < et _ext),

t € [tk,tkt1], K =0,...,m. Note that y <; z implies that y; (¢) < 21(t),
t € [tk,tkt1], K =0,...,m. Similarly, y <, z if and only if

—)\yl (t) — yg(t) S —>\Zl (t) — Zg(t),
)‘yl (t) — yg(t) S )\21 (t) — Z9 (t),
t e [tk,tk-',-l]a k

t € [tk,tk+1], k
pr= (1 —eM)-

0,...,m. Note that y <5 z implies that y2(t) > 22(¢),
= 0,...,m. Finallyy, HAH ! = diag{u;} where
and py = (1 — e *)~ L. Hence, y <3 z if and

—

“Ayr — y2 < —Azp — 2,
)\yl — Y2 S )\21 — Z2.
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We now show that each of (2.2) and (2.3) is satisfied so that
Lemma 2.3 applies. Let y = (y1,v2)7 and z = (21, 22)7. For (2.2),
recall y <; z implies y; (¢) < 21(t), t € [tg,trs1], K=0,... ,m. Since

(y2 — f(t, 1), —9(t,91))" — Dy = (= f(t,91), —g(t,91) — Ny1)7,
(2.2) becomes
Af(ty1) +9(ty1) + XNyr S AF(t21) +g(t, z1) + A%z,
=Af(tyn) + gt yn) + Ny < —Af(t 21) + g(t, 21) + A2
These inequalities are valid by (3.4) and (3.6). For (2.3),
(0,74 (tr, 91))" <2 (0,74 (tx, 21))"

reduces to 0 < r(tk,y1) —7k(tk, 21), which is valid since ry, is monotone
decreasing in the second component. Thus, Lemma 2.3 applies and the
operator K is monotone with respect to <j.

We now show that the hypotheses of Theorem 2.4 are satisfied. To
see that

(wlawll + f(tawl))T <1 (Ulavll + f(tavl))Ta

we require

Awy () +wy(t) + £t wi(t) < v (t) +vi(8) + f(2,01(2)),
and

Aws (8) — wi(t) — f(t,wi(t)) < Avi(t) —vy(t) — f(E,01(2).

To obtain the first inequality, employ condition iii) and (3.4) to obtain
(3-8)  (vf —wy)(t) + (d/dt)(f(t,v1()) — F(t, wi(t)))
< N (o1 —wr)(8) + A(f(t,v1(2)) = F(t, wi(2)))-
Multiply (3.8) by e~ ** and integrate from ¢ to w. One obtains
e M[(A(v1(w) = wi(w)) + (v} (w) — wi(w))
+ (f(w,01(w)) = flw,wi(w)))]

< e M (vi(t) — wi (b)) + (v () — wi(D)
+ (£t (8) = [t wi(D)))]-
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Thus, the first inequality follows from (3.5).

To obtain the second inequality, employ condition iii) and (3.6) to
obtain

(3.9) (v —wi)(t) + (d/dt)(f(t,vi(t)) — f(t,wi(t))

< N (vy — wi)(t) — A(F(t, vi(t) — f(t,wi(t))-
Multiply (3.9) by e*!, integrate from 0 to ¢, and employ (3.7). Thus,
condition i) of Theorem 2.4 is satisfied.

Since f is w-periodic in ¢, and w;(0) = wi(w), v1(0) = vi(w), the
condition, Twy <3 0 <3 Twvy, reduces to —(wj(0) — wj(w)) < 0 <
—(v1(0) — v} (w)). This is precisely the second requirement in condition
ii) of Theorem 3.2.

Condition iii) in Theorem 2.4 reduces to
Vi (t) + (d/dt) f (¢, v1(t)) + g(t, v1(2))

<0 < wy(t) + (d/dt) f(t, wi(t))
+ g(tawl(t))a

t € [tk,tk+1], & = 0,...,m, which is precisely condition iii) of Theo-
rem 3.2. To see this, set (y1,y2)” = (w1 (t),w](t) + f(t, w1(t)))”. Then

() (0557 = (s @ansem) + ey

Finally, if Aw;(tx) =0 = Avi(tk), kK = 1,...,m, then condition iv)
in Theorem 2.4 reduces to

Awy (tg) — r(tg, wi(ty)) > 0> Avy(ty) — r(tr, vi(te)),

which is precisely condition iv) in Theorem 3.2.

This completes the proof of Theorem 3.2. O

Remark 1. The impulse effects given by (3.3) appear to be restrictive
in the sense that solutions of the impulsive BVP, (3.2), (3.3), (3.1), will
in fact be continuous on I. However, in comparing conditions ii) and iv)
in Theorem 3.2, noting that in condition ii) we require that the upper
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and lower solutions satisfy equality in the first component, and noting
the similarity in the specific meanings of <5 and <3 in this problem,
the hypothesis Ay;(tx) =0, k =1,...,m, is a natural assumption.

Remark 2. Since Theorem 2.4 applies, the iterative improvement
developed there applies to the impulsive BVP, (3.2), (3.3), (3.1).

Ezample. Consider the second order scalar ordinary differential
equation,

(3.10) u + h(uw)u' +g(u) =0, teI\{tr,... ,tm},
(311) Au(tk) = 0, Au'(tk,) = ’I"k(tk, u(tk,)), k= l, cee M,

(3.12) u(0) = u(w), u'(0) = v/ (w).

Set y1 = u, y2 = v’ + [; h(s)ds. Then with f(t,y) = [ h(
the impulsive BVPs, (3.2), (3.3), (3.1) and (3.10), (3.11), (3.12) are
equivalent.
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