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WHEN DOES THE FAMILY
OF SINGULAR COMPACTIFICATIONS
FORM A COMPLETE LATTICE?

ROBERT P. ANDRE

ABSTRACT. In this paper we provide a method of recog-
nizing those spaces for which the supremum of all singular
compactifications is SX. We also provide a method of recog-
nizing those spaces for which the family of singular compact-
ifications forms a complete lattice.

1. Introduction. All hypothesized topological spaces will be
assumed to be locally compact and Hausdorff.

Two compactifications X and v7X of a space X are said to be
equivalent if there is a homeomorphism f : X — vX from aX onto
~X which fixes the points of X. This defines an equivalence relation
on the family of all compactifications of X. When we will speak of a
compactification aX of X it will be understood that we are referring
to the equivalence class of «X. The notation aX = vX will mean that
aX is equivalent to vX. We will say that the compactification X is
less than or equal to the compactification vX, denoted by aX < ~vX
if there is a continuous function f : vX — aX of vX onto aX which
acts as the identity on X. This defines a partial order on the family
K(X) of all compactifications of X. Tt is well known that K(X) is a
complete lattice with respect to the partial order < (see [3, 2.19]). If
aX and yX are compactifications of X such that aX < ~+X, we will
denote the projection map from vX onto X which fixes the points of
X by Tya.

The family of compactifications studied here was first defined and
discussed in [6]. We introduce the object of our study in the following
definitions which appear in [6]. A singular compactification induced by
the function f is constructed as follows: Let f : X — K be a continuous
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function from the space X into a compact set K. Let the singular set,
S(f), of f be defined as the set {x € K : for any neighborhood U of z,
clx f[U] is not compact}. If S(f) = K, then f is said to be a singular
map. It is easy to verify that S(f) is closed in K and that if f is a
singular map then f[X] is dense in S(f). If f is a singular map the
singular compactification of X induced by f, denoted by X Uy S(f),
is the set X U S(f) where the basic neighborhoods of the points in
X are the same as in the original space X, and the points of S(f)
have neighborhoods of form U U (f“ [U]\F) where U is open in S(f)
and F' is a compact subset of X. This defines a compact Hausdorff
topology on X Uy S(f) in which X is a dense subspace. We will say
that a compactification aX of X is a singular compactification if aX
is equivalent to X Uy S(f) for some singular map f.

An important characterization of a singular compactification is the
following one: The singular compactifications of X are precisely those
compactifications aX of X whose remainder aX\X is a retract of aX.
It is also known that if aX is a singular compactification and vX is
any compactification of X less than X, then vX is also a singular
compactification. (The reader is referred to [14, 5] and [1] for more
details). Hence the infimum of any family of singular compactifications
is a singular compactification. However the supremum of a family of
singular compactifications need not be a singular compactification. It
is known, for example, that SN is the supremum of singular compact-
ifications but SN is not a singular compactification (see [14, page 20]
or [1]).

If G is contained in C*(X), the symbol wg X will denote the smallest
compactification to which all functions in G extend (this notation was
introduced in [11]). If f belongs to C*(X), wyX will denote the
smallest compactification of X to which f extends. Let G C C*(X).
The evaluation map ec induced by G is the function eq : X — II{I, :
g € G} (where, for each g, I, is a closed interval containing g[X])
defined by eq(z) = (g(z))gec. The set S, will denote the set of all
singular maps in C(X) = {f|, : f € C(yX)}. Thus Ss denotes the
collection of all singular maps in C*(X). All other notation will be as
described in [1] and [15].

It is known that every compactification aX of X can be expressed
in the form wg X, where G C C*(X), see [11, Theorem 1] or [1, 1.11].
In particular, aX is equivalent to we, (x)(X). By Theorem 2.6 of [1],
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we know that if aX is singular, then aX is equivalent to wg, X, the
supremum of all singular compactifications less than or equal to aX.
In fact, the following stronger statement is true: A compactification
aX is the supremum of singular compactifications if and only if aX
is equivalent to wgX for some G C Sg3, see [1, 2.8]. But this does
not imply that a compactification of form wgX for some G' C S is
a singular compactification (as witnessed by the example of SN). It
is also known that not all compactifications are of the form wgX for
some G C S3. (The two-point compactification of R is an example; see
1, 2.7].)

2. The largest singular compactification. The main objective
of this section is to develop a way of recognizing those locally compact
noncompact Hausdorff spaces X which have a largest singular com-
pactification. We begin by clearly defining the term largest.

Definitions 2.1. We will say that aX is the largest singular com-
pactification of X if aX is a singular compactification and, whenever
vX is a singular compactification of X, then vX < aX, i.e., X has
a largest singular compactification if the supremum in (K(X), <) of
the set of all singular compactifications of X is a singular compacti-
fication. We say that the compactification vX is a mazimal singular
compactification if vX is singular and there does not exist a singular
compactification (X such that (X > ~vX.

Note. Recall that the family of all singular compactifications is a
lower semi-lattice. Thus, to show that a locally compact Hausdorff
space X has a largest singular compactification is equivalent to showing
that the family of all singular compactifications of X is a complete
lattice.

We begin by presenting the following previously proven results.

Proposition 2.2 [11]. Let G C C*(X) and aX be a compactification
of X. Then aX = wgX if and only if each function g in G extends to
9% in C(aX) and G separates the points of aX\X.
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Theorem 2.3 [5]. If aX is a compactification of X and G C S,,
then aX = sup{X Uy S(f) : f € G} if and only if G* separates the
points of aX\X.

Theorem 2.4 [11]. a) Let f € C*(X). Then w;X is equivalent to
XU*S(f). In particular, if f is a singular map, then wyX is a singular
compactification and wyX is equivalent to X Uy S(f).

b) If G C C*(X) and wgX is a singular compactification, then
t = el gor|x is a singular map, where r : wgX — weX\X is a
retraction map, and wgX s equivalent to X Uy S(t).

Theorem 2.5 [1]. If aX is a singular compactification, then aX
is equivalent to ws, X. Hence every singular compactification aX of
X is the supremum of the family {X Uy S(f) : f € Sa} of singular
compactifications.

The following proposition will help us formulate our problem in a
more succinct way.

Proposition 2.6. The compactification aX of X is the largest
singular compactification of X if and only if aX = ws, X and ws, X is
singular.

Proof. =. Suppose aX is the largest singular compactification of
the space X. Then, by 2.5, aX = wg, X. Since wg_ X is the smallest
compactification to which all functions in Sz N Cy(X) extend, then
ws, X < ws,X. Now, if f € Sg, then, by Theorem 2.4a), wsX =
X Uy S(f) < aX (since X is the largest singular compactification).
Let vX = sup{w;X : f € Sg}. Hence, X < aX. By Theorem 2.3,
Sg separates points of yX\ X, consequently ¥X must be the smallest
compactification to which the set of all functions in Sg extend, or more
succinctly, X = wg, X. It must then follow that a X = wg, X.

~

<. Suppose aX = wg, X and that wg, X is a singular compactifi-
cation. By Proposition 2.2, Sg separates the points of «X\ X and, by
Theorem 2.3, aX = sup{X Uy S(f) : f € Sg}. Since every singular
compactification is of the form wg X for some G C Sg, by Theorem 2.5,
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and as

weX =sup{X Uy S(f): f € G} (by 14)
<sup{X Uy S(f): f €Sz} (since GC Sp)
=alX,

then wg, X is the supremum of all singular compactifications; hence,
aX is the largest singular compactification of X. o

We can now reformulate our question as follows:

When is the compactification ws, X a singular compactifica-
tion?

