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HIGHER DIMENSIONAL AHLFORS REGULAR SETS
AND CHORDARC CURVES IN R"

MANOUCHEHR GHAMSARI AND DAVID A. HERRON

1. Introduction. Recall that a Jordan curve C is chordare,
abbreviated CA, if there is a constant ¢ such that for each pair of
points z,y € C the arclength of one of the components A of C\{z,y}
satisfies

I(4) < clo —yl.
Since [(A) > diam (A) for any arc A it is immediate that CA plane
curves are quasicircles. (See Section 2 for many definitions and termi-
nology.) Obviously CA curves are locally rectifiable. In fact, every CA
curve is Ahlfors reqular, abbreviated AR, which means that there is a
constant b such that for all z and all » > 0 we have

I(CNB(zr)) <br

It is folklore that Ahlfors regular quasicircles are chordarc. Another
important property of CA curves, established by Tukia [9], and inde-
pendently by Jerison and Kenig [8, 1.13], is that each one is bilipschitz
equivalent to the circle S' via a global homeomorphism of the plane.
We summarize these comments as follows.

Theorem. For a Jordan curve C C R2, the following are equivalent.
(a) C is chordare.

(b) C is an Ahlfors regular quasicircle.

(c) C = f(SY) where f: RZ—R? is bilipschitz.

Moreover, all constants depend only on each other and diam (C).

This paper is a product of our efforts to generalize the above theorem.
We consider Jordan curves in R™ with Hausdorff dimension « € [1,n).
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In this setting quasicircle is replaced with bounded turning, abbreviated
BT. In Sections 3 and 4 we generalize the Ahlfors regular and chordarc
notions to deal with the situation where C' has Hausdorff dimension a.
Thus C is a-dimensional Ahlfors regular, or AR?, if the H“-measure
of that part of C inside a ball of radius r is comparable to r® and C
is a~dimensional chordarc, or CA®, provided a chordarc-like condition
holds where now we require that the H*-measure of A be comparable
to |z — y|*.

This document is organized as follows: Section 2 contains preliminary
information including definitions and terminology descriptions. In
Sections 3 and 4, respectively, we examine «-dimensional Ahlfors
regular sets and a-dimensional chordarc curves in R™. We conclude
Section 4 with a long list of equivalent conditions for certain Jordan
curves in R™. In Section 5 we exhibit numerous examples which
illustrate our results.

Now we advertise some of our conclusions. Naturally there arises
the question of the existence of CA® curves. A generalization of
the well-known von Koch snowflake provides examples for dimensions
1 < a < 2. For general a € [1,n) we construct self-similar Jordan
curves with the desired properties, which gives our initial result; see
Examples 5.1, 5.2.

Theorem A. Given 1 < a < n, there exist a-dimensional chordarc
Jordan curves in R™.

Below we write S for the CA® curve given by Theorem A. The
following is a consequence of Theorem 4.6 and Corollary 4.7.

Theorem B. For a Jordan curve C C R", the following are equiva-
lent.

(a) C is a-dimensional chordarc.
(b) C is a-dimensional Ahlfors regular and bounded turning.

(c) C is bounded turning and H*(A) ~ (diam (A))* for all arcs
AcCC.

(d) There is a BL* homeomorphism from C to St.
(e) There is a BL homeomorphism from C to S©.
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All constants depend only on each other, a and diam (C). When n = 2
the map in (e) extends to a BL self-homeomorphism of R2.

In Section 3 we study AR® sets and allow 0 < o < n. We first verify
the Mébius invariance of AR sets; see Theorem 3.1.

Theorem C. A set E C R" is a-dimensional Ahlfors reqular if and
only if (E) is a-dimensional Ahlfors regular for some (all) Mébius
transformation(s) ¢.

Next we establish an analog of a result of Meyer (see Zinsmeister’s
thesis [11, Proposition 2]) who characterized regular curves in terms
of their reflections across certain circles. We summarize our results as
follows. See the discussion in Section 3 for precise terminology; here
E, denotes the image of E under the reflection in the sphere centered
at xz with radius the distance from z to E. See Theorem 3.4 and
Corollary 3.5.

Theorem D. For E C R", the following are equivalent:
(a) E is a-dimensional Ahlfors regular.
(b) E is porous and H*(E,) ~ (diam (E,))* for all z ¢ E.

(c) E is porous and H*(p(E)) ~ 1 for all Mébius ¢ with diam (p(E))
=1.

We also investigate the relationship between the «a-dimensional
Ahlfors regular property of a set and uniform bounds on its upper and
lower H*-densities. We believe the following helps clarify the situation;
see Example 5.4.

Theorem E. Given 0 < a < n there exists a compact set E C R™ (in
fact a bounded turning Jordan curve when o > 1) which is a porous a-
set with lower/upper H*-densities which are everywhere in E bounded
away from 0 /00, yet E fails to be a-dimensional Ahlfors regular. When
a =1 we can take E to be a Jordan curve which has linear density one
at each of its points.



194 M. GHAMSARI AND D.A. HERRON

In the positive direction the succeeding holds. Here we declare E to
be bilipschitz homogeneous provided there is a constant K such that for
each pair of points x,y € F there exists a K-bilipschitz homeomorphism
[ : E—E satisfying f(z) = y. See Theorem 3.7 and Example 5.3.

Theorem F. A bilipschitz homogeneous a-set with positive lower
H*-density at some point is a-dimensional Ahlfors regular.

We point out that there are bilipschitz homogeneous Jordan curves
which are a-sets yet fail to be AR*.

