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IDEAL BANACH CATEGORY THEOREMS
J. KANIEWSKI, Z. PIOTROWSKI AND D.A. ROSE

ABSTRACT. Three abstract versions of the Banach cate-
gory theorem are compared when an arbitrary ideal replaces
the o-ideal of meager sets. Every ideal is contained in a unique
smallest ideal for which a given Banach category theorem
holds. The behavior of these ideal extensions is also inves-
tigated.

1. Introduction. Throughout this paper (X, 7) denotes a topolog-
ical space and I C P(X) is an ideal of subsets of X. An ideal is a
nonempty family of sets which is closed under finite union and a sub-
set of its members. It is o-ideal if it also is closed under countable
union of its members. For any subset A C X, let A*(7,I) or simply
A* if 7 and I are understood, be the adherence of A modulo I. In
particular, A* = {z e X |z €e U e 7 =UnNA ¢ I}. It may be
noted that A* is a closed subset of cl(A), the closure of A in X. For
convenience, let A°(7,I) or simply A° if 7 and I are understood, de-
note the set A — A*, i.e., A° = {z € A | there exists a U € 7 such
that z € U and U N A € I}. By the terminology of A.H. Stone [13],
et al., AN A*(r,I) is the kernel of the subspace (A4, 7|A), relative to
the ideal I|A = I N P(A). This would make A° the cokernel of the
subspace A. Note that A°(7,I) = A°(7|A,I|A). In [6], some general
forms of the Banach category theorem were found useful in the context
of continuity apart from a meager set when the ideal of meager sets
M (1) was replaced by an arbitrary o-ideal. In this paper comparison
is made of three abstract versions of the Banach category theorem for
an arbitrary ideal I. These are mutually equivalent when I = M(7),
and are referred to as properties By, By and Bs below.

Property B;. For each subset A C X, A € I, if for each nonempty
open set U there is a nonempty open subset V' C U such that VNA € I,
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i.e., V and A are “almost” disjoint.

Property Bs. The cokernel of each subspace A of X belongs to I, i.e.,
A° e I for each A C X.

Property Bs. The union of any family of open sets belonging to I is
a member of I, ie., U(INT) €l

Let us agree that a subset A C X is locally in I if A C A°, i.e.,
AN A* = @. Then By is easily equivalent to the statement that every
set A which is locally in I belongs to I. This is in fact the form of
the Banach category theorem first proved by Banach for metric spaces
when I = M(7) [1]. It was extended to arbitrary spaces in [7]. When
I = M(r), Bs is the statement of the Banach category theorem in
[8]. Theorem 1 below will demonstrate the equivalence of B; and Bs
when I = M(7). In each B;, we do not limit ourselves to o-ideals
since preservation of B; under various ideal extensions including o-
extension is a fundamental consideration. Of course, space axioms
can also influence these conditions. For example, if X is hereditarily
Lindeldf, each o-ideal I satisfies By by Theorem 4.2 of [3]. In fact, the
o-ideal of countable sets I, satisfies By if and only if X is hereditarily
Lindel6f by Theorem 4.10 of [3]. For any infinite cardinal &, let I,
be the numerical ideal containing all subsets of cardinality less than
k. Then the ideal of finite sets is I,, and it is also shown in [3] that
this ideal satisfies By if and only if X is hereditarily compact. Here
we identify the ordinal w with the cardinal Xy and the ordinal w; with
the cardinal ;. By a principal ideal is meant P(A) for some A C X.
Principal ideals are o-ideals and in fact are closed under k-union (union
of subfamilies of cardinality not greater than x) for any cardinal x,
and they always satisfy Bs. In the literature, any ideal I satisfying
Bs is called a (7)-local ideal since it contains all subsets of X which
locally belong to I. A set A locally belongs to I, or A C A°, if it
has an open cover I' C 7 such that U N A € I for each U € I. The
Banach category theorem in its historically original form asserts that
the o-ideal of meager subsets of X, M (7), is T-local, i.e., every locally
meager set is meager. That the ideal of nowhere dense sets, N(7),is
always 7-local is well known and was shown in [14, 3] and [11]. A
new and easy proof of this fact is given herein by observing that N(7)
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satisfies By and that B; implies By. The nontriviality of the Banach
category theorem indicates that generally preservation of By or locality
for I under o-extension is nontrivial. Let (I) denote the o-extension
of I, i.e., the intersection of all o-ideals containing I. More generally,
let X,,(I) be the intersection of all ideals containing I which are closed
under k-union. R. Vaidyanathaswamy showed in [14] that X, (N(7))
satisfies By for every (infinite) cardinal x and thereby generalized the
Banach category theorem since X, (N(7)) = X(N(7)) = M (7). From
Theorems 3.3 and 4.5 of [4], it is easily deduced that X(I) satisfies
Bs whenever I satisfies By and N(7) C I which also generalizes the
Banach category theorem. In [10] it is shown that the role of N(7) is
inessential in each of these generalizations. In particular, it is shown
that ¥,.(I) satisfies By if I satisfies By for any ideal I and for any
cardinal k. In this sense the ¥, operator preserves Bs. We will show
that it also preserves By by identifying the precise relationship between
Bl and BQ.