Definition 2.7. The compactification wg, X will be denoted by
pX (whether it is singular or not). When we will speak of the p-
compactification of X, we will mean uX.

Note that the u-compactification of X exists for all completely regular
spaces X. We know that in some cases the p-compactification of
X is equivalent to SX. (In 2.13 of [1] the author shows that, for a
compactification X of X, if «X\X is not totally disconnected, then
aX is equivalent to wg,  X. Also, in 2.14 of the same paper, we have the
following result: If X is a strongly zero-dimensional not almost compact
space, then X is the supremum of the family of the two-point singular
compactifications of X, hence X = ws,X.) We will show that there
is a multitude of spaces X whose p-compactification uX is neither
the Stone-Cech compactification nor the Freudenthal compactification.
Note, however, that if uX < 68X, then 8X\X is totally disconnected,
since, by 2.13 of [1] noted above, if X\ X is not totally disconnected,
then BX = wg, X = uX. Hence, if uX < X, then uX cannot be the
Freudenthal compactification, since if SX\X is totally disconnected
BX is the Freudenthal compactification.

Before we answer the question stated above, we will develop in
2.9-2.12 a characterization of those spaces X such that X is equivalent
to BX. First we give an example of a space X such that X is strictly
less than 5X.
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Example 2.8. Let z and y be distinct points in FR\R, and let
X = PR\{z,y}, where X is equipped with the subspace topology
inherited from SR. If f € C*(X), f can be extended to clgr X, via f|gr,
hence SR = BX. Clearly X must be connected as R C X C clgrR,
and R is connected. It follows that GX\X is not the continuous
image of X. Then the one-point compactification is the only singular
compactification, since SX\X cannot be a retract of 3X. Hence, by
Proposition 2.6, the one-point compactification of X is uX. Hence,
uX < pX.

Note that those spaces X such that X < SX must be amongst those
spaces which are not strongly zero-dimensional and whose outgrowth
BX\X is totally disconnected (see the paragraph following Definition
2.7).

Theorem 2.9. Let X be a topological space. Then pX = X if
and only if Sg separates the points of DN (BX\X) for each connected
component D of BX.

Proof. =-. Suppose X is a space such that 83X = uX = wg, X. Then

Sg separates the points of SX\X. Hence Sg separates the points of
DN (BX\X) for each connected component D of 5X.

<. Suppose Sg separates the points of D N (BX\X) for each

connected component D of 5X. It will suffice to show that Sg separates
points of X\ X, since Proposition 2.2 will imply that pX = 8X. Let
x and y be distinct points in SX\X. If z and y belong to distinct
components of 5X, then there exists a clopen subset U of X which
contains x but not y. The restriction of the characteristic function Xy
to X is a singular map whose extension to X separates x and y. This
fact, and our hypothesis, implies that X = wg, X = uX. i

The example of a space X such that X is not equivalent to 5X given
in Example 2.8 is rather trivial. We will now investigate such spaces
in order to construct more complex examples of such spaces. First we
develop some more theory (in Theorem 2.11 and Example 2.13).

The following is Corollary 1.7 of [1].
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Corollary 2.10. Let f : X — K be a continuous map into a compact
Hausdorff space such that f[X] is dense in K. Let E¢(X) denote the
set of all compactifications aX of X such that f : X — K extends to
f*:aX — K. Then f is a singular map if and only if f*[aX\X]
contains f[X] for some (equivalently for all) aX € E¢(X).

Theorem 2.11. If X is a connected noncompact space which is not
almost compact, then the following are equivalent:

1) pX = BX.

2) There is a continuous function from BX\X onto a closed interval
with nonempty interior.

3) The space X has a compactification aX whose outgrowth aX\X
is homeomorphic to a closed interval of real numbers (with nonempty
interior).

4) The space X has a singular compactification which is not the one-
point compactification wX of X.

5) Ss contains a nonconstant function.

Proof. We will prove the equivalence of these statements in the
following order: 4 =3 =2=1= 5= 4.

4 = 3. Suppose X has a singular compactification aX such that
aX\X contains more than one point. By Theorem 2.5, aX is equiv-
alent to wg, X. Let x and y be distinct points in aX\X. Since S¢
separates the points of aX\X, there is a function f in S, such that
f*(x) is not equal to f*(y). Since f is a singular map, the compact-
ification wyX is a singular compactification (2.4). Also, since X is
connected, then by 2.15 of [1], w; X\ X is homeomorphic to a closed
interval in R. Now w;X\X contains more than one point, hence this
interval has nonempty interior.

3 = 2. If X has a compactification aX such that aX\X is
homeomorphic to a closed interval of R (with nonempty interior), then
the projection map, mgo, maps SX\X onto aX\X. This means SX\X
can be mapped continuously onto a closed interval of R (with nonempty
interior).

2 = 1. Suppose there is a continuous function f from SX\X onto a
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closed interval [a,b] = I with nonempty interior. We must show that
uX = BX. The reader will note that the connectedness of X does
not play a role in the proof of 2 = 1. We will suppose that SX\X
is 0-dimensional, since, if BX\X is not 0-dimensional then, by 2.13 of
1], uX = BX. Let z and y be distinct points in SX\X for which
f(z) = f(y) (since SX\X is 0-dimensional and [a, b] is not this implies
that f cannot be one-to-one; thus such a pair of points can be found).
Let us consider the case where f(x) is a point in (a,b). (The proof
for the case where f(z) is a or b will be similar.) Let M = (¢,d) be
an open interval containing f(x) such that ¢ is not a, and d is not b.
Let U and V be disjoint clopen (in 8X\X) neighborhoods of z and
y, respectively, such that both U and V' are contained in f“(M). Let
f*: BX\X — R be a function which agrees with f on (8X\X)\(UUV)
and which sends U and V' to distinct points in [a,b]\M. The function
f* is continuous. Let the function h : [a,b] — R be defined as follows:
h(z) =z if x € [a,c], h(z) = cif x € [¢,d] and h(z) = 2 — (d — ¢)
if z € [d,b]. The function h is continuous and has a range which is a
closed interval. Then the function h o f* separates the points x and y
and maps X\ X onto the closed interval [a,b—(d—c)]. Let k : X — R
be an extension of ho f* to all of X, and let g = (kAa)Vb—(d—c).
Note that ¢ maps X into g[BX\X] = [a,b — (d — ¢)]. Hence g|x is a
singular function which separates the arbitrarily chosen points x and
y in BX\X. We have shown that Sg separates the points of SX\X;
hence fX = wg, X = pX (by Proposition 2.2 and the definition of
uX).

1 = 5. Suppose every function in S is constant. Then every function
in Sp extends to wX, hence pX = wg, X = wX. As X is not almost
compact and as |wX\X| =1, we have uX is not equivalent to 5X.

5 = 4. Suppose Sg contains a function f which is not a constant
function. Since f is a singular function wyX is a singular compactifi-
cation and wyX is equivalent to X Uy S(f) (by Theorem 2.4). Since f
maps X into S(f) and f[X] contains at least two points, then w;X is
a singular compactification which is not the one-point compactification
of X. u]

We now give a general characterization of spaces X such that pX =
0X.
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Theorem 2.12. Let X be a locally compact space. Then the following
are equivalent:

1) pX = gX.
2) At least one of the two following conditions is satisfied:

a) Any two points of BX\X are contained in distinct connected
components of BX.

b) There is a continuous function from SX\X onto a closed interval
with nonempty interior.