2. Preliminaries. Our notation is relatively standard. We write
¢ = c(a,...) to indicate a constant ¢ which depends only on the
parameters a,.... We write a ~ b to mean there exists a positive
finite constant ¢ with a/c < b < ac; typically ¢ will depend on various
parameters, and we try to make this as clear as possible often giving
explicit values. We let B(z;r) = {y : |z—y| < r} and S(z;7) = 0B(z;r)
denote the open ball and sphere of radius r centered at the point x.

Let C be a Jordan curve in R"; thus C is a simple, closed, bounded
curve in R™. Given two points z,y in C we let C(z,y) and C*(z,y)
denote the components of C\{z,y} with minimal diameter and with
minimal H*-measure respectively. (Abusing notation we often assume
that C(z,y) or C*(z,y) include the endpoints z,y!) Here H* denotes
Hausdorff a-dimensional measure, which is defined below.

A quasicircle is the image of S! via a global quasiconformal homeo-
morphism of the plane. Ahlfors characterized quasicircles as the Jordan
plane curves which satisfy a bounded turning condition; that is, a Jor-
dan curve C' C R? is a quasicircle if and only if there is a constant a
such that for all z,y € C' we have

diam (C(z,y)) < alz —y|.

In the sequel we say that a Jordan curve C' in R" is a-BT if the above
condition holds for all points z,y € C.

Recall that f is K-bilipschitz, abbreviated K-BL, if

|z —y|/K < |f(z) — f(y)| < K|z —y| forall z,y.
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Next, we say that a map f is K-BL® if

lz —y|*/K < |f(z) — f(y)| < K|z —y|* forall z,y.

We denote Hausdorff measure by H®, but often write [ = H! for
Euclidean arclength. Thus

HY(A) = }13}) [mf{;dlam(Ui) A C LljUi,dlam (U;) < T}]

We call A an o-set provided 0 < H*(A) < oo. The Hausdorff
dimension of A is

dimy(A) = inf{a > 0: H¥(A) < co}.
The upper and lower H-densities of A at = are

—a ) H*(AN B(z;7))
D™(4,z) =1 e
(43) =meyp =

[e% A B .
D%(A, z) = liminf H* (AN B(x;r)
r—0 (27’)0‘

For further details we refer to [4,5].

We make extensive use of Hausdorff measure preserving maps. Let
A, B be a-, 3-sets respectively. Put a = H*(A),b = HP(B). We call
f : A—=B an H*/HP-measure preserving map provided aHP(fE) =
bH®(E) for all a-sets E C A.

Lemma 2.1. Let C C R" be a Jordan curve. There exists an
H /H* -measure preserving homeomorphism from S' onto C if and only
if each nondegenerate subarc of C is an «-set.

Proof. The necessity of this condition is apparent; we confirm its
sufficiency. Since C' is a Jordan curve, there is a homeomorphism
¢ : S'—=C. Define h(t) = H*(p{e?? : 0 < 0 < t}) for 0 < t < 27
Then h : [0,27]—[0, c] is a homeomorphism, where ¢ = H*(C). The
injectivity and continuity of h follow from

h(s) = h(t) + H*(p{e" : t < 6 < s})
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which holds for all 0 < ¢ < s < 2w. (Note that H® is additive on
subarcs of C' and continuous with respect to monotone sequences of
subarcs.) Then

®(e'") = p(exp(ih (e /27)))

is the desired homeomorphism from S! onto C. a

Of course even bilipschitz homeomorphisms generally fail to preserve
measure. Thus we require information about how BL, BL%, and other
maps distort Hausdorff measure. Minor modifications in the proof of
[4, 1.8] yields our next result which describes the change in Hausdorff
measure due to a Holder map.

Lemma 2.2. Suppose f : E—F is surjective and |f(z) — f(y)| <
K|z —y|* for all z,y € E. Then

HP(F) < KPHP(E)  for all B > 0,

and thus dimy (E) > adimy (F).

Corollary 2.3. Suppose there is a K-BL* homeomorphism from E
to F. Then dimy(F) = adimy (F) and

HP(E)/KP < HP(F) < KPHP(E) for all B > 0.

Now we examine the distortion in Hausdorff measure caused by
Mobius transformations. It suffices to consider inversion in the unit
sphere and we write z* = z/|z|? to denote the point symmetric to x
with respect to S? L.

Lemma 2.4. Let o(z) = z* = z/|z|?>. Suppose A = {r/2 < |z| <
2r}. Then

o(z) = ¢£$) where ¢ : A—A is4-BL.

Thus o : A—o(A) is a composition of a 4-BL map followed by a
dilation.
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Proof. Define 1(z) = rc(x). Using the basic identity [1, (3.1.5)]

|I* 7y*| — ‘x7y|
|z/ly|

we obtain

B _ lz—yl

which yields (1/4)|z—y| < |¢(z)—¢(y)| < 4|z—y| when z,y € A. O

3. Abhlfors regular sets in space. We call E C R" an a-
dimensional Ahlfors regular set provided there exists a constant b such
that for each z € E and each 0 < r < diam (E) we have

(AR) /b < HY(E N B(x;r)) < br.

We abbreviate this by saying that FE is b-AR®*. Note that here
0<a<n.

The one-dimensional Ahlfors regular Jordan curves were introduced
by Ahlfors in his 1935 Acta paper on the theory of covering surfaces.
These regular curves are of significant interest in harmonic analysis and
singular integral theory because of David’s theorem [3] that they are
precisely the curves for which the Cauchy integral defines a bounded
operator from L? into L?. Regular curves also have an important
connection with the so-called level set problem for conformal mappings;
see [2, Theorem 3] and the discussion and references mentioned therein.

We begin this section with the observation that the class of AR sets
is invariant with respect to Mobius transformations of R. Then we
give a characterization in terms of reflections across certain spheres.