An ideal I is 7-codense if each member of I is codense, i.e., if
InT ={o}. Clearly, N(7) is always 7-codense and M (1) is T-codense
if and only if (X, 7) is a Baire space. Obviously, each codense ideal
I satisfies B3 for it is clear that any ideal I satisfies Bs if and only if
U(IN7) e I. Also, even though (X, 7) may fail to be a Baire space,
M (7) always satisfies Bj since, as will be shown, By implies Bs.

2. Basic relationships. Since B; is an idealized version of the
original form of the Banach category theorem and has already received
attention in the literature [14, 4] and [10], we will relate By and Bjg
to Bs. Recall that a set E € N(7) if and only if, for each nonempty
U € 7 there exists a nonempty V € 7 with V C U and VNE = &.
Since every ideal contains @ as a member, it is evident that N(7) C I
if I satisfies By. Moreover, we have the following characterization.

Theorem 1. An ideal I satisfies By if and only if N(7) C I and I
satisfies Bo.

Proof. For the necessity, assume that I satisfies By. It remains only
to show that I satisfies B;. Suppose that A locally belongs to I. Let
I’ be an open cover of A such that U N A € I for each U € I'. Now if
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W is any nonempty open set, either WNA =G or V=WnNU #
for some U € I'. In either case, there exists a nonempty open subset
V C W such that V N A € I. Since [ satisfies By, A € I, so that I is
local and hence satisfies Bs.

For the sufficiency, suppose that N(7) C I and that I satisfies Bs.
Let A be a subset of X such that, for every nonempty open set U,
there exists a nonempty open subset V' C U with VN A € I. Let
Fr={Ver|VNAEe€I}, and let W = Ul'. Then A NW locally
belongs to I so that ANW € I. If G = int ((c14) — W) # &, then
G C (int (c1 A)) — W and there exists a nonempty open subset H C G
such that H N A € I. Thus, H € I" so that H C W — W = @. This
contradiction shows that (clA) — W € N(7) C I so that A— W € I.
Therefore, A= (ANW)U (A — W) € I so that I satisfies By. O

It follows immediately that N(7)(M (7)) satisfies By if and only if it
satisfies Bs.

Corollary 2. For each space (X,7), N(1) is T-local.

Proof. It is enough to show that N(7) satisfies B;. Let A be a subset
of X such that, for every nonempty open set U, there exists a nonempty
open subset V C U with VN A € N(r). Then let W be a nonempty
open subset of V' such that WN (VN A)=@. Then @ # W C U and
WNA=(WnNV)NA = @ implies that A € N(7) so that N(r) satisfies
B;. [}

Corollary 3. For each topology T, M (7) satisfies By.

Of course, M (1) = (N (7)) and in the next section it will be shown
that Bj is preserved by the ¥,; operator for any (infinite) cardinal .