Proof. 1 = 2. Suppose the space X is such that pX = X and that
BX\X contains a pair of points, say « and y, which both belong to
the same connected component C' of fX. Since uX = X, then X
is equivalent to wg, X. Hence there is a function f in Sg such that 18
separates = and y (2.2). Since f is a singular map, f?[3X] is contained
in fP[3X\X] (2.10). Also, since C' is connected and f” separates x and
y, fP[C] is a closed interval, say [a, b], with nonempty interior, that is,
a is not equal to b. Then f5[C] = [a, b] is contained in fP[3X\X]. Let
h = (f? Aa)Vb. Since h maps X\ X continuously onto [a, b], we are
done.

2 = 1. Suppose any two points in SX\X are contained in distinct
connected components of SX. Let x and y be any two points in
BX\X, and let M and L be distinct connected components of SX
such that x is in M and y is in L. Then there exists a clopen (in 8X)
subset U of X which contains M but not L. If f is a characteristic
map which sends U to zero and SX\U to one, then f|x is a singular
function whose extension to X separates x and y. Since x and y were
arbitrarily chosen in SX\ X, Sg separates the points of X\ X, hence
BX is equivalent to pX = ws, X.

We now consider the other hypothesis of 2). Suppose BX\X can be
mapped by a continuous function f onto some closed interval [a, b] of R.
In 2 = 1 of Theorem 2.11 we have proven that this hypothesis implies
that uX = X (without using the hypothesis that X is connected).
The theorem follows. O

We now provide a method for constructing spaces X such that pX
is not equivalent to 8X. Recall that a function f : X — Y is called
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irreducible if f does not map any proper closed subset of X onto Y.
Also recall that a topological space is a scattered space if it contains
no nonempty dense-in-itself subset (see 30E of [25]).

Example 2.13. Let Rt = {# € R : # > 0} and o be a
point in SRT\R™. Let S be an infinite compact scattered space and
Y = BRT\{co}. Let u and v be distinct points in S, X =S x Y and
X* be the quotient space of X obtained by collapsing to a single point
the doubleton {(u,0),(v,0)} and fixing all other points of X. Then
w(X™*) is not equivalent to G(X™).

Proof. Let S;Y,X and X* be as described in the statement of the
theorem. Then BY is BR*, the one-point compactification of Y. Since
Y is pseudocompact, X = S x 8Y (see 8.12 and 8.20 of [24]). It
is easily verified that fX* = X* U {(z,00) : x € S}. Then pX*\X*
is the scattered space S* = {(z,00) : € S} which is homeomorphic
to S itself. Since the perfect image of a scattered space is scattered,
there is no continuous surjection from S* onto a closed interval I
with nonempty interior. We have just produced a completely regular
nonconnected Hausdorff space X* whose outgrowth SX*\ X* cannot
be mapped continuously onto a closed interval. Note that the points
(u,0) and (v,00) are not contained in distinct connected components
of X*. Then, by Theorem 2.12 1 = 2, uX* is not equivalent to 5X*.
O

The rest of this section (2.14 to 2.34) is devoted to solving the question
(stated earlier): When is the supremum, pX (= ws,X), of all singular
compactifications a singular compactification?

Recall that a subset B of X is called a P-set if any Gs containing B
is a neighborhood of B.

Lemma 2.14. If D is a closed C-embedded copy of N in a locally
compact space X, then (clgx D)\D is a P-set of BX\X.

Proof. Let D be a closed C-embedded copy of N in a space X.
It suffices to show that, if (clgxD)\D is contained in a zero-set Z
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in fX\X, then it must be contained in its SX\X-interior. Let
f € C*(BX\X) be such that (clgxD)\D C Z(f). Let g be a function
in C(BX) such that glgx\x = f. Since (clgxD)\D C Z(g), then if
D = {d; :i € N}, {g(d;) : i € N} converges to zero. For each i € N,
choose a neighborhood V; of d; such that the closures in X of the
V; neighborhoods form a pairwise disjoint family of compact sets and
lg(x)—g(d;)|, 1/ifor all z in V;. Let h : X — R be a continuous function
such that h[d;] = 1 for each i € N and h[X\U{V; : i € N}] = {0}. (By
9M1 of [15] such a function exists). Let h® denote the extension of h
to BX. Since hP[clgx D] = clgrh[D] = {1}, then hP[clzx D\D] = {1},
hence clgxD\D C Cz(h?). Since X\(U{V; : i € N}) C Z(h9),
clpx (X\(U{V; : i € N}) C Z(h?). Let p be an arbitrary point in
(BX\X) N Cz(h®). Then p contains a 3X-neighborhood which misses
X\ U{V; : ¢ € N}. Furthermore, any 3X-neighborhood S of p must
meet infinitely many V;’s since clxV; is compact for all i. Suppose
g(p) # 0. Observe that lim;_[sup{|g(z)| : z € V;}] = 0 (since
lg(x) —g(d;)|, 1/i for all x in V; and {g(d;) : ¢ € N} converges to zero).
If g(p) # 0, then there exists an open interval T (in R) containing
g(p) such that clgT does not contain the point 0. But ¢ [T] meets
infinitely many V;s. Since lim;_,o[sup{|g(z)| : x € V;}] = 0, the point
0 must belong to clg7'. Since this is a contradiction, g(p) = 0 = f(p)
(since v|gx\x = f). Hence p € Z(f). Since p was arbitrarily chosen
in BX\X NCz(h?), BX\X NCz(h?) C Z(f). Hence Z(f) is a BX\X-
neighborhood of clgx D\D. Thus clgx D\D is a P-set of fX\X. O

In 6.6 of [24], W.W. Comfort shows (by assuming the continuum
hypothesis) that, if 5X is a singular compactification, then X must be
pseudocompact. In 2.16 we have a generalization of Comfort’s result.
We prove it in ZFC. (In [12] the author also presents a proof of Lemma
2.15 and Theorem 2.16). We begin by proving the following lemma.

Lemma 2.15. If X contains a C-embedded copy of N, i.e., if X is
not pseudocompact, then uX = X.

Proof. Suppose X contains a C-embedded copy of N. Let z and
y be distinct points in SX\X. We will show that there exists a
singular function ¢ : X — [0,1] whose extension to SX separates
x and y. Let u,p and z be distinct points in D N (BX\X). If «
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belongs to SD\D, let w = z and if y belongs to SD\D, let z = y.
Let U,V and M be pairwise disjoint open subsets of 38X such that
u€e U, ze€Vand pe M. Let f: 3D — [0,1] be a continuous
function such that f(u) = 0, f(z) = 1 and f is a bijection from
M N D onto QN (0,1). Since the subsets U, M and V are pairwise
disjoint, the subset M N D is infinite and C-embedded in X, and the
subset {u} U {z} U clgp(M N D) is compact, then such a function
exists. Note that flclgp(M N D)] = clgf[M N D] = [0,1]. Let
h : DU {z} U{y} — [0,1] be defined as follows: h = f on GD; if
x does not belong to 8D, let h(z) = 0, and if y does not belong to
8D, let h(y) = 1. Observe that 5D U {z} U {y} is C-embedded in SX
(since it is compact). Thus, h extends to a function k on X such that
klsp = f. Let t =0V (k|x A 1); thus, t? =0V (k A 1). Consequently,
t” maps BX onto [0,1]. If S is an open subset of [0, 1], clgxt—[S] will
meet (clgx D)\D = BD\D since t°| 1 p is a bijection from M N D onto
(0,1)NQ. Hence t is a singular map. Observe that the extension of the
singular function ¢ to t® on X separates = from y. Thus S’g separates
the points of SX\X. By Proposition 2.2, 4 X is equivalent to 5X. This
proves the lemma. |

Theorem 2.16. If X has a largest singular compactification puX,
then X does not contain a C-embedded copy of N, i.e., X is pseudo-
compact.