Theorem 3.1. The Mdbius image of a b-AR® subset of R™ is c-AR®
where ¢ = ¢(b, a).

Proof. Suppose E C R" is b-AR?; let ¢ be a Mobius transformation
of R", and put F = ¢(E). According to [1, p. 41] we can write

o(z) = Ao(z) + 2
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where A > 0, z € R", A € O(n) is an orthogonal linear transformation,
and either o is the identity (if ¢(0c0) = 00) or o is the reflection across
the sphere S(¢~!(00);1) (if p(0c0) # 00). In the first case it is easy to
verify that F' is b-AR“, because translations do not change Hausdorff
measure, nor does the map z — Az (since this is an isometry and
so preserves distances), and the inequalities in (AR) are homogeneous
with respect to dilations. In the latter case we reason similarly and
realize that it suffices to consider the situation where ¢ is reflection
across the unit sphere:

T
p(r) =z" = W

Fix yo = ¢(x0) € F, 0 < R < diam (F') and let B = B(yp; R). We
consider two cases; first suppose that |yp| > 2R. In this situation we
have B C A = {y : |v0l/2 < |ly| < 2|yo|}. Now by Lemma 2.4 we can
write ¢|a = 9/|yo|? where ¢ : A—A is 4-BL. It follows that

B(zo; R/4lyo|*) € ¢(B) C B(xo; 4R/|yol?).
Appealing to Lemma 2.2 we obtain
H*(F N B) < (4]yol*)*H*(E N ¢(B)) < 16°bR"
and
H*(F N B) > (Jyo]*/4)*H*(E N¢(B)) > R*/16°.
Thus when |yo| > 2R we find that (AR) holds with E,b replaced by
F,16%b.

Next suppose that |yg| < 2R. First we establish a lower bound for
H*(F N B). Now there is a constant A = A(c, ) € (0,1/2] with the
property that F'N B(yo; R/2) contains a point y; with |y;| > AR. (Here
is one way to see this: It is immediate that if A = B(z;r)\B(z;s) is a
spherical ring with ANE = @, x € E, and if A separates the points of
E, then r/s < c?/*. Using this it is not difficult to see that a similar
fact holds for ‘M&bius rings’; i.e., if A = B(x;7)\B(y;s) C R*\E and
A separates the points of E, then the ‘conformal modulus’ of A cannot
be arbitrarily large.) Setting R; = AR/2 we have B(y;; R1) C B, and
since |y;| > 2R, the first part of our proof yields

’HQ(F N B) > ’HQ(F N B(yl;Rl))
Ry A” R“.

= 162b 32
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It remains to produce an upper bound for H*(F N B). Note that
B C B(t), t = 3R. Thus H*(F N B) <Y H“(F};) where
Fy = F0{t/4*" < Jy| <t/4'} = o(Ey),
E; = EN{4'/t < |z| < 471 /t}.
Since F is b-AR?,
HY(E;) < b(2(47F1 /1))~

Next, by Lemma 2.4 we can write ¢(z) = v¢(x)/r? where ¢ is 4-BL in
E; and r; = 2(41/t). It follows from Lemma 2.2 that

4a
HY(F;) < QQ’H“(Ei)
and hence
<1 96~
« F < « o = Ot‘
H(F) < 8%bt ;4(” T

Having considered all cases we conclude that F' is ¢-AR® with ¢ =
¢(b, @) = bmax{16%,(32/A)*,96%/4* — 1}. O

Below we characterize the a-dimensional Ahlfors regular sets in terms
of reflections across spheres. This is an analog of work by Meyer and
Zinsmeister [11, Proposition 2]. Our proof requires some preliminary
information which we now establish.

Recall that a set E C R™ is a-porous provided for each ball B(z;r)
there exists a ball B(y;ar) C B(z;7)\E.

Proposition 3.2. If E C R" is b-AR®, then E is a-porous,
a=a(b,a,n).

Proof. Suppose that E is b-AR*. Fix a ball B(z;r); assume ¢ € E
and 0 < r < diam (E)/+/n. Consider the cube Q = Q(z;s) C B(z;r)
with center z and edge length s = 2r//n. Let i be a large integer.
Divide each face of @ into 2¢ pieces to get 2" subcubes Q each having
edge length t = s/2°. Let Q = Q(y;t) be one of these subcubes.
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If ENQ(y;t/3) = @, then B(y;ar) C B(z;r)\E with a = 1/(3y/n2?),
so assume that there exists a point 2 € ENQ(y;t/3). Since B(z;t/3) C
Q@ we find that

2 r®

o A a _1 “
HY(ENQ) = (t/3) /b—5<§> a/zgai”

Summing over all 2!" such subcubes Q we obtain

2(n—a)ira N N
WSH (EﬂB(I,T))SbT‘ .
Thus i < log(2¢6*n%/2)/(n — a)log 2, whence our claim. O

Another property of b-AR* sets A C R™, which is trivial to validate,
is the following H*/diam inequality:

(HD) (diam (4))* /b < H*(A) < b(diam (A))°.

What is somewhat surprising is that we can actually use (HD) to
characterize AR® sets in R™. Our proof employs the following.

Lemma 3.3. Suppose E C R™ enjoys the property that
HYENB(r)) <cr®

for all v > d. Let ¢ be the reflection in the sphere S(d) of radius d.
Then for all t > 1,

[e%

H (o[ B\B(dD)]) < 2+(§) .

Proof. As in the proof of Lemma 2.4, we observe that [¢(z) — ¢(y)| =
A%z — y|/|z|ly] < |x — y|/4%* for points |z|,|y| > 2°dt. Utilizing
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Lemma 2.2, we thus obtain

H(p[B\B(dD)]) = Y H*(¢[E N (B2 di)\B(2 di))))
<y ( . > (B 0 B )
1=0

as claimed. O

The following notation will be in force: For z ¢ E set d, = dist (z, E),
let ¢, be the reflection in the sphere S(z;d,), and put E, = ¢, (E).