Caution must be used when relativizing topology-dependent ideals
such as N(7) or M (1) to an arbitrary subspace (A,7|A). Generally,
N(7|A) € N(7)|A. Theorem 4.1 of [5] states that equality here holds if
and only if A is almost locally dense, meaning that A C cl (int (cl (A))).
From [14] we have that, for any A, cl (int (cl (4))) = A*(7, N(7)). Thus,
when A C A*(7, N(7)), we also have M(r|A) = M(7)|A. Let us agree
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that an ideal I satisfies a condition hereditarily if, for each A C X, I|A
satisfies the condition as an ideal of subsets of the subspace (A4,7|A).
For example, if (X, 7) is any dense-in-itself T) space, N (1) is codense
but not hereditarily codense since each singleton subset A = {z} is
a nonempty nowhere dense set. Thus, (N(7)|4) N (7|A) # {@}. Let
us say that I has property HB; if I has property B; hereditarily for
1 =1,2, or 3. Note that an ideal I satisfies B; if and only if, for each
A C X, A° € I, whereas I satisfies Bs if and only if X° € I. This
suggests the following.

Theorem 4. An ideal I satisfies Bs if and only if it satisfies H Bs.
Proof. Recall that, for each A C X, A°(1,I) = A°(7|A, I|A). O

Corollary 5. An ideal I satisfies Bs if and only if it satisfies H Bo.
Corollary 6. An ideal I satisfies By if and only if it satisfies H By .

Proof. Only the necessity is necessary (pun intended). Suppose
that I satisfies B;. Then N(7) C I and I satisfies By hereditarily
by Theorem 1 and Corollary 5. Since, for each A C X, N(7]A4) C
N(7)|A C I|A, we have again by Theorem 1 that I|A satisfies By on
the subspace (A, 7|A) so that I satisfies By hereditarily. o

It is clear from Theorems 1 and 4 that, for any ideal I, By implies B>,
and By implies Bs. These theorems also strongly suggest that these
implications are not reversible, even for o-ideals.

Example 7. Property By does not imply B;. Let (X,7) be any
nonpartition space, i.e., N(7) # {@}. For @ # E € N(r),if A= X—F,
the principal ideal P(A) is a local o-ideal (actually closed under x-union
for any cardinal k) but not satisfying B; since E ¢ P(A).

For an example oriented toward real analysis, if (X, 7) is the usual
space of reals and I = I, is the ideal of countable subsets, I satisfies Bo
since (X, 7) is hereditarily Lindeldf, yet if C' is the standard Cantor set,
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C € N(7)—1I so that I does not satisfy B;. Now, in this same space, if
J is the ideal of bounded countable sets, J is codense since (X, 7) has
uncountable dispersion character (least cardinal of a nonempty open
set), and thus J satisfies B;. However, the unbounded set of rationals,
@, is locally bounded and countable so that J does not satisfy By. For
a o-ideal example we have the following.

Example 8. Property Bs does not imply By. Let (X,7) be the
Tychonoff cube K¢ where K = [0,1] is the usual unit interval and
¢ is the cardinality of K. Since X contains a discrete subspace D of
cardinality ¢, X is not hereditarily Lindelof and hence the ideal I = 1,,,,
of countable subsets of X does not satisfy Bs;. Yet I does satisfy Bj
being T-codense since X has uncountable dispersion character.

Relationships between properties By, By, B3 and their hereditary ver-
sions is shown in the diagram of Figure 1 below where it is understood
that the uni-directional implications are irreversible.

B, B, Bs
HB; HB, HB;
FIGURE 1.

In light of Theorem 4 and the fact mentioned above that every o-
ideal of subsets of any hereditarily Lindelof space satisfies By, one might
speculate that each o-ideal of subsets of any Lindelof space must satisfy
Bs. The next example disproves this conjecture.

Example 9. Let I = I, be the o-ideal of countable subsets of the
compact (and thus Lindelsf) ordinal space wy +1 = [0,w;]. Every open
set containing wj is uncountable whereas each o < w; is contained in
the countable open set a4+ 1 = [0, @]. Thus, the union of all countable
open sets is wy = [0,w), an uncountable set. So I does not satisfy Bs.

We will conclude this section with an argument showing why Bj
implies By and thus also By when I = M (7).
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Theorem 10. For any space (X,7), By, Bs and Bs are pairwise
equivalent for the ideal M (7).

