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A CLASS OF PRUFER DOMAINS
THAT ARE SIMILAR TO THE RING
OF ENTIRE FUNCTIONS

K. ALAN LOPER

1. Introduction. Let R be the ring of entire functions, and let
K be the field of complex numbers. Much is known concerning the
algebraic properties of R. For example, Helmer proved [5, Theorem
9] that R is a Bezout domain. Henriksen [6] proved that R is infinite
dimensional and completely characterized the prime ideals. Theorems
concerning the algebraic structure of R tend to focus on the sets of zeros
of functions in R. Let a be a complex number, and let M, be the ideal
of R generated by z —a. Then an entire function f(z) lies in M, if and
only if f(a) = 0. Hence, properties of the zeros of entire functions are
largely embodied in the properties of the ideals M. Several additional
facts are readily apparent concerning these ideals.

1. Each M, is maximal in R.
2. Ry, is a Noetherian valuation domain for each a € K.
3. R=NackRu,-

In this paper we consider a class of Priifer domains which will be
defined by intersecting Noetherian valuation domains in such a way
that the centers of the defining valuation domains emulate the ideals
M, of R. These domains, which we call E-domains, have many
properties in common with R. In Section 2 we consider some basic
properties concerning the prime ideals of F-domains and investigate the
structure of divisorial ideals. In each case we will draw comparisons
with the structure of R. In Section 3 we show how E-domains can
be constructed as overrings of Noetherian domains and investigate the
relationship between the ideal structure of an EF-domain constructed
in this manner and the ideal structure of the underlying Noetherian
domain. In Section 4 we consider some explicit examples of F-domains.
We also use our knowledge of E-domains to construct an example of a
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Priifer domain D with a prime ideal P such that P is divisorial and P>
is not. Throughout the paper we will pose questions, many of which
we will not resolve.

The term ideal will refer to an integrated ideal. When fractional
ideals are being considered, they will be specified as such. Also, the
term prime ideal will refer to a proper, nonzero, prime ideal.

2. E-domains. To begin, we define non-D-ring as in [8, Definition
1] and [9, Definition 1.1].

Definition 2.1. A domain D will be called a non-D-ring provided
there exists a nonconstant polynomial f(z) in D[z] such that f(d) is
a unit in D for each d € D. The polynomial f(z) will be called a
uv-polynomial (for unit valued).

Now we are ready to define F-domain.

Definition 2.2. Let D be a domain with quotient field F'. We call
D an E-domain provided it satisfies the following conditions.

1. W= {V4 | @ € A} is a collection of Noetherian valuation overrings
of D.

2. For each a € A, v, is the normed valuation on F' corresponding
to Vu, M, is the maximal ideal of V,, and P, = M, N D.

3. D = ﬂaEAVa-

4. There exists a monic polynomial f(z) € D[z] of degree n > 2
which is a uv-polynomial for each V.

5. For each a € A there exists an element d, € D such that
va(da) > 0 and vg(dy) = 0 whenever 5 € A and 5 # .

For the duration of Section 2 we assume the notation of Definition 2.2.

Our stated objective is to study E-domains along the same lines that
R has been studied. Accordingly, we classify the ideals of E-domains
using the terminology of [6].
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Definition 2.3. Call W the set of fized valuation overrings of D.
(We show in Proposition 2.7 that W is uniquely determined.) We call
the ideals { P, | & € A}, the mazimal fized ideals of D (this terminology
will be justified in Proposition 2.8). If T is an ideal of D we call I fized
if I C P, for some maximal fixed ideal P,, and otherwise we say that
1 is free.

The conditions placed on D and W in Definition 2.2 are a stronger
version of conditions considered in [9]. Hence, we can draw some
immediate inferences.

Proposition 2.4. D is a Prifer non-D-ring with f(z) serving as a
uv-polynomial.

Proof. This follows immediately from [9, Corollary 2.6]. mi

Proposition 2.5. Let I be a finitely generated ideal of D. Then I
1s principal for some nonnegative integer t.

Proof. This follows immediately from [9], Theorem 2.5]. O

We also need some results of Gilmer and Heinzer [4] on Priifer do-
mains which can be expressed as irredundant intersections of valuation
domains.