Theorem 3.4. A set E C R" is c-AR® if and only if E 1s a-porous
and for each x ¢ E, the H*/diam inequality (HD) holds with A = E,..
Here the constants a,b,c depend only on each other and «.

Proof. The necessity of these conditions is apparent from Proposi-
tion 3.2, Theorem 3.1 and the preceding remarks. We substantiate
their sufficiency. Thus we assume that E is a-porous and that (HD) is
true with A = E, for all ¢ E. Fix z € F, 0 < r < diam (E), and let
B = B(z;r).

First we demonstrate that
HYENB) <cir* where c¢; =b(8/a)“.
Since E is porous, we can choose a point z € B\E with
d, =ar and B(z;d;) C B.

Now E'N B is contained in the spherical ring R = B(z;2r)\B(z; d;), so
as in the proof of Lemma 2.4 we see that ¢, is 4/a?~BL in R. According
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to Corollary 2.3, in conjunction with (HD), we can now assert that

w(EnB) < (5) W) < (%) W

< b(%)a(diam (Ba))® < b(%)a@dz)“

=cir®.
It remains to confirm that
H*(ENB) >r%/c; where c3=8b°128%(1+ 1/a)".
We begin by determining ¢ so that
t* = 4b%64%(1 + 1/a)“.

Again we use the porosity hypothesis, this time to select a point
z € B(z;r/t)\E with

d, =ar/t and B(z;d;) C B(zr/t).
Now since B(z;p) C B(z;r + p) for all p > 0, the first part of our

proof yields H*(E N B(xz; p)) < cop®, where ca = ¢1(1+t/a)®; thus, we
can appeal to Lemma 3.3 and deduce that

H* (o [E\B(x;dyt/2a)]) < 29 cy(2ad, /t)*.

Next note that, as t > 4, E ¢ B(zx;2d;), so diam(E) > 4d, and
therefore diam (E,) > d, /2. Hence by (HD)

« (dz)a
HH(Ez) 2 oo

Now |y —z| <r/2gives |y — 2| < |y —z|+ |z — 2| <r/2+ 7/t <T,
so B(z;dyt/2a) = B(z;r/2) C B(z;r) = B. Thus
H (¢ [E N B]) 2 H (e[ E N B(w; dot/2a)])
= H(Ez) — H* (0o [E\B(z; dyt/2a)))
(dﬁ)a a+1 2adm “
> e 2%
= ey T2\
s r®

2041 ¢y
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by our choice of t.

As above, ENB is contained in the spherical ring R= B(z; 2r)\B(z; d,),
so using the ideas in the proof of Lemma 2.4 we see that ¢, is Lipschitz
in R with constant 1. Appealing to Corollary 2.3 we can now assert
that

HYENB)>HY(pz[ENB]) >r%/cs

which completes the proof. ]

Here is a list of equivalent notions which combines Theorems 3.1 and
3.4.

Corollary 3.5. For E C R", the following are equivalent:
(a) E is AR“.

(b) o(E) is AR™ for some (all) Mobius transformation(s) ¢.
(c) E is porous and H*(E,) ~ (diam (E;))* for allz ¢ E.
(

d) E is porous and H*(¢(E)) =~ 1 for all Mébius ¢ with diam (p(E))
=1.

We conclude this section by considering several questions related to
the definition of AR® sets. First we point out that sets which satisfy a
uniform local AR® condition are AR®.

Lemma 3.6. Suppose 0 < e <1 and (AR) holds forx € E, 0 <r <
ediam (E). Then E is c-AR*with ¢ = ab,a = a(e, o, n) ~ e~ ">,

Next we turn our attention to any possible link between regularity
and bounds on the H“-densities. Obviously a b-AR® set has lower,
upper H*-densities which are bounded away from 0, co by 27 /b, 27%b
respectively at each of its points. We are interested in determining when
this necessary condition is sufficient.

An immediate upshot of the definition of lower H“-density is that,
whenever 6 = D*(E,z) >0, H*(ENB(x;r)) > cr* forall0 <r < R
(where ¢ = 227§ and R = R(z,E)) and an analogous statement
holds concerning finiteness of the upper H*-density. Based on these
considerations we initially expected that somehow regularity could be
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deduced from having uniform positive/finite bounds on the lower /upper
H-densities. However, as Theorem E shows, there is absolutely no
hope for such a result.

With the above in mind we believe that Theorem F is of importance;
below we present a more quantitative version of this. Recall that F is
said to be K-bilipschitz homogeneous, abbreviated K-BLH, if for each
pair of points z,y € E there exists a K-bilipschitz homeomorphism f :
E—F satisfying f(z) = y. (We examine this condition in greater detail
in a forthcoming paper.) We emphasize that each of the hypotheses
stated below is essential: Example 5.3 gives a BLH set with densities
bounded away from 0 and oo which fails to be AR%*, and (in a
forthcoming paper we verify that) there are BLH Jordan curves which
are a-sets yet are not AR®.

Theorem 3.7. Let E C R™ be a K-BLH a-set. Suppose D*(E,x) >
d > 0 for some point ¢ € E. Then E is b-AR™ where b = aK?* and
a=a(a,é,z,F).

Proof. By definition there is a constant Ry = R;(z, E) > 0 such that

Ha(EﬂB(m;r))Zg(%)“ forall 0<r<R;.

We assume that d = diam (E) > R;. The above then gives
HYENB(z;7)) > bir® forall 0<r<d,

where b; = 297 1§(Ry /d)*.