Proof. As remarked, it is sufficient to show that Bz implies By since
N(1) € M(7). Suppose that A C X locally belongs to M (), and
assume that M (o) satisfies B in every space (Y,o0). Certainly A =
(A—int(cl1(A)))U(ANint (cl(A))), and A —int (cl (A)) € N(r). But
B = Anint (cl (A)) is locally dense in the sense that B C int (cl (B)) and
hence B is almost locally dense so that, M(7)|B = M (7|B), an ideal
that satisfies B3 for the space (B, 7|B). Hence, B € M(r|B) C M(r).
Thus, A € M (), showing that M(7) satisfies Bs. O

Of course, this same argument works for I = N(7) as well. One might
wonder if Bs implies By for any ideal intermediate to N(7) and M (T)
or perhaps for any ideal I containing N(7) thereby obtaining another
generalization of the Banach category theorem. A counterexample
to these possibilities along with further contrasts between B3 and
properties B; and Bs will be given in the next section.

3. Ideal extensions. In this section we first observe that every
ideal [ is contained in a unique smallest ideal satisfying B; for each <.
This ideal will be called the B;-extension of I and will be denoted
I' for i = 1,2 or 3. There should be no confusion since we will
not be considering any set-theoretic powers of I. We will also be
concerned with preservation of B; under various ideal extensions such
as o-extension or extension by the operator X, for any infinite cardinal
K.

For any ideal I, let I* = N{J | J is an ideal satisfying B; with I C J}
for each i. It is understood that all ideals are contained in P(X) for
some topological space (X, 7). Clearly, P(X) satisfies B; for each ¢ so
that each I* is an ideal extension of I contained in P(X). The next
theorem justifies calling each I’ the B;-extension of I.

Theorem 11. For any ideal I, I' satisfies B; for each i.

Proof. It was shown in [10] that I? satisfies By and there I? was called
the local extension of I. Now suppose that I is an ideal and A C X
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is such that, for any nonempty open set U, there exists a nonempty
open subset V C U with V N A € I'. If J is any ideal extension of I
satisfying By, I' C J so that VN A € J. Since J satisfies By, A € J.
Thus, A € I' showing that I' satisfies B;. Finally, let I be any ideal
and let J be any ideal extension of I satisfying Bs. Then I C J so
that U(I>N7) CU(JNT) € J. Thus, U(I3 N 1) € I® showing that I®
satisfies Bs. a

First note that the B;-extension operator is monotonic. For, if I and
J are any ideals with I C J, then, for each i, I' C J*. Further, since B;
implies By and By implies B3, for any ideal I we have I C I3 C [2 C I*.
Of course, for each i, an ideal I satisfies B; if and only if I = I*. Thus,
for each 4, the B;-extension operator is idempotent, i.e., for each ideal
I, (I')" = I*. Moreover, no change occurs if a Bj-extension operator
is applied to the B;-extension of an ideal I for j > ¢. For example,
(I*)? = I' for any ideal I. Also, it can be shown that (I%)! = I' for
any ideal I.

In [4], an ideal extension of an ideal I via an ideal J was defined
by I «J ={A C X | A*(r,I) € J}. Of course, for each A € I,
A*(1,I) = @ € J for any ideal J so that I C I xJ. That I J is an
ideal is an easy consequence of the facts that the adherence operator
modulo I is monotonic, it distributes over finite union, and J is an ideal.
It is also clear that I * K C Jx K if I C J. In the very important case
J = N(r), I+ N(r) was denoted I and it was shown that the extension
I satisfies By and that N(r) C I for any ideal I. Easily, N(7) C I for
if E € N(t), E*(r,I) C cl(E) € N(r) = E € I. By Theorem 1, I
satisfies B for each ideal I. It was also shown in [4] that I = IV N(7)
if I satisfies By where, for any ideals I and J, I V J is the join of I
and J, i.e., the smallest ideal containing I U J. Further, it was shown
in [10] that the Bs-extension operator distributes over finite join. So,
in particular, for any ideal I, I C I2 = 12V N(r) = (IV N(1))? C I
showing that, for any ideal I, I is the By-extension of the join IV.N (7).
Thus, by the following theorem, for any ideal I, I' is the Bo-extension
of IV N(1).