Proof. Suppose pX is singular. We will suppose that X contains a
C-embedded copy D of N and show that this leads to a contradiction.
If D is a C-embedded copy of N in X, then, by 6.9 of [15], clgx DNED.
Since D is closed in X, 8D\ D is contained in X\ X. By Lemma 2.15,
uX is equivalent to SX.

Let r : X — [X\X be a retraction from X onto SX\X (the
retraction r will exist by Lemma 2.15). The following construction will
reveal a contradiction. First note that, since r[3D] must be separable
and r[BD\D] = BD\D, then r[D]\r[3D\D] must contain infinitely
many points. By Lemma 2.14, the set V = (8X\X)\(r[D]\(8D\D))
is a neighborhood of SD\D in SX\X. But V contains an open
neighborhood W of BD\D, so r[D]\WW has finitely many elements,
thus providing a contradiction. u]
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The converse of Theorem 2.16 fails. In 8.23 of [24] it is shown that
the product space [0,w;) X [0,w;) does not have a largest singular
compactification even though it clearly does not contain a closed C-
embedded copy D of N. Moreover, this illustrates that countably
compact spaces need not have a largest singular compactification. On
the other hand, the Tychonoff plank T is not countably compact and
yet possesses a largest singular compactification ST = (wT') induced by
any constant map on T. (Note that T is almost compact noncompact,
hence ST is singular as clearly there is a retraction r : ST — ST\T.)

The following definition leads us to a useful characterization of
pseudocompact spaces.

Definition 2.17. The subset C#(X) of C(X) is the set of all real-
valued functions f such that for every maximal ideal M in C(X) there
exists a real number r such that f —r € M.

The following theorem is an easy consequence of Theorem 5.8 (b) in
[15].

Theorem 2.18. The space X is pseudocompact if and only if
C(X)=C#(X).

Theorem 2.19 [2, 1.6]. The following are equivalent for f in C*(X)
1) f belongs to C#(X).

2) For every open subset U of BX f[UN X] = fA[U].

3) Clgx Z(f —r) = Z(f? —r) for any r € R.
)

4) f maps zero sets to closed sets.

Lemma 2.20. If X is a noncompact pseudocompact space and aX
is a compactification of X then, for each f € So, Z(f) is not compact
whenever Z(f%) is nonempty. Furthermore, claxZ(f) = Z(f*) for all
feCUX)=A{flx:[feClaX)}.

Proof. Since X is pseudocompact, then clgx Z(f) = Z(f?) for all f
in C*(X) (by Theorems 2.18 and 2.19 and also by 8.8 (b) together with
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8A (4) of [15]). Let f € S,. Then f[X] C S(f) = f*[aX\X] (2.10).
Hence Z(f*) N («X\X) is nonempty if Z(f) is nonempty. Note that
Z(f*) = m6alZ(f°)] = mpalclax Z(f)] = claxmgalZ(f)] = clax Z(f)
for all f € C,(X). It follows that Z(f*) = cloxZ(f) for all f in
Co(X). Hence Z(f) is not compact if Z(f“) is nonempty. o

Proposition 2.21. If X is pseudocompact and aX = X Uy S(f)
is a singular compactification of X such that S(f) is homeomorphic
to a subset of R, then f~(x) is noncompact for any x € S(f) and

fIXT=5(F).

Proof. Suppose X is pseudocompact and aX = X Uy S(f) is a
singular compactification of X such that S(f) is a subset of R. By
the lemma above, Z(f*) = cloxZ(f) for all f in Co(X). Also Z(f)
is not compact if Z(f®) is nonempty. Hence f (z) = Z(f — x) is not
compact for any x € S(f) (since f is a singular real-valued function).
By applying Theorem 2.18 and the equivalence of Theorem 2.19 (1)
and (4), we also conclude that f[X] = S(f) (since f[X] is dense in
S(f)-

Suppose S(f) is homeomorphic to a subset K of R. Let h : S(f) — K
be a function which maps S(f) homeomorphically onto K. By the
above, (h o f)“(x) is noncompact for all z in K. Hence f~(y) is
noncompact for all y in S(f). O

If X is not pseudocompact, then the above proposition may fail as
the following example illustrates.

Example 2.22. Let X* = [0,1] x [0,1] U {(—2,0)} viewed as a
subspace of the product space R?. Then X* is a compactification of
the space X = X*\([0,1] x {1}) and X*\ X is homeomorphic to the
closed interval [0,1]. Clearly X is not pseudocompact. Let us define
the function r : X* — [0,1] x {1} as follows: r((—2,0)) = (0,1) and,
for a € [0,1], r((a,b)) = ((a — 1)b + 1,1), i.e., r linearly maps the
closed interval {a} x [0,1] onto [a,1] x {1} carrying (a,1) to (a,1)
and (a,0) to (1,1). Observe that r is a well-defined continuous real-
valued function and that r maps any point of X*\ X to itself; hence,
X*\X is a retract of X* and r|x is singular. Also note that (0,1)
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and (—2,0) are the only two points in X* which are carried to (0, 1).
Hence, clx+(X Nr=((0,1)) = clx-{(=2,0)} = (=2,0) = r|((0,1)).
Thus 7|5 ((0,1)) is compact.

Lemma 2.23. If {f, : n € N} is a sequence of real-valued singular
functions which converges uniformly to a function f in C*(X), then f
18 also a singular function.

Proof. Let x € X, f(x) = r and U be an open interval in R which
contains r. Let € > 0 such that (r —e,7 +¢) C U. Since {f, : n € N}
converges uniformly to f, there exists a number N such that, for all
n > N, |fn— fll <e/3. It follows that |fx(z) — f(z)| < /3. Let
z = fn(x); then z € (r—e/3,r+¢/3). Let V be an open neighborhood
of z such that V C (r—e/3,r+¢/3). We claim that f,; [V] C f<[U] for
allm > N. Let ¢t € f; [V] for some m > N. Then |f,(t) — f(t)] < e/3;
hence, f(t) € (r —e,r +¢) C U. Thus, f|f;[V]] € U. Since
70Ul ={z € X : f(x) € U}, f7[V] C f[U]. This establishes
the claim. Since fx € S3, clx fx [V] is not compact. Hence clx f[U]
cannot be compact since clx f [V] C clx f[U] (by the above claim).
This implies that f is a singular map. o

In Remark 2.9 of [1] the author shows that, for G C S3, “wgX being
singular does not imply that eq is singular.” In Theorem 2.26 we show
that if G is a subalgebra of C*(X) which is contained in Sy, then weX
is singular and so is eq.

First we require the following results from [1].

Theorem 2.24 [1, 2.11]. Let aX be a singular compactification
of X. Let r : aX — aX\X be a retraction map, and define F
to be {forlx : f € CaX)}. Then FF C S,, F is a subalgebra
of Co(X), ep i a singular map, €% separates points of aX\X, and
aX 2 XUepS(er) 2wrpX.

In what follows, we will require the following concepts. If B is a
collection of functions in C*(X), a maximal stationary set of B is a
subset of X maximal with respect to the property that every f in B is
constant on it.
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The maximal stationary sets of a subalgebra are briefly discussed in
16.31 of [15].