Now fix any point y € E and 0 < r < d. Choose a K-BL f : E»FE
with f(z) =y. Then f(E N B(z;r/K)) C ENB(y;r), so

H*(ENB(y;r)) > K “H*(E N B(z;r/K)) > by K 2*r®.

Mimicking the preceding argument, and using the fact that D (E, z) <
1 for H*almost everywhere z € E, we deduce that

HYENB(y;r)) < baK>r®,

where by = max{2°t1, H*(E)/R$} and Ry = Ry(2,FE). Thus E is b-
AR® with b=ak2®, a=max{2°+1, H*(E)/Rg, 2!=°6-1(d/R1)*}. O
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4. Chordarc curves in space. The Ahlfors regular quasicircles
are precisely the chordarc curves, also called Lavrentiev or quasis-
mooth curves. These have been studied by David, Jerison and Kenig,
Lavrentiev, Pommerenke, Semmes, Tukia, Warchawski, and Zinsmeis-
ter. Tukia [9], and independently Jerison and Kenig [8, 1.13, p. 227],
established that a Jordan curve in R? is chordarc if and only if it is
the image of S! or R under a global bilipschitz self-homeomorphism of
R2.

In this section we generalize certain properties of chordarc curves,
replacing the original chordarc condition by our #“-chordarc condition
(see the paragraph preceding Proposition 4.4) and regularity by Ahlfors
a-dimensional regularity. In particular we confirm that CA%* Jordan
curves are precisely the BT AR® curves.

Let C C R™ be a Jordan curve. The natural a-dimensional gener-
alization of the ordinary chordarc definition would be to require that
there is a constant ¢ such that for each pair of points =,y € C one of
the components A = A(z,y) of C\{z,y} satisfies

(CA) |z —y|*/c < H(A) < clz —yl|®

We are immediately confronted with the question: Can we take A =
C(z,y) or A = C%(z,y)? (Recall that these are the components
of C\{z,y} with minimal diameter and minimal H“-measure respec-
tively.) Proposition 4.4 answers this in the affirmative, and we base
our formal definition on this result. Our proofs require the ensuing
technical results.

The bisection method can be used to corroborate the following.

Lemma 4.1. Let C C R" be a Jordan curve. Suppose that (CA)
holds for one of the components A of C\{z,y} for all z,y € C. Then
C is an a-set.

Lemma 4.2. Let C be as in Lemma 4.1. Put d = diam (C),m =
H*(C) and § = (m/2c)"/*. Let I be any subarc of C, let x,y be the
endpoints of I, and let A = A(z,y) be the component of C\{x,y} which
satisfies (CA). Then:

(a) If diam (I) < d/2, then I = C(z,y).
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(b) If H*(I) < m/2, then I = C*(x,y).
(¢) If [z —y| < 6, then H*(A) = H*(C(x,y)).
(d) If |z — y| > 0, then H*(I) > 6%/c.

Proof. Parts (a) and (b) are obvious; (c) follows from H*(A) +
H(C(z,y)) < 2H*(A) < 2c|xz—y|*. We verify (d); assume |z—y| > 4.
If either I = A or A = C*(z,y), then (d) is an easy consequence of
(CA). Suppose I # A and A # C%(z,y); so I = C*(z,y). Select
z € I'NS(z;6). Then by (c), A(z,z) = C%(z,z). Also, since z € I,
C*(z,z) C C*(x,y). Thus

H(I) =2 HH(C (2, 2)) = HY(A(w, 2)) 2 & — 2[% /e = 6/c

as desired. O

Corollary 4.3. Let C be as in Lemma 4.1. Then:
(a) H*(I) > 0 for all non-degenerate arcs I C C.
(b) diam (C)*/c < H*(C) < 2cdiam (C)*.

Proof. Put d = diam (C), m = H%(C) and § = (m/2c)'/<.

(a) Let z,y be the endpoints of a nonempty subarc I of C, and let
A be the component of C\{z,y} which satisfies (CA). If |z — y| > 4,
then Lemma 4.2(d) asserts that H*(I) > §%/c > 0. On the other hand,
if [x — y| < 0, then Lemma 4.2(c), in conjunction with (CA), implies
H () = H(A(z,y)) = [z —y|*/c > 0.

(b) First choose z,y € C with |z — y| = d. Then
H(C) = H(A(=,y)) 2 & —y|"/c = d/c.

Next choose z,y € C with H*(Cy) = H*(C2) where C1,C> are the
components of C\{z,y}. Since H*(C) < oo, we obtain

HY(C) = 2HY(C;) < 2¢|lz — y|* < 2¢d?,
where i =1 or ¢ = 2 is chosen so that C; = A(z,y). O

We are now in a position to establish the ensuing result upon which
we base our formal definition; to wit, we declare a Jordan curve C' C R"™
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to be an a-dimensional chordarc curve provided there is a constant ¢
such that one of (a) or (b) or (¢), and hence all of these, holds for each
pair of points z,y € C. We abbreviate this by saying that C is c-CA®.

Proposition 4.4. For a Jordan curve C C R", the following are
equivalent:

(a) (CA) holds for some component A = A(z,y) of C\{z,y}.
(b) (CA) holds for A =C*(z,y).
(c) (CA) holds for A= C(z,y).

Of course, here we require that (CA) holds for all xz,y € C; the
constant ¢ will vary from (a) to (c), but « is fized.

Proof. Clearly (c) implies (a). We demonstrate (a) = (b) and (b)
= (c).