Theorem 12. For any ideal I, I = I' = I’V N(1) = {A C X |
A* € N(r)}.
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Proof. Since I is an extension of I satisfying By, I' C I. On the
other hand, IV N(7) C I* so that [ = (I V N(7))? C (I')? = I". o

Theorem 12 not only identifies I as the Bj-extension of I, but also
provides a simple algorithm to find I': find the Bs-extension and join
with N (7). Since, for any ideal I, I C I® C I? C I' = I and it was
shown in [12] that I is codense if and only if I is codense, we have the
following

Corollary 13. For any ideal I, the following are equivalent.
(a) The ideal I is codense.

(b) The ideal I3 is codense.

(c) The ideal I? is codense.

(d) The ideal I' is codense.

Corollary 14. For any ideal I, I' = (I?)* = (I')2.
Proof. Note only that (I?)! = I? v N(r) = I' = (I')2. o
Corollary 15. For any two ideals I and J, (IV J)' =11 v JL.

Proof. By Theorem 12, (IV J)! = (IV J)2V N(r) = (I?VV N(7)) V
(JEVN(r)=I'vJ'. O

Corollary 15 asserts that the Bj-extension operator distributes over
finite join. We will improve this later and show by example that it does
not distribute over infinite join.

For any ideal I of subsets of a space (X, ), let 7[I] be the smallest
topology on X containing 7 for which members of I are closed. As a
consequence of Corollary 2.5 of [10], we have for each infinite cardinal &,
(I,)? = S(7[1.]) where, for any T} topology 7, S(7) is the (7-local) ideal
of scattered subsets of (X, 7). For example, when £ = w and (X, 1)
is a Ty space, (I,)? = S(7). Thus, in this case, (I,)' = (S(7))! =
S(7) V N(7) [4]. More generally, we have the following.
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Corollary 16. For any space (X,7) and any infinite cardinal k,
(L)' = S(r[L]) vV N(7).

Proof. Note that (I,)' = (I,)? V N(r) = S(r[Ls]) V N(r). For
(X, 7[I,]) is a Ty space since I, C I, so that S(7[L;]) is a 7[I,]-local
ideal. Therefore, it is a 7-local ideal since 7 C 7[I;]. Hence, it is the
Bs-extension of I; relative to the space (X, 7). All extension operators
here are understood to be relative to (X,7). O

Corollary 17. If (X,7) is any dense-in-itself Ty space, (I,)! =
N(7).

Proof. Since (X,7) is dense-in-itself, I, C N(7), a 7-local ideal.
Thus, since (X,7) is a T space, (I,)> = S(r) € N(r) so that
(I,)'! =S(r)VN(r)=N(r). o

Let A = {I, | @ < 4} be a nonempty ordinally indexed family of
ideals of subsets of a space (X, 7). The join of A, denoted VA, is the
intersection of all ideals of subsets of X which contain UA. So VA
is an ideal and it may be verified that VA = {UscyAa | Ao € Ia
and [{a | Aw # @} < w}. The box join of A, introduced in [10]
and denoted UA, is an ideal extension of the join VA defined by
UA = {UacyAa | Aa € 1o}, ie., the members of LIA are unions of
choice sets for A. Moreover, the box join of A is independent of the
well-ordering of its members. We will show that LA satisfies B if each
I, € A satisfies By and at least one ideal in A satisfies B;. But, first,
an example shows that VA may fail to satisfy B; even if each I, € A
satisfies Bj.

Example 18. Let X,, = w have the indiscrete topology 7, for each
n < w, and let (X, 7) be the free topological sum of the spaces (X, 7,).
Then (X, 7) is a partition space so that N(7) = {@}. Consequently,
for any ideal I of subsets of X, By holds if and only if By holds. Let
I, = P(X,) for each n < w, and let I = V{I,, | n < w}. Being
principal, each I, satisfies By and hence also By. Yet I satisfies neither
By nor By since 12 # I. Note that any choice set A = {a, | n < w}
for the family {X,, | n < w} is locally in I since, for each n < w,
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X, NA={a,} € I, CI. But each B € I has the property that
X,, N B = @ for all but finitely many n < w. So A € I? —1I.

Theorem 19. Let A = {I, | o < v} be a nonempty ordinally indexed
family of ideals satisfying Bz, and suppose that at least one ideal in A
satisfies B1. Then UA satisfies By.