Let G C C*(X),rapointin X and Gt = {f-r:r € G,r € R}. The
symbol ,Kg will denote the set N{Z(f) : f € GT,z € Z(f)}. Thus,
y € o Kg if and only if f(y) = f(x) for each f € G. Suppose aX is a
compactification of X such that G (hence GT) is a subset of Cy(X).
Forz € aX,let , K& =n{Z(f*): f € Gt,xz € Z(f*)}. It is clear that
the subset ,K¢g (,K&) is a maximal stationary set of G (G*) which
contains the point z. It is easily observed that, given G C C*(X), the
collection {, K¢ : © € X} forms a partition of X.

Theorem 2.25 [1, 2.12]. Let aX be a compactification of X.
Let G be a subset of S, such that the evaluation map e : aX —
MyeeS(f) separates the points of aX\X. Then aX is equivalent to
wgX. Furthermore, the following are equivalent:

1) eq is a singular map and we X (=2 aX) is equivalent to the singular
compactification X U, S(eq).

2) eq[X] C e lwe X\ X].

3) e is a singular map.

4) er is a singular map for every finite subset F of G.
5) 2+ K58 N (weX\X) is a singleton set for every x € X.

Theorem 2.26. A compactification aX of X is singular if and only
if Sq contains a subalgebra G of C*(X) such that G separates the
points of aX\X. Furthermore, if G is a subalgebra of C*(X) which
is contained in S, such that G* separates the points of aX\X, then
eq s a singular map and aX = weX = X U, S(eg) (a singular
compactification).

Proof. =-. Suppose aX is a singular compactification. Then,
by Theorem 2.5, aX is equivalent to wg,X. By Theorem 2.24,
S, contains a subalgebra G of C*(X) such that eq is singular and
aX =2 X U, S(eq). Since ege separates the points of aX\ X, then so
does G* (by 1.10 of [1]).

<. Suppose aX is a compactification of X and G is a subalgebra
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of C*(X) which is contained in S, such that G* separates the points
of aX\X. To obtain our result we will show that ,Kge N (aX\X)
is a singleton for each € X and then apply the equivalence of
Theorem 2.25 (1) and (5).

Let k be a point in X, and let H = {Z(f*)NaX\X : f € GT,k €
Z(f)}. It is easily seen that NH = ;Kgo N aX\X. We wish to
show that NH is nonempty by verifying that H possesses the finite
intersection property. Let M = {Z(f*) NaX\X : i € F} be a
finite subcollection of H. Note that NM = Z(3,cx(f)?) N (aX\X).
Since G is a subalgebra of C*(X) and each f; belongs to G, the
function Zz’eF(fi)2 belongs to GT; hence, by 1.16 of [1], it belongs to
Se. Thus, by Corollary 2.10, (3;cp fA)[X] C (X,cr fH)[aX\X] =
Cier(fA)M)aX]. As k € Z(3,cp(f7)), it follows that NM is
nonempty. Hence, H has the finite intersection property. Since aX\X
is compact, NH = ;Kgo N (aX\X) is nonempty. Since G* separates
the points of aX\ X, pKge N (aX\X) is a singleton set in aX\X. By
Theorem 2.25 (5) implies Theorem 2.25 (1), eq is a singular map and
aX ZweX = X U, S(eg), a singular compactification. m]

Suppose aX is a singular compactification and r : aX — X\ X is a
retraction map. It is worth noting that the subalgebra G = {f or|x :
f € C(aX)} (see Theorem 2.24) contains the constant functions, hence
G = G'*. This follows from the following fact.

Fact. If g € S, is so that g is constant on aX\X, then g is
constant.

Proof. Since g is singular g[X] C g*[aX\X], by Corollary 2.10. Since
g%[aX\X] is a singleton, g[X] is as well. O

Proposition 2.27 [1, 1.6]. If aX is a compactification of X, K 1is
a compact Hausdorff space and f : X — K is a continuous function
which extends to f* : aX — K then f*[aX\X] = S(f).

Theorem 2.28. Let aX be a compactification of the space X. There
18 a one-to-one correspondence between the retraction maps from aX
onto aX\X, and the subalgebras G of Co(X) such that G C S, and



996 R.P. ANDRE

Glax\x = C(aX\X). If aX is not a singular compactification, then
no such retraction map r or such a subalgebra G exist.

Proof. If aX is not a singular compactification, then there does not
exist a retraction map r : aX — aX\X. Also, by Theorem 2.26,
S, does not contain a subalgebra G of C(X) such that G* separates
the points of «X\X. Hence, C,,(X) does not contain a subalgebra G
satisfying the properties described in the statement of the theorem.

Suppose aX is a singular compactification. Then there exists a re-
traction map r : aX — aX\X from X onto aX\X. By Theo-
rem 2.24, the family G = {for|x : f € C(aX)} i a subalgebra of
Cu(X), ec is a singular map, eg« separates points of aX\X, and
aX =2 X UegS(eg). Observe that G* = {for: f € C(aX\X)} and
that Gox\x = C(aX\X) (since r|,x\x is the identity function on
aX\X). We have shown that we can associate to each retraction map
r:aX — aX\X asubalgebra G = {for|x : f € C(aX)} of Co(X)
which is contained in S, such that G*|,x\x = C(aX\X).

Let Fr. = {for|x:feClaX)} and Fs = {fos|x : f € ClaX)},
where r : aX — oX\X and s : aX — aX\X are retractions. We
want to show that if r #, then F, # Fj, i.e., that the map r| — F,
is one-to-one. If r # s, there exists zo € X such that r(zg) # s(xo).
As C(aX) separates the points of a X\ X, there exists f € C,(X) such
that *(r(z0)) # F*(5(20)), 1, (f o\ x07)(Z0) £ (F* o\ x 05) (o).
Now f¥|ox\x o7 € Fy; we will show that f*[,x\x o7 & Fs, thereby
showing that F,. # Fs. Consequently, if t € aX\X, then s(t) =r(t) =t
(as r and s are retractions) and g®(t) = g*(s(t)) = f*(r(t)) = f(t).
Hence, in particular, g®(s(z9)) = f*(s(xzo)). But, by the above,
f(s(zo)) # [*(r(x0)). Thus, (¢°|ax\x © s)(z0) # (f*lax\x ©7)(20),
in contradiction to the definition of g. Hence f*|,x\xor ¢ Fs, I # Fi,
and r| — F, is a one-to-one map.