(a) = (b). By definition H*(C*(z,y)) < H*(A(z,y)) < clz —y|°,
so we need only establish a lower bound for H*(C“(z,y)). First,
by Lemma 4.2(c) we know that H*(A(x,y)) = H*(C*(z,y)) when
|z —y| <6 = (m/2c)"/. Suppose |z —y| > §. Applying Lemma 4.2(d)
to I = C%(z,y), and using Corollary 4.3(b), we obtain

0% d* e -yt

@ «@ >_>_
H (C ("'D7y))— c — 203 —_ 263

(b) = (¢). Since H*(C(x,y)) = H*(C*(z,y)) = |z —y|*/c, it
suffices to determine an upper bound for H*(C(z,y)). Assume that
HY(C(z,y)) > H*(C*(z,y)). Choose a point z € C%xz,y) with
2|z — z| > diam (C*(z,y)) > diam (C(z,y)). Note that C*(z,z) C
C%(z,y) and so

£ ol < H(C%(x,2)) < Pl — y|°.

Now choose a point w € Cf(z,y) so that H*(4,) = H*(4,) =
H*(C(z,y))/2, where A, is the u-component of C(z,y)\{w} (v =z or
y). Finally,
H(C(z,y)) = 2H" (Az) < 2HH(C%(z,w))
< 2clz — w|* < 2¢[diam (C(z,y))]*
<22lz —2|]* < 22Tl -y O
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Now we corroborate that CA and CA® curves share analogous prop-
erties.

Theorem 4.5. Let C C R" be a c-CA* Jordan curve. Then:

(a) C is a-BT with a = 2c/°.

(b) C is b-AR® with b= 2°T1(1 + 2a)%c, a = 2¢%/~.

(c) C satisfies the condition (HD) for all arcs A C C with b = 2c.

Proof. Put d = diam (C), m = H*(C) and 6 = (m/2c)/°.

(a) Fix 2,y € C and choose z € C(z,y) with 2|z—z| > diam (C(z, y)).
Using (CA) applied to each of the arcs C(z, z) C C(z,y),

[diam (C(z,))]* < 2*cH*(C(z,2)) < 2%z — y[~.

(b) Fix a point € C' and 0 < r < d. First, let A be any subarc of C
joining z to a point y € C N S(z;r) with A C B(z;7). Then

H*(C N B(x;r)) > HY(A) > H*(CY(x,y)) > r*/c.

It remains to produce an upper bound for H*(C N B(z;r)).

Put € = 1/2(1 + 2a) where a is the BT constant for C. If r > ed,
then Lemma 4.3(b) yields

HY(CNB(z;r)) < HYC) < 2cd™ < :—zro‘.

Now suppose r < ed. Choose a point w € C with |z — w| > d/2.
Let A be the component of C'\ B(z;r) containing w and let y, z be the
endpoints of A. We claim that C(y,z) D C' N B(xz;r) and hence

H*(C N B(x;r)) < HY(C(y, 2)) < cly — 2[* < 2%r.
Note that if C(y, z) 2 CNB(x;r), then since C is a-BT we would have

2ar > aly — z| > diam (C(y, 2))
>y —w| > |z —w| |z —y|
>d/2—r,
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giving (1 + 2a)r > d/2 and contradicting r < ed.

(c) Let z,y be the endpoints of an arc A C C. If (CA) does not hold
for A, then there is a subarc A’ C A with endpoints z’,y’ and with
HY(A") =m/2 > H*(A)/2; thus, as (CA) does hold for A’, we obtain

(diam (4))* > | — y/|* > H*(A")/c > H*(4)/2c.

The above inequality is obvious when (CA) holds for A. We conclude
that in all cases H*(A4) < 2¢(diam (A))*.

It remains to produce the opposite inequality. This is an imme-
diate consequence of Lemma 4.3(b) when H*(A) > m/2. Assume
H*(A) < m/2. Choose a subarc A’ of A with endpoints z’,y’ such
that diam (A) = |2’ — ¢|. Then (CA) holds for A’ = C*(2’,y'), so

(diam (A))* = |z’ — ¢'|* < cH*(A") < cHY(A)
as desired. 0

Theorem 4.6. For a Jordan curve C C R™, the following are
equivalent.

(a) C is CA“.

(b) C is AR™ and BT.

(c) C is BT and (HD) holds for all subarcs A C C.
(d) There is a BL® homeomorphism from C to S'.

Moreover, all constants depend only on each other, o and diam (C).

Proof. We know from Theorem 4.5 that (a) implies both (b) and (c).
We corroborate (b) = (a), (¢) = (d) and (d) = (a).

(b) = (a). Suppose that C' is both a-BT and b-AR®. Fix points
z,y € C and put r = diam (C'(z,y)). Since C(z,y) C B(z;r),

HH(C(z,y)) < HX(C N B(z;r)) < br* < a%ble — y|°.

For the opposite inequality, let p = r/4a and select a point z €
C(z,y) with | — 2|, |y — 2| > r/4. If there exists a point w €
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[C N B(z;p)]\C(z,y), then as either z € C(w,z) or y € C(w,z) we
deduce that

r/4 < diam (C(w, 2)) < alw — 2| < ap = r/4;

since this is impossible, we must have C'N B(z; p) = C(z,y) N B(z; p).
Employing (AR) we conclude that

H(C(z,y)) = H*(C(x,y) N B(z;p))
=H*(CNB(zp) = p*/b
=r®/b(4a)®.

Thus C is c-CA® with ¢ = 4%a®b.

(c) = (d). We outline the argument, since Falconer and Marsh prove
essentially this result in [6]. Suppose C is a-BT and (HD) holds. An
appeal to Lemma 2.1 furnishes an H®/H!'-measure preserving map
f:O-S!