A representation of a domain 7 as an intersection of valuation
domains (say T = NgecqVa) is @rredundant if the omission of one
valuation domain from the intersection changes the result, i.e., T =
Naeq,az8Va # T for each B € Q. The following result then follows
immediately from condition 5 of Definition 2.2.

Lemma 2.6. D = NycpaV, is an irredundant representation of D.

We now make direct application of several results from [4] to our
present setting.
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Proposition 2.7. D = NyeaVy is the unique irredundant represen-
tation of D.

Proof. See [4, Corollary 1.9]. O

Proposition 2.8. The mazimal fized ideals, {P, | o € A} are
mazimal ideals of D.

Proof. See [4, Theorem 1.7 and Corollary 1.8]. O

Proposition 2.9. If I is a finitely generated ideal of D which is
contained in only finitely many mazximal fized ideals Py, Py, ..., P; of
D, then Py, Ps, ..., P; are the only mazimal ideals of D which contain
I.

Proof. See [4, Corollary 1.11]. O

The maximal fixed ideals of R are all principal and the free ideals all
require infinitely many generators. It seems natural then to ask if the
fixed and free ideals of D have corresponding properties.

Proposition 2.10. Every mazimal fixed ideal of D is generated by
two elements.

Proof. Let P, be a maximal fixed ideal of D. Use condition 5 of
Definition 2.2 to find an element d, € P, such that P, is the only
maximal fixed ideal of D which contains d,. Proposition 2.9 implies
that P, is the only maximal ideal of D which contains d,. Since P,
extends to the principal ideal M, in V,, then [3, Lemma 37.3] implies
immediately that P, is finitely generated. The stronger statement that
only two generators are required follows easily from examination of the
proof of [3, Lemma 37.3]. O

The P,-primary ideals can also be neatly characterized for each
maximal fixed ideal P,.
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Proposition 2.11. Suppose that P, is a mazimal fived ideal of D
and that I is a Py-primary ideal. Then I = P! for some positive integer
t.

Proof. The result follows from the fact that P, is maximal and Dp,
is a Noetherian valuation domain. See the a — b argument for [3,
Theorem 36.4]. u]

Now we address the generation of free ideals.
Proposition 2.12. No free ideal of D is finitely generated.

Proof. Suppose that I is an ideal of D which is finitely generated.
Proposition 2.5 implies that I™ is principal for some m € Z*. Suppose
that I"™ = (d). Since d is a nonunit in D, then d must lie in some
maximal fixed ideal. Hence, I lies in a maximal fixed ideal and so is
itself fixed. |

In R, each principal ideal (f(z)) is completely determined by its set
of zeros, each taken with the correct multiplicity. Hence, each principal
ideal can be uniquely identified with a collection of powers of maximal
fixed ideals. In R, it is also the case that the set of principal ideals
is identical to the set of all divisorial ideals. (Recall that an ideal is
divisorial if it can be expressed as an intersection of principal fractional
ideals.) This inspires the following result.

Proposition 2.13. Suppose that I is a divisorial ideal of D. Then I
can be expressed in a unique way as an intersection (possibly infinite) of
primary fized ideals. Conversely, each nonzero intersection of primary

fized ideals of D is divisorial.

Proof. We will prove the second part of the statement first. So,
let {P, | @ € Ay C A} be a collection of maximal fixed ideals of
D, and let {eq | @ € A1} be a collection of positive integers. Let
J = Naen, P~ and suppose that J is nonzero. Proposition 2.10 states
that each maximal fixed ideal of D is finitely generated. It is well known
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that any finitely generated ideal of a Priifer domain is divisorial and
that any nonzero intersection of divisorial ideals is divisorial. Hence, J
is divisorial.

The proof of the first assertion of our result will be accomplished in
four stages. First we show that any principal ideal can be expressed as
an intersection of primary fixed ideals. Then we prove the same result
for finitely generated ideals and then we extend to divisorial ideals.
Finally, we show that the primary decomposition of a divisorial ideal
of D using fixed primary ideals of D is unique.