We will now show that, for every subalgebra G of C,(X) such that
G C So and G%ox\x = C(aX\X) there exists a retraction map
r:aX — aX\X from aX onto aX\X such that G = {f or|x :
f € C(aX)}. Let G be a subalgebra of Cy,(X) such that G C S,
and G, x\x = C(aX\X). We have shown (in Theorem 2.26), that
if G is a subalgebra of C(X) such that G C S, and G* separates the
points of X\ X, then eg is a singular map and aX = X U, S(eq).
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Since G* separate the points of aX\X, then ege is one-to-one on
aX\X; hence, the function (ege|ax\x)” 0 ege @ aX — aX\X
is a retraction map (since eg is singular and, by Proposition 2.27,
eg[aX\X] = S(eq) = eg[aX]; thus, (e&|ax\x) T is a well-defined
map whose domain is (eg|ox\x)[@X\X]). We claim that G* =
{f“ax\x o [(eGlax\x)T o €g] : f € Ca(X)}. We begin by proving
that G* C {f*lax\x o [(e&lax\x) T 0ed] 1 f € Ca(X)}. Let g € G and
x € X. Since g € G C S,, g extends to a function g¢ on aX. Then
e& oed(x) is a subset of aX which meets a X\ X in a singleton set, say
{y}, (since, by Proposition 2.27 eq[X] C e&[aX\X] and G* separates
the points of aX\X, hence ega is one-to-one on aX\X). Hence,
eGlox\x © €c(x) = {y}. Observe that eg™(eg(z)) S ““g(g9*(x))
(since g* € G* and e~ (e (z) = {y}. Observe that ega—(ega(z)) C
9% (9%(x)) (since g* € G* and e~ (e&(z)) = N{f* (f(x)) : f € G}).
Thus, y € g (g(x)). Therefore g*(y) = g*(z) = g(x). We have
just. shown that g*|ox\x ([8lax\x— © €al(®)) = §°() = glz) for
an arbitrary point x (hence for all ) in X. Thus g% = ¢g%|,x\x ©
e lax i © €3] € {flaxyx © [(€Rlaxix)~ 0 €3] : f € Ca(X)}. This
proves that G* C {f*[ax\x © [(e&lax\x) T 0€d] : f € Ca(X)}. We
now prove G 2 {f*[ox\x o [(e&lax\x) T 0ed] : f € Ca(X)}. Let k €
{fYax\xol(edlax\x)Toed] : f € Co(X)}. Observe that if t € Co(X)
such that k = t¥,x\x o [(eGlax\x)T 0 €&, then klox\x = t¥ax\x
on aX\X; hence, k = k|ox\x o [(e&|ax\x)T o eg]. Note that k|, x\ x
extends to a function g € G (since klox\x € C(aX\X) and, by
hypothesis, G|, x\x = C(aX\X)). Obviously, k|ox\x = glax\x On
aX\X. Let z € X. The argument in the proof above shows that (since
9 € G%) glax\x °© [e&|x\ x © ecl(z) = g(z) (for all z in X). Hence,
k(x) = ka|aX\Xo[eg|;X\XoeG]($) = 9|aX\XO[€g‘§X\XO€G]($) = g(x)
(for all z in X). Hence, k& = ¢g* € G* We have shown that
G D {fYax\x ©[(e&lax\x) T 0ed]: f € Ca(X)}. We conclude that
G = {fol(eg|ax\x) T oeg] : f € Ca(X)}. Hence, for every subalgebra
G of Co(X) such that G C S, and G%|ox\x = C(aX\X) there exists
a retraction map 7 : X — aX\X from aX onto aX\X (in this case
r = [eg]ix\x ©€&l) such that G = {f*|ax\x o7[x : f € Ca(X)}.

We have thus shown that there is a one-to-one correspondence be-

tween the retraction maps r from aX onto aX\X and the subalgebras
G of Cy(X) such that G C S, and G*[,x\x = C(aX\X). O
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Theorem 2.29. Let aX be a compactification of X. Then the
following are equivalent:

1) aX is a singular compactification.

2) S, contains a subalgebra G of C*(X) such that G* separates the
points of aX\X.

3) Sq contains a closed subalgebra G of Co(X) such that the mapping
¢: G — C(aX\X) from G onto C(aX\X) defined by ¢(f) = [*|ax\x

s an isomorphism.

Furthermore, the subalgebra described in statement 3) is the closure
(in C*(X)) of the subalgebra described in statement 2).

Proof. 1 < 2. This is Theorem 2.26.

2 = 3. Suppose there exists a subalgebra G of C*(X) contained
in S, such that G* separates the points of aX\X. As S, C C4(X)
clearly {f*|ax\x @ f € Sa} is contained in C'(aX\X). As aX\X is
compact and G* separates points of a X\ X, the collection G|, x\x =
{f%lax\x : f € G} is a subalgebra of C'(aX\X) which separates the
points and closed sets of aX\X. Without loss of generality, we may
suppose that G contains the constant functions since, if k is an number
and f € S,, f+k and kf are both singular maps. Thus, G|, x\ x
contains the constant functions and separates points and closed sets of
aX\X.

We claim that C(aX\X) = (clo,(x)G)*lax\x- By the Stone-
Weirstrass theorem, (clo, (x)G)%|ax\x € C(aX\X).

Observe that clo(ax\ x)(G%lax\x) = C(aX\X) (again by the Stone-
Weirstrass theorem). Hence, it will suffice to show that

cloax\x) (G%lax\x) € (cle, (x)G) ax\x-

Let f € clo@x\x)(G%lax\x). Then we can construct a sequence
C ={fi:ieN}in G\ x\x(C(C(aX\X),| |)) whose only cluster
point is f.

We wish to show that f € (clo, (x)G)*|ax\x- Now every function f;
in C extends to a function f in G*. Let C* = {f¥ :i € N} C C(aX).
Let g be a cluster point of C*. Then g € clgax)C* C clo@x)(G).
We will first show that glox\x = f. We can construct a sequence
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D ={f,;; : 5 € N} C C* whose only cluster point is g. Then, for every
e > 0 there exists a number N(¢) such that | f — g|l < € for every
j > N(e). Thus, ||fij — glax\x|| < € for every j > N(e). It follows
that g|ox\ x is a cluster point of C. Since C' has only one cluster point,
namely f7 g|aX\X = f

We will now show that glox\x € (clo,(x)G)%ax\x. It is eas-
ily seen that g|x € cle, (x){fi'le : © € N} C clg, (x)G. Hence,
g € (e, {ffle + i € N}* C (clg,(x)G)*. Thus, glax\x €
(clo,x)G)*lax\x-  Since glax\x = f, f € (clo,(x)G)ax\x-
The claim is established, ie., C(aX\X) = (clg,(x)G)%lax\x- By
Lemma 2.23, clg, (x)G is contained in S,,.

We now define the function ¢ : clg, (x)G — C(aX\X) from cl¢, (x)G
into C(aX\X) as ¢(f) = f*|ax\x. Clearly ¢ is a homomorphism. By
the above claim ¢ is onto C'(aX\X). We now show that ¢ is one-to-
one. Let f and g be two functions in clg, (x)G such that f*|,x\x =
9%lax\x. Since f and g are both singular maps and clg, (x)G is a
subalgebra which is contained in S,, then f — g is singular. Then
(f* — ¢)X] = (F* = g)[aX\X] = (/| — 8%l ) [aX\ X] =
{0}, (2.10). Hence, f = g. It follows that the map ¢ is an isomorphism.

3 = 2. Suppose S, contains a closed subalgebra G of C,(X) such
that the mapping ¢ : G — C(aX\X) from G onto C(aX\X) defined
by ¢(f) = f*ax\x is an isomorphism. Then clearly G* separate the
points of aX\X. O

Let Co (X)) denote the family of all functions f in C*(X) for which
the set {x € X : |f(z)| > 1/n} is compact for all n in N. These
functions are said to “vanish at infinity,” (see TFG of [15]). It is easily
verified that Coo(X) is an ideal in the ring C*(X).

We now know that if aX is a singular compactification of X then S,
contains a closed subalgebra G of C*(X) such that G* separates the
points of aX\X. The following theorem tells us that such a subalgebra
G of C,(X) is isomorphic to the quotient ring Cy (X )/Coo(X) under
the canonical homomorphism o : G — Cy(X)/Co0o(X) defined by
o(f) = Cx(X) + f.