Proof. Since each I, satisfies By, we have from [10] that LIA satisfies
Bs. Also, if Ig € A satisfies By, N(7) C Ig C LUA = LIA satisfies Bs.
O

It is evident that VA = LIA when A is finite. Hence, if ideals I and J
both satisfy By, then IV J satisfies By since IV J =1TUJ =U{I,J}.
This is equivalent to Corollary 15.

Corollary 20. For any ideal I and any infinite cardinal r, X (I)
satisfies By if I satisfies By.

Proof. Let kK = 7y as an initial ordinal, and let I, = I for each a < 7.
Then, if A= {I, | a <7}, () = LA. o

This corollary can be equivalently stated as follows. For any ideal I
and infinite cardinal &, (X.(I))! C X, (11).

Corollary 21. If I is an ideal satisfying By, then X(I) satisfies B .

Given an ideal I, is there a way to construct I* from I? Theorem 12
provides one way. Also, from [10], an “internal construction” of I? from
I was found. This construction could be applied to the ideal IV N(7)
to obtain I'' according to Corollary 14. Following the technique of [10],
a more direct construction is possible yielding I'* as the top (or union)
of a chain of ideals containing I. Let D°(I) = I and for each ideal J, let
D(J) be the smallest ideal containing each subset A C X such that for
each nonempty open set U, there exists a nonempty open subset V C U
with VNA € J. Clearly, for any ideal J, J C D(J) and equality holds if
and only if J satisfies By. For each ordinal a, let D*T!(I) = D(D*(I))
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and if § is a limit ordinal, let D?(I) = U{D*(I) | a < $}. Then, by
transfinite induction, I C D*(I) for each a. If a < (3, let § be the
ordinal which is order-isomorphic to 8 — a. Then (3 is the ordinal sum
a + & and, by transfinite induction on &, D?(I) = D%(D%(I)). Thus,
D(I) € DP(I)if a < B. Since each D*(I) C P(X) and |P(X)| = 2/X],
there exists an ordinal v so large that D7 (I) = DY*1(I). Since D7(I)
contains I and satisfies By, I* C D?(I). This is half of the following
construction theorem.

Theorem 22. If (X,7) is any topological space and I C P(X) is
any ideal, there exists an ordinal vy such that I* = D7(I).

Proof. As before, suppose that v is such that D7(I) = D"*(I). It
remains only to show that DY(I) C I'. Easily, D(I) C I' and, by
transfinite induction, D*(I) C I' for all a. For, if D*(I) C I! for all
a < B, then if 3 = §+1 is a successor ordinal, D?(I) = D(D%(I)) C I*
since D?(I) C I'. And, if 3 is a limit ordinal, then D?(I) C I' since
D<(I) C I" for each a < . Thus, D?(I) C I'. o

Even as I' and I? are representable as maximum elements in an in-
creasing ordinally indexed tower of subideals stacked on I, a similar
representation for I will be given below. On the other hand, the be-
havior of B3 seems to be quite different from the afore noted similar
behaviors of properties B; and Bs, particularly with respect to preser-
vation under certain operations. Firstly, B3 is not generally preserved
by a finite join of ideals. Let R be the usual space of real numbers, let
I =221 B(R) be the ideal of bounded subsets of the set Q) of rational
numbers, and let J = 2 N B(R) be the ideal of bounded subsets of
the set P of irrational numbers. Then I and J both have Bs being
codense. Clearly, IV J C B(R) so that R ¢ IV J being unbounded.
Thus, IV J does not have Bj since R is a union of bounded open sets
and each bounded open set belongs to IV J. A similar example can be
concocted where I and J are o-ideals.

Example 23. Let X = w; be the first uncountable ordinal equipped
with a subtopology of the usual order topology whose nonempty basic
open sets are of the form [0, 3] where 8 € w; is a limit ordinal. Clearly,
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every nonempty open set contains a limit ordinal and nonlimit ordinals.
Let L C w; be the subset of limit ordinals, and let B(w;) be the
collection of all bounded subsets of w;. Then I = {A € B(wy) |
ANL =@} and J = {B € B(wy) | B C L} are codense ideals in
X with IV J = B(wy). Evidently, I and J each have property Bs and
IV J does not have Bj since w; is an unbounded union of bounded open
sets. Further, I and J are o-ideals since a countable union of countable
sets is countable, and the countable subsets of w; are bounded.