First, assume that (d) is a nonzero principal ideal of D. Let {P, | @ €
Ay C A} be the set of all maximal fixed ideals in which d is a nonunit.
Then for each o € Ay set e = v4(d). Then let I = Ngep, PS>, We
claim that (d) = I. (d) C I is clear. Suppose that r € I. Then
Vo (r) > ve(d) for each o € Ay and v,(d) = 0 for each o € A — As.

Hence, r/d € D and so I C (d).

Second, assume that I is a finitely generated ideal of D. Proposi-
tion 2.5 implies that I™ is principal for some m € Z*. Let (d) = I™.
Let {P, | « € A3 C A} be the set of all maximal fixed ideals of D which
contain I. (Note that this is also the set of all maximal fixed ideals of
D which contain d.) Then for each a € Ag set e, = min{v,(r) | r € I}.
It follows easily that me, = v4(d) for each oo € Ag. Let J = Ngen, PS>.
We claim that I = J. I C J is clear. Suppose that r € J. It is clear
that (I,r)™ C (d) = I". Since I and (I,r) are finitely generated, this
implies that I = (I,r) and hence, r € I and so J C I.

Third, assume that I is a divisorial ideal of D. Then I can be
expressed as an intersection of principal fractional ideals of D. Let
(d) be a principal fractional ideal of D. Since D is Priifer, D N (d)
is finitely generated. Hence, I can be expressed as an intersection of
finitely generated ideals of D. Since each finitely generated ideal can
be expressed as an intersection of primary fixed ideals and I can be
expressed as an intersection of finitely generated ideals, it follows that
I can be expressed as an intersection of primary fixed ideals.

Finally, assume that I is a divisorial ideal. nWe show that the
representation of I as an intersection of primary fixed ideals is unique.
Suppose not. Without loss of generality, we can suppose that there exist
two subsets S and S5 of A such that S; C Sz and that I = Nyes, PS> =
ﬂaeSZPO’f“ with e, < f, for all @ € S7, and either S; # Ss or ey < fo
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for some a € S;. Choose a € Sy such that either @ ¢ Sy or ey < fo.
In either case consideration of the two intersection expressions and the
fact that maximal fixed ideals of D are all maximal ideals leads to the
conclusion that P,I = I. This implies that if d € I, then v,(d) > m
for each positive integer m. This is a contradiction. Hence the primary
decomposition representation of I using primary fixed ideals is unique.
]

A free ideal was defined to be a nonzero ideal which was not fixed and
a fixed ideal was defined to be a nonzero ideal which was contained in a
maximal fixed ideal. The following corollary then follows immediately.

Corollary 2.14. Suppose that I is a free ideal of D. Then I is not
divisorial.

In R, each divisorial ideal is principal. It is not apparent that an
arbitrary divisorial ideal of D is principal, or even invertible. We make
two comments in this regard and pose two questions.

First we note that if I is an arbitrary fixed ideal of R which is not
divisorial, then I, (the intersection of all principal fractional ideals
containing I) is divisorial and hence principal. This leads to a very
natural factorization of I into a product of a divisorial ideal (I,) and a
free ideal (I)(I,)™".

Question 1. Let I be a fixed, nondivisorial ideal of an E-domain D.
Can I be factored into a product of a fixed divisorial ideal and a free
ideal? If so, is the representation unique?

Also, we note that if D is Bezout, then each maximal fixed ideal is
principal. In this case the primary decomposition of a divisorial ideal I
of D can be associated in a very natural way with an infinite collection
of powers of generators of maximal fixed ideals. This is suggestive of a
formal version of the Weierstrass factorization theorem [11, Theorem
15.10] which represents any given entire function as an infinite product
of exponential functions (units) and polynomials.
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Question 2. Let D be a Bezout F-domain. Does there exist
an extension of D (comparable to the extension from polynomials
to entire functions) which is an F-domain, has maximal fixed ideals
corresponding to those of D, and which has each divisorial ideal being
principal?

We close this section by observing that no indication has been given
that free ideals should exist. If the intersection, D = N,cp Vi, is locally
finite, then D is both Priifer and Krull and hence must be Dedekind.
In this case, every ideal of D is fixed. Conversely, if the intersection
D = NueaVy is not locally finite, then some nonzero element of D must
lie in an infinite number of prime ideals of D. This implies that D is not
Dedekind, and since D is Priifer it cannot be Noetherian. Then since
D is not Noetherian, D must contain a prime ideal which is not finitely
generated. Hence, D must contain a free prime ideal since the only
fixed prime ideals are the maximal fixed ideals, which are all finitely
generated. We summarize this in the following proposition.

