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COMPARING THE UNIT GROUPS
OF TWO ORDERS IN A NUMBER FIELD

JOHN WOLFSKILL

ABSTRACT. Let R ⊂ S be two orders in a number field,
and let ER and ES be their unit groups. In this paper we
bound the order of the quotient unit group ES/ER in terms
of the order of the quotient ring S/R.

1. Introduction. Let R and S be two orders in a number field K,
and let ER and ES be their unit groups. Then S/R and ES/ER are
both finite. The object of this paper is to bound |ES/ER| in terms
of |S/R|, continuing the work of [2]. In [2] this problem is solved for
the case that S and R have just one generator different in their Z-
bases; so S/R is cyclic as a Z-module. The results are as follows: if
S/R � Zp, then ES/ER is cyclic of order ≤ p + 1 (actually, the order
is a divisor of p − 1, p or p + 1). If S/R � Zpr with r > 1, the group
structure of ES/ER may be more complicated, but its order is bounded
by pr−1(p + 1).

To treat the general case, where S/R may have an arbitrary number
of generators, the first step is to observe that the extension S/R can
be considered as a sequence of extensions in which only one prime is
involved in the denominators at each step. Thus we may assume that
S/R, additively, is a p-group.

It will be shown that when S/R is a p-group, it may be broken down
into a sequence of extensions of type Zp⊕· · ·⊕Zp for a varying number
of summands. For an extension of this basic type, the quotient unit
group may be noncyclic, in contrast to the situation with only one
generator. An example to illustrate this is given after Theorem 1.
Therefore, we will focus solely on bounding the order of the unit group
rather than its structure.

For technical reasons, the main result of the paper, Theorem 3, is
given in two versions. There is a bound on |ES/ER| that holds un-
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conditionally, and a better bound that holds under special hypotheses.
Just what these are will be explained later; for now, let it be noted sim-
ply that the better result applies, among other situations, if [K : Q] ≤ 8
or if R has a power basis. In these cases,

|ES/ER| <
|S/R|2
p − 1

.

The general version involves a higher power of the ring index.

2. We assume from now on that S/R is a p-group. In this section we
decompose S/R into a sequence of extensions of a simple type.

Lemma 1. There are intermediate rings R = R0 ⊂ R1 ⊂ · · · ⊂
Rm = S such that each extension Ri+1/Ri has the additive structure
Zp ⊕ · · · ⊕ Zp some number of times.

Proof. Suppose that

R = Z[α1, . . . , αs, β1, . . . , βt],

and

S = Z

[
α1, . . . , αs,

β1

pc1
, · · · ,

βt

pct

]
,

with 1 ≤ c1 ≤ · · · ≤ ct. With S = Rm, define Rm−1 by

Rm−1 = Z

[
α1, . . . , αs,

pβ1

pc1
, . . . ,

pβt

pct

]
;

that is, each basis element of S with a denominator is multiplied by
p. As presented, Rm−1 clearly is an additive group. Further, it is
multiplicatively closed, because

αi · αj ∈ R ⊂ Rm−1

αi · pβj

pcj
∈ pS ⊂ Rm−1

pβi

pci
· pβj

pcj
∈ pS ⊂ Rm−1.
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One constructs Rm−2 from Rm−1 in the same manner: each basis
element of Rm−1 which still has a denominator is multiplied by p.
After ct steps of this type one comes down to R.

Lemma 2. With the notation of Lemma 1, let Ei denote the unit
group of Ri. For 0 ≤ i ≤ ct − 2, Ei+1/Ei has exponent 1 or p.

Proof. For i in the range given, we may renotate Z-bases for Ri, Ri+1

and Ri+2 in the form

Ri = Z[α1, . . . , αs, β1, . . . , βt]

Ri+1 = Z

[
α1, . . . , αs,

β1

p
, . . . ,

βt

p

]

Ri+2 = Z

[
α1

pb1
, . . . ,

αs

pbs
,
β1

p2
, . . . ,

βt

p2

]
,

where each bj = 0 or 1. Let ε ∈ Ri+1; we show that εp ∈ Ri. Let
ε = α + β/p, where α is a Z-linear combination of α1, . . . , αs and β is
a Z-linear combination of β1, . . . , βt. Then

εp =
p∑

j=0

(
p
j

)
αp−jpj

(
β

p2

)j

.

Now, (β/p2)j ∈ Ri+2, so p2 · (β/p2)j ∈ Ri. Thus, each term in the sum
with j ≥ 2 is in Ri. Hence,

εp ≡ αp + pαp−1 β

p
≡ 0 mod Ri,

that is, εp ∈ Ri.