The next example shows that Bjs is not preserved by o-extension.

Example 24. Let X = {a|a < w1} x (@ N [0,1])) be a subspace
of the long line where @ is the set of rational numbers, i.e., X has
the lexicographic order topology. Then I, the ideal of finite subsets
of X, has Bs being codense since X has no isolated points. However,
I,, = X(1,), the o-ideal of countable subsets, fails to have Bs since X
is an uncountable locally countable space.

Further, Jakub Jasinski (University of Scranton) and Irek Reclaw
(Gdansk University), read a preprint of this article and supplied the
following example showing that Bs is not generally preserved by the
Y., operator for an arbitrary infinite cardinal .

Example 25. Let x be any infinite cardinal with the discrete
topology, and let F = {f € &“|f(a) = 0 for all but finitely many
a € w} have the subspace topology induced by the product topology
on k“. Let X = kT x F have the product topology where x* has
the discrete topology. Since the dispersion character (least cardinal
of any nonempty open set) of X is k, the ideal I,, of subsets of X
of cardinality less than x is codense and hence has Bs. However,
Y.(I;) = I.+ contains every open set of the form {a} x F but fails
to contain X = Uyee+ ({a} X F) and hence cannot have property Bs.
It may also be observed that I,; is a o-ideal and is x-complete (closed
under union of fewer than x members) if £ is uncountable and regular.

The following example continues the contrast by indicating the un-
likelihood of obtaining a generalized Banach category theorem from
Bs.
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Example 26. Property Bs does not imply By even in case N(7) C
I C M(7). Let (X, 7) be the product w; x K of the first uncountable
ordinal w; with the usual real unit interval K = [0,1]. Let I =
I,, V N(7) be the join of the ideal I,, of countable subsets of X
with the ideal N(7) of nowhere dense subsets of X. Since (X, 7) has
uncountable dispersion character, I is 7-codense and thus satisfies Bj.
To see that I is codense, suppose on the contrary that G € I N1
and G # @. Then G = CUE with C € 1,, and E € N(7).
Since int (cl (E)) = &, G — cl(F) is a nonempty countable open set
contradicting the uncountable dispersion character. To show that I
does not satisfy Ba, it is equivalent to show that I # I2. Let Qo = QNK
where () is the set of rationals, and consider A = w; X Q. For each
point z = (a,r) € A, U = (e + 1) x K is an open neighborhood of
zand UNA = (a+1)xQp € I,, CI. So A locally belongs to
I and hence A € I?. But A ¢ I for, otherwise, A = D U E with
D eI, and E € N(7), and if m : X — w is the first projection
mapping, 71(D) is a countable and thus bounded subset of w;. If
8 < wp is an upper bound for m (D), W = {yv < w1 | B8 < #}
is an open subset of w; and (W X Qo) N D = &. So W x Qp C
A—D CFE =W x Qg is nowhere dense. But this is impossible since
@ #W x K C (int (c1 (W))) x (int (cl (Qp))) = int (cL (W x Qo).

We conclude with the promised construction of I°® from I very similar
to the one given above for I'. Let E°(I) = I, and for any ideal J, let
E(J) = JV P(U(JNT)). For each ordinal , let E“1(I) = E(E*(I)),
and if 3 is a limit ordinal, let E#(I) = U{E%(I) | @ < 8}. From here
forward, the construction is so similar to that for I' that we state the
theorem without further ado.

Theorem 27. For any topological space (X,T) and any ideal I C
P(X), there exists an ordinal v such that E7(I) = I3.

Remark 28. Recently K. Ciesielski and J. Jasinski published Topolo-
gies making a given ideal nowhere dense or meager, [2], where a some-
what similar problem of finding a topology 7 on X such that 7-nowhere
dense sets are exactly the sets of an ideal I on X.
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Remark 29. A follow-up paper, Ideal Banach category theorems and
functions, by the second-named author appeared recently in Mathe-
matica Bohemica [9].
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