Proposition 2.15. The E-domain, D, contains a nontrivial free
ideal if and only if the intersection D = Nyep Ve is not locally finite.

3. FE-overrings of Noetherian domains. In Section 2 no
indication was given that nontrivial examples of F-domains exist. The
construction of explicit examples will be deferred until Section 4. In
this section, however, we lay the groundwork for some of the examples
which will be presented in Section 4.

We begin by recalling some necessary terminology and results regard-
ing non-D-rings from [7, 8] and [9].

Definition 3.1. See [7, Definition 1.5]. Let T be a domain, P C T
a prime ideal and f(z) € T'[z] a nonconstant polynomial. We say that
P is an f-non-D-ideal of T provided f(z) is a uv-polynomial for Tp.

Proposition 3.2. See [7, Proposition 1.12]. Let T be a domain, a
and b nonzero elements of T and f(z) € T[z] a monic polynomial of
degree n > 2. If P C T is an f-non-D-ideal of T, then b™f(a/b) € P
if and only if a,b € P.
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Corollary 3.3. See [7, Theorem 2.11]. Let T be a Noetherian
domain, f(x) € T[z] a monic polynomial of degree n > 2, and P C R
an f-non-D-ideal of T'. Then there exists an element a € P such that
if Py is an f-non-D-ideal of T and a € Py, then P C Py.

Proposition 3.4. See [8, Proposition 3|. Let T be a Noetherian
domain, f(xz) € T[z] a nonconstant polynomial and V' a Noetherian
valuation overring of T with maximal ideal Q1. Suppose that Q1 is an
f-non-D-ideal of V. Then Py = Q1 NT is an f-non-D-ideal of T.

Proposition 3.5 [9, Proposition 2.1]. Let T be a Prifer non-D-ring
with monic uwv-polynomial f(x) € T[x]. Then every prime ideal of T is
an f-non-D-ideal of T'.

Proposition 3.6 [9, Corollary 2.3]. Let V be a valuation domain
with quotient field F' and with f(x) € V]z] a monic uv-polynomial for
V of degree n > 2. Also, let v be a valuation on F corresponding to V.
If a,b €V — {0}, then v(b" f(a/b) = min{nv(a), nv(b)}.

The following result is new, but is in the same spirit as the above
results concerning non-D-rings.

Proposition 3.7. Let T be a domain, and let f(x) € T[z] be a monic
polynomial of degree n > 2. Also let {J, | @ € Q} be a collection of
f-non-D-ideals of T such that J = Nyecqdq s a prime ideal of T. Then
J is an f-non-D-ideal of T'.

Proof. Let dy,ds € T such that da ¢ J. We need to show that f(z)
is a wv-polynomial for T;. Hence it will suffice to show that f(d;/d2)
is a unit in T7;. Since dy ¢ J, then dy ¢ J, for some a € Q. Hence,
dy/dy € Ty, and so f(dy1/dz) is a unit in Ty . It follows that f(d;/d2)
is a unit in 7. O

Now we proceed to consideration of E-overrings of Noetherian do-
mains. We begin with some terminology related to collections of
Noetherian valuation overrings.
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Definition 3.8. Suppose that 7" is a Noetherian domain and that
{Va | @ € A} is a collection of Noetherian valuation overrings of 7'
Let D = NgeaVe, and for each o € A, let M, be the maximal ideal of
V. We say that D is a T-weakly-locally finite intersection provided,
for any 8 € A, the set {M, | MgNT C M, NT} is finite. If it is clear
what the relevant Noetherian underring 7" is, we will simply say that
D is a weakly locally finite intersection.

The following is a list of assumptions that will hold for the remainder
of Section 3.

Assumptions. 1. T is a Noetherian domain with quotient field F.
2. f(z) is a monic polynomial in T[z] of degree n > 2.