3. In this section we focus on just one step of the chain described in
Lemma 1. Let

R = Z[α1, . . . , αm, β1, . . . , βr],(1)

and

S = Z

[
α1, . . . , αm,

β1

p
, · · · ,

βr

p

]
.
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Each unit ε in S may be written as

(2) ε =
r∑

j=1

aj
βj

p
+ σ,

with aj ∈ Z and σ ∈ R. Multiplying σ by each βj/p leads to a
congruence of the form

σ
βj

p
≡

r∑
i=1

bij
βi

p
mod R,

where the coefficients bij may be taken mod p. If we set B = [bij ], we
have a map

ρ : R −→ Mr(Fp)

defined by ρ(σ) = B.

Another way to look at ρ is to consider for σ ∈ R the linear map from
S to S defined by multiplication by σ. With respect to the basis for S
in (1), this map has the matrix

Aσ =
( m r

m ∗ ∗
r pCσ Bσ

)

where Bσ and Cσ have integral entries. The lower left block is divisible
by p because σαj ∈ R, so involves p · (βi/p) for each i. Composing
two such maps for σ and τ ∈ R, we see that Aστ = AσAτ , so
Bστ ≡ BσBτ mod p. Hence ρ(στ ) = ρ(σ)ρ(τ ). Since ρ clearly is
additive, ρ is a ring homomorphism from R into Mr(Fp). If we set
W = Im ρ, W is a commutative algebra inside Mr(Fp). It will be
important to bound the dimension of W . In general, this can be as
large as 1+[r2/4] by a theorem of Schur [1, p. 95]. However, dimW ≤ r
in several special cases to be described presently.

Referring to the form of ε in (2), σ is not unique. However, changing
the coefficients aj mod p will change σ by an element of pS and
pS ⊂ Ker ρ. Thus ρ(σ) is well-defined in terms of ε.

Note also that W is generated by the images of α1, . . . , αm only, since
each βi ∈ Ker ρ.
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Lemma 3. In (1), let α1, . . . , αm be polynomials in α with integral
coefficients for some α ∈ R. Then dim W ≤ r.

Proof. If B = ρ(α), then Bk = ρ(αk), so W is contained in the span
of I, B, B2, ..., which has dimension ≤ r.

In what follows, we will use an algebraic extension F of Fp in which
the eigenvalues of a certain matrix lie, so that the matrix may be
taken in Jordan form. For W ≤ Mr(Fp), dim W is the same whether
computed in Fp or extending the base field to F .

Lemma 4. Let J, X ∈ Mr(F ) where JX = XJ and J is in Jordan
form. Let V = span {J i, J iX | i ≥ 0}. Then dimV ≤ r.

Proof. Write J in the form J = J1 ⊕· · ·⊕Jt, where each Ji in turn is
a direct sum of Jordan blocks corresponding to the eigenvalue λi and
λ1, . . . , λt are distinct. Let ki and li be the sizes of the largest and
next largest Jordan blocks in Ji. Take li = 0 if Ji is just one Jordan
block. The degree of the minimal polynomial of J is k = k1 + · · ·+ kt,
as (Ji−λiI)ki = O for each i. Since X commutes with J , by Lemma 4,
[1, p. 25], X splits as a direct sum X = X1 ⊕ · · · ⊕ Xt, where each Xi

has the same size as Ji. Further, Xi and Ji must commute, and this
implies that each Xi is blocked out into triangularly striped matrices
whose sizes are given by the sizes of the Jordan blocks which comprise
Ji, by Theorem 6 [1, p. 28]. Now (Ji − λiI)li is O if li = ki and
involves only the largest Jordan block of Ji if li < ki. Consequently,
(Ji − λiI)liXi has nonzero entries only in the block corresponding to
the largest Jordan block of Ji, and these nonzero entries are pushed li
spaces toward the upper right corner of that block. A suitable linear
combination of the matrices (Ji − λiI)t, where t ≥ li, will match this
exactly. Thus (Ji − λiI)liXi is a polynomial in Ji for each i. Let

f(x) =
t∏

i=1

(x − λi)li ,

of degree l = l1 + · · ·+ lt, and let J ′ = f(J). Then J ′X is a polynomial
in J , so V is spanned by

I, J, . . . , Jk−1, X, JX, . . . , J l−1X,
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and dimV ≤ k + l ≤ r.