Fix z,y € C, and let I = f(A4), A = C(z,y). Using standard
inequalities comparing the diameter and length of subarcs of S' and
the fact that I must be the smaller component of S'\{f(z), f(y)}, we
see that

[h(z) = h(y)| = HI(I) = H*(A) = (diam (4))* =~ |z — y|*;

here the last two approximations follow from (HD) and the fact that
C is BT, respectively. A careful inspection of this argument reveals
that the Holder constant can be chosen as K = b% max{2ra/d®,d*/2}
where b is the constant from (HD) and d = diam (C).

(d) = (a). Suppose f : C—S! is a BL® homeomorphism. Let
A be the component of C\{z,y} which is mapped by f onto the
smaller component of S!\{f(z), f(y)}. From Corollary 2.3 we obtain
a = dimy(C) and also

H(A) ~ H(F(A)) = |f(z) = fy)| = |z —y|*

for all z,y € C' where the constants depend only on the Hélder constant
for f; the interested reader can readily verify that when f is K-BL“,
C is c-AR® with ¢ = (7/2)K?. O
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Corollary 4.7. Suppose A,B are a-CA®, b-CAP Jordan curves.
Then there exists a homeomorphism f : A—B with

|z —y|*/K < |f(z) - f(y)|° < K|z —y|* forall z,y

where K = abmax{H*(A)/H*(B),H*(B)/H*(A)}. When o = and
A, B CR?, we can extend f to a bilipschitz self-homeomorphism of R2.

Proof. The first part follows by taking f to be an H®/H"-measure
preserving map. The latter assertion is a consequence of work by Tukia
and Véisild [10]. o

Our results enable us to substantiate the following list of equivalent
conditions for certain Jordan curves.

Corollary 4.8. Let C C R"™ be a Jordan curve which is a BT a-set
with positive lower H“-density at some point. Then the following are
equivalent.

(a) C is CA™.

(b) C is AR~.

(c) C is BLH.

(d) H*(A) =~ (diam (A))* for all ares A C C.

(e) C is porous and H*(Cy) ~ (diam (E,))* for all z ¢ E.
(f) There is a BL® homeomorphism from C to S!.
(g) There is a BL homeomorphism from S* to C.

(h) There is a homeomorphism g : S'—C' satisfying

l9(21) — g9(22)| = |g(w1) — g(wz)| when |21 — 22| = |w1 — wo

for all 21, z2, w1, ws €S'.

Moreover, all constants depend only on each other, o and diam (C).

A thorough discussion of condition (h) above will appear in a forth-
coming paper.
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5. Examples. In this section we exhibit numerous examples which
illustrate the concepts presented throughout our paper. In particular,
Examples 5.1 and 5.2 substantiate Theorem A, and Theorem E is a
consequence of Example 5.4.

We begin by corroborating the existence of CA% curves. First we
briefly mention the following well known construction.

Example 5.1. The a-dimensional von Koch snowflakes K% and K.

Proof. Fix a € (1,2) and choose ¢t € (1/4,1/2) with 4¢t* = 1.
Define a sequence {J,} of Jordan arcs as follows. First, Jo = [0, 1].
Next, J; = Ui_,IF where If = oy(Jy), o is a similarity from Jo
onto the interval [a;_1,ax], and (in complex notation) ag = 0,a; =
t,az = 1/2 + i/t —1/4,a3 = 1 —t,aq = 1. Then Jo = U;_,I5 where
I} = o4(J1). Tterating this process yields a sequence of Jordan arcs
{Jn} with the property that J, converges (in the Hausdorff metric) to
a snowflake arc which we denote by K“[7, pp. 728-729].

Employing Hutchison’s open set condition [7, pp. 735-736] we find
that dimy (K*) = a. A calculation shows that H*(K*) = 1. Using
an H*/H'-measure preserving map, or by a direct limit process con-
struction, we obtain a BL® homeomorphism from K% to [0,1]. We
obtain a Jordan curve, the a-dimensional von Koch snowflake K¢, by
proceeding as above but starting with an equilateral triangle in place
of the interval [0, 1]. o

We have been unable to generalize the above procedure for the
situation n > 3. We are indebted to K.J. Falconer for discussions
leading us to a construction which does generalize. Our goal is to
communicate an explicit algorithm which yields a self-similar CA®
Jordan curve for an arbitrary dimension «. To facilitate our exposition
and your comprehension, we provide a detailed explanation for the case
1 < a < 2 and then we indicate how to handle the higher dimensional
situation.

We begin with an outline of the general construction. Again we
obtain a Jordan curve by piecing together certain Jordan arcs, each
of which is constructed via a self-similar process. Thus we need only
describe how to obtain these arcs. We begin by dividing the cube
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Q = [0,1]" into a large number, say m™, of identical subcubes Q. Then
we join the opposite vertices (0,...,0) and (1,...,1) of @ by using
the diagonals in a chain of M of the subcubes Q This process is now
iterated (by subdividing each Q and joining its opposite vertices ...)
and we obtain a fractal arc with (similarity) dimension log M/log m.
By choosing m arbitrarily large and varying M appropriately, we can
make log M/logm arbitrarily close to any given «, and by carefully
choosing the chain of subcubes used we can ensure that we get an “H*-
chordarc arc.” We get a Jordan curve by constructing four such arcs
which join the opposite vertices (0,...,0) to (1,...,1) to (0,...,0,2)
to (1,...,1,=1) to (0,...,0) of four adjacent cubes.

Example 5.2. Given 1 < a < n, there exists a c-CA® Jordan curve
F* in R", where ¢ = ¢(a, n).