3. W ={V4 | @ € A} is a collection of Noetherian valuation overrings
of T such that f(z) is a uv-polynomial for each V.

4. D == maeAVa.
5. For each a € A we say M, is the maximal ideal of V,

Po=M,ND, Jo=M,NT

and v, 1s the normed valuation on F corresponding to V.

6. The intersection D = NyeaVy s weakly locally finite.

Next we recall a result from [8, Proposition 5. The hypotheses
there required that the intersection of Noetherian valuation domains
be locally finite. However, the assumption of local finiteness was used
only to obtain weak local finiteness. Hence the proof from [8] is valid
in this setting.

Proposition 3.9. For each o € A there exists an element d, € D
such that vy (dy) > 0 and vg(dy) = 0 whenever 8 # a.

Corollary 3.10. D is an E-domain with {P, | « € A} serving as
the mazimal fized ideals.
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Proof. Assumptions 1-5 together with Proposition 3.9 are essentially
a restatement of the definition of F-domain. m]

Recall that Proposition 2.15 states that D contains free ideals pro-
vided the intersection D = NgeaVy, is not locally finite. Now we exam-
ine the relationship of the prime free ideals of D to the prime ideals of
T.

Lemma 3.11. Let Q be a prime free ideal of D. Then QNT C J,
for some o € A.

Proof. Suppose that QNT ¢ J, for all @ € A. Proposition 3.5 implies
that @ is an f-non-D-ideal of D and then Proposition 3.4 implies that
QNT is an f-non-D-ideal of T. Use Corollary 3.3 to choose an element
ro € QNT such that if Q1 is an f-non-D-ideal of T" and 7, € @1, then
@ C Q. Propositions 3.4 and 3.5 also imply that J, is an f-non-D-
ideal for each @ € A. Then our supposition forces r, ¢ J,, for all a € A.
This implies that r, is not contained in any maximal fixed ideal of D,
and so must be a unit in D. This is a contradiction. O

Lemma 3.12. Let Q be a prime free ideal of D. Then Q N'T # J,
for all a € A.

Proof. Suppose that Q N T = J, for some a € A. Again, use
Corollary 3.3 to choose an element r, € J, such that if ; is an
f-non-D-ideal of T" and r, € @1, then J, C Q1. Since the intersection
D = NgevVy is weakly locally finite, J, € Mg N T for only finitely
many (8 € A. It follows that r, € MgNT for only finitely many 8 € A.
Let {M;, Ms, ..., M;} be this finite set. Let P, = M;ND for 1 <i <t.
Proposition 2.9 implies that {Py, P, ..., P;} is precisely the collection
of all maximal ideals of D which contain r,. Then r, € @ implies that
Q@ C P; for some 1 < ¢ < t. This is a contradiction since each P; is
a maximal fixed ideal and, hence, by definition, cannot contain a free
ideal. O

The previous two lemmas can be summarized into the following result.
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Proposition 3.13. Suppose that Q is a prime free ideal of D. Then
the contraction of Q to T is properly contained in the contraction to T
of some mazimal fized ideal of D.

Corollary 3.14. Suppose that T has dimension 2. Then D is an
almost Dedekind domain.

Proof. The proof is accomplished by showing that Dp is a Noetherian
valuation domain for every prime ideal P in D. This is already known
when P is a maximal fixed ideal. Suppose that P is a free prime ideal
of D. Proposition 3.13 implies that PNT must be a height one prime of
T. Then Dp is an overring of the one-dimensional Noetherian domain
Tpqr, and hence must be a Noetherian valuation domain. ]

Proposition 3.13 places a strong restriction on which primes of 7' can
lie under free primes of D. We now question which primes of 7" actually
do appear as the contractions of free prime ideals of D.

Proposition 3.15. Suppose that A* is an infinite subset of A such
that J = NgeaxJo s a prime ideal of T. Then there exists a prime free
ideal P of D such that PNT = J.