Lemma 5. In (1), let α1, . . . , αk be polynomials in α, and let
αk+1, . . . , αm be monic polynomials in α divided by pd with the same d
for each term, where all the polynomials have integral coefficients and
distinct degrees and α ∈ R. Then dimW ≤ r.

Proof. Let B = ρ(α), and let C = ρ(γ) where γ = αj with minimal
degree having pd in the denominator. Over a suitable field F , B and C
are similar to J and X, respectively, as in Lemma 4. The algebra W is
contained in span {Bi, BiC}, and this is conjugate to span {J i, J iX}
in Mr(F ). Hence dim W ≤ r.

In attempting to extend Lemma 5 to a situation where R has a
more complicated Z-basis, one is led to a problem like that dis-
cussed in Lemma 4, but with three or more matrices. The present
method breaks down at this point because examples exist of matri-
ces J , X and Y ∈ Mr(Fp) which commute with each other, and
dim span {J i, J iX, J iY } > r.

Theorem 1. Let S/R � Zr
p for some r, and let dimW = d. Then

|ES/ER| ≤ pr+d − 1
p − 1

.

Proof. Let W be generated by A1, . . . , Ad. For ε ∈ ES , write ε as in
(2),

ε =
r∑

j=1

aj
βj

p
+ σ,

where

ρ(σ) =
d∑

j=1

sjAj .

As was noted previously, ρ(σ) is well-defined in terms of ε, so ε leads to
a point P (ε) = (a1, . . . , ar, s1, . . . , sd) over Fp. If ε /∈ R, some aj 
= 0,
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and if ε ∈ R, then ρ(εε−1) = ρ(1) = I, so some sj 
= 0. Thus, we
may view P (ε) as a projective point over Fp. In this way we have a
function P from ES to (r+d−1)-dimensional projective space over Fp.
We claim that if η and η′ ∈ ES such that P (η) = P (η′), then η ∼ η′

in the group ES/ER. This clearly implies that the order of ES/ER is
bounded by the number of projective points, which is (pr+d−1)/(p−1).
To verify the claim, suppose that

η =
r∑

j=1

bj
βj

p
+ τ,

and P (η) = (b1, . . . , br, t1, . . . , td). Then

εη ≡
r∑

j=1

cj
βj

p
mod R

for numbers c1, . . . , cr mod p that can be computed as follows: let

βiβj

p2
≡

r∑
k=1

xijk
βk

p
mod R.

Then

εη = στ +
r∑

j=1

bj

(
σ

βj

p

)
+

r∑
j=1

aj

(
τ

βj

p

)
+

r∑
i=1

r∑
j=1

aibj
βiβj

p2
.

Since στ ∈ R, the cs are given mod p by

⎡
⎣

c1
...
cr

⎤
⎦ =

d∑
i=1

siAi

⎡
⎣

b1
...
br

⎤
⎦ +

d∑
i=1

tiAi

⎡
⎣

a1
...

ar

⎤
⎦ +

⎡
⎢⎢⎣

...∑
i,j aibjxijk

...

⎤
⎥⎥⎦ .

Here the Ai and xijk are constants. The significant fact to note about
the formula for c1, . . . , cr is that it is unaffected, projectively, if the
coefficients (b1, . . . , br, t1, . . . , td) are multiplied by a nonzero constant
mod p. So if P (η) = P (η′), then εη ≡ hεη′ mod R for an integer h such
that p � h. This holds for every ε in ES (with h depending on ε). In
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particular, let ε = η−1. Then η′η−1 ∈ R, which is to say that η ∼ η′ in
ES/ER, as the claim asserted.

When r = 1 in Theorem 1, ES/ER is cyclic, as shown in [2]. When
r > 1, however, noncyclic cases may occur. For example, in the field
Q(α), where α3 = 3α − 1, let S = Z[α] and R = Z[1, 3α, 3α2]. S
has fundamental units α and α2 + α − 2, while R has their cubes as
fundamental units. Hence, ES/ER � C3 × C3.

4. Let R and S be as in Lemma 1:

(3)
R = Z[α1, . . . , αs, β1, . . . , βt]

S = Z

[
α1, . . . , αs,

β1

pc1
, · · · ,

βt

pct

]

with 1 ≤ c1 ≤ · · · ≤ ct. There is a chain of rings, as described in
Lemma 1, of the form

(4) R = R0 ⊂ R1 ⊂ · · · ⊂ Rm−1 ⊂ Rm = S.

Here m = ct. Each extension Ri+1/Ri � Zri
p for some ri, as additive

groups. As in Section 3, this leads to an algebra Wi ≤ Mri
(Fp). The

following theorem lists several natural situations in which dimWi ≤ ri

at each step of the chain in (4).