Theorem 2.30. Let aX be a compactification of X. then aX is
a singular compactification of X if and only if Co(X)/Coo(X) is the
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isomorphic image of a closed subring F (of Co(X)) C S, under the
homomorphism o : F — Cq(X)/Cux(X) defined by o(f) = Coo(X)+ f.

Proof. =. Suppose aX is a singular compactification. Then, by
Theorem 2.26, there exists a subalgebra F' of C*(X) which is contained
in S, such that F'® separates the points of X\ X and such that o X
is equivalent to X U, S(er). By Theorem 2.29, the homomorphism
¢ : clo,x)F — C(aX\X) defined by ¢(f) = f*|ax\x is a ring
isomorphism. Let 7 : Cy(X) — C(aX\X) be the homomorphism
from Co(X) onto C(aX\X) defined by 7(f) = f*lax\x- We now
define the mapping 1 : Co(X) — clo, (x)F as ¥ = ¢~ o7. (Note
that +(f) is the unique g € clg, (x)F for which g%, x\x = f*ax\x)-
Observe that the kernel of ¢ is ¥ (0) = (¢~ o7)(0) =77 0 ¢(0) =
77(0%ax\x) = Coso(X). Hence, by the fundamental theorem of
homomorphisms, the function ¢ : Co(X)/Coo(X) — clg, (x)F defined
by ((Coo (X)+ f) = ¢(f) maps Cy(X)/Cs(X) isomorphically onto the
image clc, (x)F' of O (X) under 9. Observe that, if g € clg, (x)F, then
Y(g) = ¢~ o7(9) = ¢~ (9%|ax\x) = g (since ¢ is one-to-one and onto
C(aX\X)). Hence, for g € clo (x)F, ((Coo(X) 4+ g) = ¥(g) = 9.
It then follows that the canonical homomorphism o : clg, (x)F' —
Co(X)/Coxo(X) defined by o(f) = Coo(X) + f is onto Co(X)/Co(X)
(since, if g € Co(X), then Coo(X) +9 = (T (1(9)) = ¢~ (¥(¥(9)) =
Coo(X)+1(g); hence, o(¥(g)) = Coo(X) +¢(g) = Cc(X) +g). Hence,
the canonical homomorphism o maps clg, (x)F isomorphically onto
Ca(X)/CoolX).

<. Suppose now that Cu(X)/Coo(X) is the isomorphic image
of a closed subring F' (of Co(X)) C S, under the homomorphism
0 : F — Cy(X)/Cx(X) defined by o(f) = Coo(X) + f. We claim
that F'* separates the points of aX\X. For any g € C,(X) there is a
function f € F such that Coo (X )+ f = Cc (X)+g (since o maps F' onto
Co(X)/Cox(X)). It follows that, for every function g in C,(X), there
is a function f, in F' and a function hy in Coo (X) such that g = f,+h,.
Observe that the function h{ is zero on aX\X for each g in Cy(X).
Since the collection {g* : g € C,(X)} separate the points of aX\X,
then the subset {f;' : g € Co(X)} of F* must separate the points of
aX\X. Then, by Theorem 2.26, aX is a singular compactification.
]
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Theorem 2.31. Let aX be a compactification of X. then aX is a
singular compactification if and only if Co,(X) = Coo (X)BG (the vector
space direct sum) for some closed subalgebra G of C*(X) contained in
Sa-

Proof. =. Suppose aX is a singular compactification. We proceed
as in the first half of the proof of Theorem 2.30. By Theorem 2.29,
S, contains a closed subalgebra F of C,(X) such that the mapping
¢: F — C(aX\X) from F onto C(aX\X) defined by ¢(f) = f*|ax\x
is an isomorphism. Let 7: CyX) — C(aX\X) be the homomorphism
from Cy(X) onto C(aX\X) defined by 7(f) = f*ax\x. We now
define the mapping ¢ : Co(X) — F as ¢ = ¢~ o7. The kernel of
b is p=(0) = (6= 0 1) (0) = 7~ 0 6(0) = 7~ (0|x\x) = Coc (X).
Observe that, for every f in Co(X), f — ¥(f) = foo for some fy
in Co(X). Also if h € F N Cu(X), then 7(h) = h%ox\x = 0
(as h € Cu(X)). But 7(h) = ¢(h) = h%ax\x. Consequently
¢(h) = 0. As ¢ is one-to-one, h = 0. Hence, F N Cx(X) = {0}.
Thus, Cy(X) = Coo(X) @ F.

<. Suppose aX is a compactification of X such that Cy(X) =
Coo (X)®G, where G is a closed subalgebra of C*(X) which is contained
in S,. Since flaX\X] = {0} for every function f in C(X), then G*
must separate the points of aX\X. Tt follows that aX is equivalent to
wX, (by 2.2), and that ego : X — [[;cq S(f) separates the points
of aX\X.

Let  be a point in X. Recall that the set ;Ko = N{Z(f) : f €
G,z € Z(f)} is the maximal stationary set of G which contains the
point z (see the paragraph preceding Theorem 2.25). Let ,Kgo =
NZ(f*) : f € Gz € Z(f)} be the maximal stationary set of G*
which contains the point z. Let H, = {Z(f*)N(aX\X): f € Gtz €
Z(f)}. Then NH, = ,Kgo NaX\X.

We wish to show that NH, is a singleton set and then apply 5 = 1
of Theorem 2.25 to obtain our result. Since g separates the points
of aX\ X, it will suffice to show that NH,, is nonempty. In fact, since
every element of H, is compact, it will suffice to show that H, possesses
the finite intersection property. Let M = {Z(f?) NaX\X :i € F} be
a finite subcollection of H,. Note that N\M = Z(3,.p(ff)?) NaX\X.
Since G is a subalgebra, Y, -(f®)? is an element of Gt C Sz.
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Since (X,er(F))X] € [Siep(f2)?0X\X] (by Corollary 2.10),
then Z(3",cr(f)?) N aX\X is nonempty. Thus, H, possesses the
finite intersection property. It follows that NH, = ,Kge N aX\X is
a singleton set. By 5 = 1, eg is a singular map and aX (2 wgX, by
Proposition 2.2) is the singular compactification X U, S(eg) induced
by eq.- ]

Recall that an upward directed partially ordered set (X, <) must
satisfy the following condition: If ¢ and b are elements of X, then there
exists an element ¢ of X such that c is greater than or equal to both
a and b. We now present an example of an upward directed family
A of singular compactifications whose supremum is not a singular
compactification.

Example 2.32. Let w; denote the first uncountable ordinal and
[0,w1) be the space of all ordinals less than wq. Let X = [0, w;) X [0, w1)
(equipped with the product topology). The space X is pseudocompact
(see 8.21 of [24]). In 8.23 of [24], it is shown that X = [0,w;] X
[0,w;] and that 8X is not a singular compactification. We will show
that the lattice of all compactifications of X contains a subfamily
A of singular compactifications which is totally ordered and whose
supremum is SX. Since a totally ordered family is clearly upward
directed, we will have shown that an upward directed family of singular
compactifications does not necessarily have a supremum which is a
singular compactification.