Proof. First note that if P is a prime ideal of D such that PNT = J,
then P must be free because of the assumption of weak local finiteness.
Let G* = {Jo | @ € A*}. Note that Propositions 3.4 and 3.5 imply
that each J, € G* is an f-non-D-ideal of 7. Then Proposition 3.7
implies that J is an f-non-D-ideal of T. Expand G* to the set
G** = {Jg | B € Q} consisting of all f-non-D-ideals of T which properly
contain J. For each 8 € , apply Corollary 3.3 to obtain an element
rg € Jg such that any f-non-D-ideal of 7" which contains rg must
contain Jg. Let S; = {rg | B € Q}, let S; be the multiplicative set
in D generated by Si, and let D; = (S})~1D be the localization of D
at S7. We want to show that JD; # D;. Suppose JD; = D;. Then
there exists a finite subset Sy of S; such that if S5 is the multiplicative
set generated by S, and Dy = (S3) " !D, then JD; = D,. This is
impossible. To see this, let Sy = {ry,r2,... ,7:}, and let r = Hle ;.
Since J is an f-non-D-ideal of 7" and since we applied Corollary 3.3
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in choosing the elements rg, then r; ¢ J for 1 < i <t, and so r ¢ J.
Hence, there must exist & € A* such that r is a unit in V,,. It follows
that J,Ds # Dy and since J C J,, then JDs # Dy. So JD1 # D;.
JD; is hence a proper ideal of D; and so must be contained in a
maximal ideal M of D;. Proposition 3.5 implies that M is an f-non-
D-ideal of D; and Proposition 3.4 implies that M is centered on an
f-non-D-ideal of T. J C M N T, but our choice of S; then forces
J=MNT. Let P=MnND. o

Proposition 3.15 provides a means of identifying free prime ideals of
E-domains. It leaves many questions open, however. We close this
section with several such questions.

Question 3. Are the free prime ideals described in Proposition 3.15
all maximal free ideals?

Question 4. Are all of the maximal free ideals of D of the type
described in Proposition 3.157

Question 5. Can the set of maximal free ideals of D be characterized
in terms of the ideal structure of 7'7

Question 6. Can there be free prime ideals of D which are not of
the type described in Proposition 3.157

4. Examples. We begin this section by describing a class of
valuation domains which we will use in our constructions. These
valuation domains are actually the valuation overrings of Int (Z),
the ring of integer-valued polynomials over Z. The facts listed in
Proposition 4.1 and Proposition 4.2 are all either well known, or are
contained in or are easy consequences of [1, Proposition 2.2].

Terminology. 1. For a given prime number p € Z, let Zp be the
p-adic completion of Z.

2. For a given prime number p € Z and a given p-adic integer o € Zp,
let Vo = {£()/g(2) | f(2),9(z) € Z[e] and f(a)/g(a) € Z,}, and let
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Moy, = {f(z)/g(x) | f(2),9(x) € Z[z] and f(a)/g(a) € pZp}.

3. For a given nonconstant, irreducible polynomial f(z) € Z[z],
let Vi = {h(z)/9(z) | h(z),g9(x) € Z[z] and f(z) 1 g(x)}, and let
My = {(h(z)f(x))/9(z) | h(x),g(x) € Z|z] and f(z) 1 g(z)}.

Now we list the properties of V,, , and Vy which we will need.

Proposition 4.1. Let p € ZT be prime, and let a € Zp, Then

a) Vap 18 a discrete valuation overring of Z[z] with mazimal ideal
My .

b) Vap has dimension one if « is transcendental over Q and has
dimension two if « is algebraic over Q.

c) The residue field of Vo, , is the field of p elements.

d) Suppose that o is transcendental over Q, and let v, ,, be the normed
valuation on Q(zx) associated with V, . If f(x)/g(x) € Vap—{0}, then
Va,p(f(z)/9(x)) is equal to the p-adic value of f(a)/g(c). In particular,
Ua,p(p) =1L

e) Ifme Z and o —m € pr, then Vo p is centered on the ideal
(z —m,p) of Z[z].
f) If a is algebraic over Q, then the unique one-dimensional valuation

overring of Vy,, has the form Vi for some f(x) € Z[z]. In particular,
f(z) is an irreducible polynomial which has a as a root.

Proposition 4.2. Let f(x) € Z[z] be a nonconstant irreducible poly-
nomial. Then Vi is a one-dimensional Noetherian valuation overring
of Z[x] with mazimal ideal M.