Theorem 2. In the notation just established, dimWi ≤ ri for each
i if any of the following hold:

1. [K : Q] ≤ 8.

2. S/R has ≤ 3 generators.

3. R = Z[α] for some α.

4. R has a Z-basis 1, α, . . . , αk−1, fk(α)/pd, . . . , fn−1(α)/pd with
each fj monic over Z, with degree j.

Proof. 1. Only when r ≥ 4 is it possible to have dimW > r. Further,
in the construction of W in Section 3, W is generated by m elements,
where m is the number of basis elements common to the two rings. To
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have dimW > r requires m > r obviously. Hence there must be at
least nine elements in a basis.

2. When r < 4, 1 + [r2/4] = r.

3. When R has a power basis, the common part of the bases for Ri

and Ri+1 consists of the first so many powers of α. Hence, Lemma 3
applies at each step.

4. As in part 3, using Lemma 5.

Theorem 3. Let S/R � Zpc1 ⊕ · · · ⊕ Zpct with 1 ≤ c1 ≤ · · · ≤ ct,
and let C = c1 + · · · + ct. Then

|ES/ER| <
p

p − 1
· pC(1+t/4).

If dim Wi ≤ ri at each step of (4), then

|ES/ER| <
p

p − 1
· p2C−ct ≤ |S/R|2

p − 1
.

Proof. Keeping the notation of (3) and (4), each Ri+1/Ri � Zri
p for

some ri. The number of extensions of each type is as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 have type Zt
p

c2 − c1 have type Zt−1
p

...
ct − ct−1 have type Zp

The total number is ct, the number of steps from R to S. For all but
the last step, Ei+1/Ei is a p-group by Lemma 2. So the bound in
Theorem 1 can be sharpened slightly, to pr+d−1, except for the last
step. First, assume dim Wi ≤ ri at each step, so d ≤ ri in Theorem 1.
Then

|ES/ER| ≤ pct−ct−1 · p3(ct−1−ct−2) · · · p(2t−1)(c1−1) · p2t − 1
p − 1

= pct+2(c1+···+ct−1) · p1−2t · p2t − 1
p − 1

<
p2C−ct+1

p − 1
,
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as stated in the theorem. Note that |S/R| = pC .

Next consider the general case, where we may say only that d ≤
1 + [r2

i /4] at each step. Then

|ES/ER| ≤
t∏

j=1

p(j+[j2/4])(ct−j+1−ct−j) · p[t2/4]+t+1 − 1
p − 1

.

Here c0 = 1. For k odd, the coefficient of ct−k in the exponent of the
product is

−
(

k +
k2 − 1

4

)
+

(
k + 1 +

(k + 1)2

4

)
=

k + 3
2

.

For k even, the coefficient is (k + 2)/2 = ((k − 1) + 3)/2. So the total
exponent of the product is

(5) (ct + 2(ct−1 + ct−2) + 3(ct−3 + ct−4) + 4(ct−5 + ct−6) + · · · )
− (t + [t2/4]).

The last term comes from the c0 coefficient. Since the cj are increasing,

c1 + · · · ck ≤ kC

t
.

The sum in parentheses at (5) is, for t even,

ct + 2(ct−1 + ct−2) + · · · + t

2
(c3 + c2) +

t + 2
2

c1

= C + (c1 + · · · + ct−1) + (c1 · · · + ct−3) + · · · + (c1 + c3) + c1

≤ C

(
1 +

t − 1
t

+
t − 3

t
+ · · · + 3

t
+

1
t

)

= C(1 + t/4).

For t odd, one obtains C(1 + (t2 − 1)/(4t)) < C(1 + t/4) in the same
way. This leads to the result as stated in the theorem.

Theorem 4. Let K = Q(α) where α is an algebraic integer, and
suppose that D(α) = D(K/Q) · p2m for some m ≥ 1, where D denotes
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discriminant. Let R = Z[α] and S = OK , the full ring of integers in
K. Then

|ES/ER| <
p2m

p − 1
.

Proof. When R = Z[α], dimWi ≤ ri at each step, by Theorem 2.
The result follows from Theorem 3; note that C = m here.

By piecing together Theorem 4 for each prime factor of the ring index,
we obtain the final result:

Corollary. Let K, R and S be as in Theorem 4, except that

D(α)
D(K/Q)

=
s∏

j=1

p
2mj

j

with distinct pj and each mj ≥ 1. Then

|ES/ER| <

s∏
j=1

p
2mj

j

pj − 1
.
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