Let A be a nonlimit ordinal such that A is less than w;. Let o)X
be the decomposition space obtained by collapsing to a point the
subset ([A,wi1] x {w1}) U ({w1} x [N\, w1]) of BX and fixing all other
points of BX. Clearly a)X is a compactification of X. Note that,
if k is a nonlimit ordinal such that A < kK < wjy, then ap X <
axX < (BX. Hence the family A = {a,X : 0 < kK < wi,k a
nonlimit ordinal} is a totally ordered collection of compactifications
of X whose supremum is X. We now claim that every member of
A is a singular compactification. Let ay X be a member of A. Let us
denote by [wi] the point of axX which is formed by collapsing to a
single point the subset [A,w1] x {w1} U{wi} X [A,w1] of BX. If k < A,
let Fi, = {x} x [0,w1), and H, = [\, w1) X {k} (both subsets of X).
Let K = [\, w1) X [A\,w;1). Observe that the elements of the collection
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D ={F, : x < AJU{H, : K < A} U{K} of subsets are pairwise
disjoint. Consider the function r : a3 X — a)X\X defined as follows:
r[Fs] = (k,w1) if K <A, r[Hg] = (w1, k) if & < A, and r[K] = [wn]. Tt is
easily verified that r is continuous and is a retraction map. Hence, a) X
is a singular compactification. Then A is an upward directed family of
singular compactifications whose supremum is X, a compactification
of X which is not singular.

We summarize the main result of this section in the following theorem.

Theorem 2.33. If X is a locally compact and Hausdorff space, then
the following are equivalent:

1) The space X has a largest singular compactification, i.e., uX is a
singular compactification.

2) The set S, contains a subalgebra G of C,(X) such that G*
separates the points of pX\X.

3) The set S, contains a closed subalgebra G of C,(X) such that
the mapping ¢ : G — C(uX\X) from G onto C(uX\X) defined by
¢(f) = f*lux\x is an isomorphism.

4) The quotient ring Cp(X)/Cox(X) is the isomorphic image of a
closed subring F' (of C,(X)) C S, under the homomorphism o : F —
Ca(X)/Cso(X) defined by o(f) = Coo(X) + f.

5) The set C,(X) = Cxo(X) & G (the vector space direct sum) for
some closed subalgebra G of C*(X) contained in S,,.

Proof. 1 < 2. This is Theorem 2.26.
1 < 3. This is Theorem 2.29.

1 < 4. This is Theorem 2.30.

1 < 5. This is Theorem 2.31. ]

By Theorem 2.16, any one of the above five conditions on pX implies
that X is pseudocompact.

Recall that a space X is said to be retractive if X\ X is a retract of
08X, i.e., BX is a singular compactification. W.W. Comfort has shown
using CH that retractive spaces are locally compact and pseudocompact
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(see 6.6 of [24]). A precise characterization of retractive spaces can now
be given.

Corollary 2.34. For a locally compact Hausdorff space X the
following are equivalent:

1) The space X is retractive, i.e., BX is a singular compactification.

2) The set Sg contains a subalgebra G of C*(X) such that GP
separates the points of BX\X.

3) The set Sg contains a closed subalgebra G of C*(X) such that
the mapping ¢ : G — C(BX\X) from G onto C(BX\X) defined by
o(f) = fPlsx\x is an isomorphism.

4) The quotient ring C*(X)/Cx(X) is the isomorphic image of a
closed subring F' (of C,(X)) C S,, under the homomorphism o : F —
O*(X)/Coo(X) defined by o(f) = Cool(X) + f.

5) The set C*(X) = Coo(X) & G (the vector space direct sum) for
some closed subalgebra G of C*(X) contained in Sgs.

Proof. The equivalence of the statements 1 to 5 follow directly from
Theorem 2.33. O

In the introductory paragraph of [7] the authors make the following
conjecture.

Conjecture. The singular compactifications of a space X forms a
lattice if and only if BX is singular.

We will show that this conjecture fails by constructing a space X
whose family of singular compactifications forms a (complete) lattice
even though X is not singular.

Example 2.35. Let Y be a locally compact connected space
such that SY'\Y is finite and has more than one point. (The space
Y = (BR)\F where F is a finite subset of SR\R is an example of
such a space). Let N denote the natural numbers and wIN denote
its one-point compactification. Let X = wN x Y (with the product
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topology). By 9D 3) of [15], Y is pseudocompact. By 8.12 and 8.20
of [24], 6X = wN x 8Y. We claim that uX = wN x wY (where wY
denotes the one-point compactification of Y'). Let w and v be distinct
points in BY'\Y. Let f € Sz and o be a point in wN. Then f extends
to the function f? : BX — R. Let ¢ € wN and suppose f? separates
the points (z9, u) and (zg,v). Since f is singular, f[3X] = fP[BX\X]
(by Corollary 2.10) and f%[{zo} x Y] C fP[8X\X], which is a totally
disconnected set (since it is countable). Since f? separates (xg,u) and
(70, v), then fP[{xo} x BY] is not a singleton, hence is not connected.
This contradicts the fact that f°[{xg} x BY] is connected (being the
continuous image of the connected set {zo} x fY). Hence, for any
r € wN, every singular function f in Sg has an extension f? which
is constant on (clgx ({z} x Y)\({z} x Y). Thus, for each z in wN,
(clyx ({z} xY)\({x} xY) is a singleton set, (this follows from the facts
that (clyx ({z} xY))\({z} xY) is either a singleton or contains finitely
many elements, and the collection Sgu separates the points of pX\X).
Let z¢ and yo be distinct points in wN. Since {z¢} x 8Y and {yo} x fY
are distinct connected components of X, then there exists a clopen
subset U of 8X such that {0} x BY C U and {yo} x 8Y C BX\U.
Let g : BX — {0, 1} denote the characteristic function with respect to
U. Then the function g|x is a singular function whose extension to X
separates {zo} X Y and {yo} x BY. Hence Sg separates the connected
components {{z} x 8Y : z € wN} of fX. This implies that puX is
the union of the disjoint collection {cl,x({z} x BY) : # € wN}. The
map r defined by r[cl,x({z} x 8Y)] = cl,x({z} x Y)\({z} x 8Y)
(where z € wN) is easily seen to be a retraction map from pX onto
uX\X. Thus we conclude that ;X is a singular compactification. Since
1X is the supremum of all singular compactifications, the collection of
all singular compactifications forms a (complete) lattice (see the note
following Definition 2.1). Since (cl,x ({z} xY))\({z} xY) is a singleton
for each x € wN, then pX is strictly less than SX. Hence X is not a
singular compactification.

In [5] the authors wonder whether the following statement is true:
“If the set of singular compactifications of a space X forms a lattice,
then it forms a complete lattice.” The truth or falsity of this statement
remains an open question.

We consider a simple problem. In the following example, we show
that a subfamily F' of the family of all singular compactifications of a
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space X may form a lattice which is not complete.

Example 2.36. A lattice of singular compactifications of a space X
is not necessarily a complete lattice.

Proof. In Example 2.32, we have shown that the family of all singular
compactifications of the space X = [0,w;) x {0,w;) contains a totally
ordered lattice A = {axX : 0 < Kk < wy,k a nonlimit ordinal} of
singular compactifications whose supremum is X, a compactification
which is not singular. ]

Observe that the family of all singular compactifications of the space
X = [0,w1) x {0,w;) does not form a lattice. To see this, let aX be
the decomposition space obtained by collapsing to a point the subset
{w1} x [0,w1] of X = [0,w;] X [0,w;] (and fixing all other points).
Clearly aX is a compactification of X. Let vX be the decomposition
space obtained by collapsing to a point the subset [0,wq] X {w;} of
BX = pX = [0,w] X [0,w:] (and fixing all other points). It is easy to
verify that both aX and vX are singular compactifications. Note that
the supremum of aX and vX is pX, a nonsingular compactification
(since [0,w1] X [0, w;] is not singular).
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