Now we use the above valuation domains to construct some examples
of F-domains. As noted above, the valuation domains of the form
Va,p and V; are valuation overrings of Int (Z). In fact, every valuation
overring of Int (Z) has one of these two forms [1, Proposition 2.2]. This
facilitates the identification of prime ideals of F-domains constructed
by intersecting these valuation domains.
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Example 4.3. Let {p1,p2,ps,...} be a collection of distinct prime
numbers.  Also, let f(z) € Z[z] be a monic, nonconstant, irre-
ducible polynomial which does not have a root in Z modulo any
of the primes p;. Then, for each ¢ € Z7T, choose a finite collec-
tion {@;1,Qi,2,. .. Qi m, } of p;-adic integers (each transcendental over
Q) from Z,,. Let D = N2,(N7%,Va, ,p;)- Then D satisfies as-
sumptions 1-6 following Example 3.8 with f(z) serving as the wov-
polynomial, and so Corollary 3.10 implies that D is an E-domain with
{Pa; ;i = Ma, ;p, "D | 1 <4 < 00,1 < j < my} serving as the
maximal fixed ideals. Since Z[z] has dimension two, D is an almost
Dedekind domain by Corollary 3.14. Moreover, D contains nontriv-
ial free ideals, i.e., is not Dedekind, provided the given intersection of
valuation domains is not locally finite.

This construction can be accomplished in many ways. We focus on
one specific simple example which we will then utilize in the next
example. Let {p1,p2,ps,...} be the collection of all prime numbers
which are congruent to 3 modulo 4 except for 3 itself. That is,
{p1,p2,...} = {7,11,19,23,31,...}. For each p;, choose one p;-adic
integer c; which is transcendental over Q so that M, ,,NZ[x] = (z, p;)-
Let D = N2, Va, p;- As above, D is both an E-domain and an almost
Dedekind domain. For each 4, let V; = Vy, p., M; = Mg, and
P, = M; N D. Then the set {P; | i € Z*} constitutes the set of
all maximal fixed ideals of D. Also, for each i, let v; be the normed
valuation on Q(z) corresponding to V;. Then, for each %, v;(p;) > 0
and v;(p;) = 0 whenever i # j. Also, since N2, (x,p;) = (z), then
Proposition 3.15 implies that D contains a free prime ideal P such
that P N Z[z] = (x). Since D is almost Dedekind, P is a maximal
free ideal. As noted above, D is an intersection of overrings of Int (Z),
and so is itself an overring of Int (Z). It follows from our classification
of valuation overrings of Int (Z) that the free prime ideal P is the
contraction to D of the maximal ideal M, of the valuation domain Vj
where g(z) = .

Before constructing another E-domain, we consider a particular sub-
ring of the domain D from Example 4.3 to illustrate the utility of the
E-domain concept. In [2], Fontana, Huckaba, and Papick study non-
maximal prime ideals of Priifer domains with the particular view of
deciding whether or not a given nonmaximal prime ideal is divisorial
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or not. One question they ask in this context is whether or not it is
possible to find a nonmaximal prime ideal M in a Priifer domain D
such that M is divisorial, but M? is not. They give one example of
such an ideal. The example they give is a nonmaximal prime ideal M in
a pull-back of the ring R of entire functions [2, Example 5]. In partic-
ular, M is the pull-back of a maximal free ideal of R. In Example 4.4,
we use a similar construction to that of Fontana, et al., to obtain an
example of the same phenomenon using D and P of Example 4.3.

Example 4.4. Assume the notation of Example 4.3. Let V* = V{ 3.
V* is a two-dimensional valuation domain since 0 is algebraic over Q.
Also, let g(z) = x. Then 0 is a root of g(z) and so Vj is the unique
one-dimensional valuation overring of V*. Also, f(z) = 22 + 1 is a uv-
polynomial for V* since the residue field is the field of three elements.
Let D* = DNV*. D* is not an F-domain. Nevertheless, some of the
results we have proven concerning E-domains remain true.

i) It follows from [9, Corollary 2.6] that D* is a Priifer non-D-ring
with f(z) = 2% + 1 serving as a uv-polynomial.

ii) The intersection (N$2;V;) N V* is irredundant. This follows
immediately from the observations that each p; is a unit in V* and
that 3 is a unit in each V;. (Since irredundant representations are

unique [4, Corollary 1.9] and v* has dimension two, D* cannot be an
E-domain.)

Let M* be the maximal ideal of V*, let P* = M* N D*, and let v* be
the valuation on Q(z) corresponding to V*. Since v;(3) = 0 for each
i, it follows that P* is the only maximal ideal of D* which contains 3
[4, Corollary 1.11]. The definition of V* implies that M* is a principal
ideal generated by 3. Hence, P* is a principal ideal of D* generated
by 3. Now, recall from Example 4.3 that Dp = V,. Let P° = PN D*.
Since Vj is the unique valuation overring of V*, it follows that P* is a
height two prime of D* and that P° C P*. Then P° = N%,(3)’ and
so P¢ is a divisorial nonmaximal prime of D*. However, (P¢)? is not
divisorial. This follows from the following observations.

Let d be a nonzero element of Q(x). Then

i) Suppose that v;(d) > 0 for some ¢ € Z*. We observed in
Example 4.3 that P was a free prime ideal. Hence, P is not contained
in any maximal fixed ideal of D. Hence, v;(r) = 0 for some r € P2.
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Since D* is Priifer it follows that v;(r) = 0 for some 7 € (P¢)2. Hence,
the D*-fractional ideal (d) does not contain (P¢)2.

ii) Suppose that v;(d) < 0 for all i € Z* and v*(d) > 0. Then, as
noted above, the D* fractional ideal (d) contains P°.

iii) Suppose that v;(d) < 0 for all i € Z* and v(d) < 0. Then the
D*-fractional ideal (d) contains D*.

These observations imply that (P°¢)? is divisorial only if P¢ is idem-
potent. It follows immediately from the definition of V; that P° is not
idempotent.

The previous two examples involved intersections of Noetherian valu-
ation overrings of Z[z] which were centered on distinct maximal ideals
of Z[z]. Our final example, a slight variant of which also appears in
[10, Example 30], involves the intersection of an infinite collection of
Noetherian valuation overrings of Z[z], all of which are centered on a
single maximal ideal of Z[z]. Before we present the example, we recall
two results from [10].

Lemma 4.5. See [10, Lemma 25]. Let p € Z be a prime number.
Suppose that A = {a; | j € A} C Zp is a collection of p-adic integers.
Let D = NjeaVa,,p. Then every mazimal ideal of D is the contraction
to D of the mazimal ideal of Vs, for some B € Z,.

Lemma 4.6. See [10, Lemma 26|. Let p, A and D be as in the
statement of Lemma 4.5. Also, let B € Z, and let C be the closure of
A under the p-adic topology. Then Vg p is an overring of D if and only

ifBecC.

Now we proceed to our example. It is varied slightly from [10,
Example 30], but the arguments given there for the deductions we
make here are valid.

Example 4.7. See [10, Example 30]. Let a € Zp be transcendental
over Q. Then, for each i € ZT, let a; = p'a. Let D = N Va, p-
Lemmas 4.5 and 4.6 imply that the intersection is irredundant. For
each i, let P, = M,, , N D. The argument in [10] shows that each P; is
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principal. Hence, D is an E-domain and the collection {P; | i € ZT}
is the collection of maximal fixed ideals of D. Moreover, the sequence
{an} converges to 0 and so it follows from Lemmas 4.5 and 4.6 that
Py = My, N D is the only maximal free ideal of D. Since 0 is algebraic
over Q, it follows that V; , is a height two valuation domain and so Py
is a height two prime free ideal.

We conclude by posing several more questions.

Question 7. Suppose that T is an integral domain with an infinite
number of Noetherian valuation overrings. Does there exist an E-
overring of 7" with an infinite number of maximal fixed ideals? Can such
a domain be non-Noetherian, i.e., containing nontrivial free ideals?

Question 8. Assume that a non-Noetherian E-domain as described
in Question 7 can be constructed. Can such a domain have exactly one
maximal free ideal, e.g., Example 4.77 If so, is it possible to classify
the Noetherian valuation overrings of 7" which can correspond to the
one maximal free ideal?

Question 9. Is there a natural generalization of the concept of E-
domain which would include all of the domains considered in this paper
as well as similar domains, such as the ring R of entire functions and
Dedekind domains which are not non-D-rings?
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