Proof. For each positive integer ¢ € N we construct self-similar
Jordan curves having dimensions ozgq) with the property that {al@ :
i=0,...,Ny;q € N} is dense in [n — 1,n]. The desired result then
follows by using induction and approximating in the Hausdorff metric.
Each curve is obtained by taking the union of four similar arcs which
join the opposite vertices (0,...,0),(1,...,1); (1,...,1),(0,...,0,2);
(o,...,0,2),(1,...,1,-1); (1,...,1,-1),(0,...,0) of four adjacent
cubes. To construct the arc F' which joins the opposite vertices of
Q =1[0,1]", we divide @ into m™ (where m = 4q + 3) subcubes Q. We
use the diagonals of the cubes Q from a specific chain of M of these
subcubes. We iterate this process. By standard techniques ([5, Chapter
9] or [7, 5.3]) we obtain a self-similar fractal arc F' which is an a-set
with a = dimy (F) = log M/ logm and which satisfies an H“-chordarc
condition.

We provide a detailed construction for the arc F = FI(qu) with
‘maximal dimension’; we take M = (4q + 1)(2¢ + 1)"~1 + 2, so

. log M
ag\?z = dimy(F) = log m
_ log ((4g+1)(2¢+1)" 1 +2) “n
- log(4g + 3) -

for ¢ sufficiently large. Then we explain how to modify this arc, step



214 M. GHAMSARI AND D.A. HERRON

by step, to obtain arcs Fiv,1,..., F1, Fyp with dimensions agq) which
(@, = 0,...,Ng;q € N} is dense in

%

satisfy the requirement that {a
[n—1,n].

We begin now with a careful description of the n = 2 case following
the above outline. Fix ¢ € N and put p = 49+ 1,m = p + 2. Divide
the unit square [0, 1]? into m? subsquares

1 1+ 1 J J
_, >< _,—
m. m m m+1

Qijz[ ], 0<4,j<p+1

We refer to ;; as being in ‘column ¢’ and ‘row j.” Note that each
square @ has two diagonals, AT and A, with positive and negative
slopes respectively. We join the vertices (0,0), (1,1) of [0, 1]? by using
a chain consisting of the diagonals Aiij of certain of the subsquares Q;;.
(Actually the choice of which diagonal to use will be forced and thus
we need only specify which subsquares are in the chain.)

The border subsquares Qio, Qip+1,Qojs @pi1js 0 < 6, < p+ 1,
form a ‘safety zone’; we only use the two subsquares Qoo, @p+1,p+1
from this border ‘safety zone.” In a similar manner, the ‘even rows’
Qi2, Qiay ... ,Qip—1, 1 < i < p, form ‘safety zones’ and we use only
one subsquare from each ‘even row’ (to get across the row!). In each
of the remaining ‘odd rows’ we use all possible subsquares alternating
the diagonals and moving from ‘left to right,” then ‘right to left,” and
so forth.

In the first row we move ‘left to right’ using the diagonals
Al Ay, ASL A;l.

This chain of diagonals, together with Ad), now joins (0,0) to
(1/m,1/m) to ((p + 1)/m,2/m). We cross the ‘row two safety zone’
by using A_,, and then in row three we move ‘right to left’ via the
diagonals

Ay 13 A 55 oo, Ay, Ay

Next we use Al, to cross the ‘row four safety zone.’ Our chain of
diagonals now joins (0,0) to (1/m,5/m).

We repeat the above process: rows 5, 6, 7, 8 and 9, 10, 11, 12 and
...4q9—3,4q9—2,4q— 1,4q are just like rows 1, 2, 3, 4. Finally, we cross
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row p = 4q + 1 from ‘left to right’ using the same pattern as in row
one. We have now constructed a piecewise linear arc A; which joins
the vertices (0,0), (1,1) of [0,1]? and consists of

M =2+p(2g+1)

diagonals Afj each of ‘size’ 1/m.

We iterate the above process in the usual way thereby obtaining
piecewise linear arcs Ay which join (0,0),(1,1) and consist of M line
segments each of ‘size’ 1/m*. By standard techniques [5, Chapter 9],
[7, 5.3(1)] there exists a limit arc F = F® = limy_, o A which is an
a-set where

ool _ logM log(p(2¢ +1) +2)
Na " logm log(4q + 3)

It remains to verify that
HYF (z,y)) ~ |z —y|* for all z,y € F,

where F'(z, y) is the subarc of F joining z,y. (This condition guarantees
that the Jordan curve F, obtained by taking the union of four copies of
F2,is CA®.) To see that F satisfies the above H“-chordarc condition,
it suffices, according to Theorem 4.6(c), to show that F is BT and
satisfies the H*/diam-condition (HD). That (HD) holds is an easy
consequence of the fact that F consists of M* subarcs of ‘size’ m~*
where Mm~* = 1, and thus if diam (A) ~ m~*, then

He(a) ~ L)

~ (m™%)* ~ (diam (4))“.

Employing induction, it is not difficult to demonstrate that F' is 2m-
BT.

We have now made clear how to build a ¢-CA“ Jordan curve F¢,
where ¢ = ¢(a) and a = ag\?z = logM/logm = log(8q¢* + 6q +
3)/log(4q + 3). Clearly a@ 2 as ¢—00. Next we explain how to
modify the construction of F' = F I(fq), i.e., we modify the construction
of the arcs Ay, to get the arcs Fl(q), 1=0,1,...,N; — 1. Here Fo(q) is
simply the diagonal of [0, 1]?. The idea is simple, although tedious to
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write down. What we do is to use fewer and fewer of the diagonals Aiij
during the iteration part of our construction of F'.

We start by ‘trimming’ the diagonals used in row one: precisely, we
replace the diagonals
— Jr — — + . —
Ay 11 Ao By Ay g3, Ap o5 with A,
Iterating this scheme and taking a limit gives us an arc Fyy, 1 which

has dimension
_ (9 _ logMn,—1
ONg,—1 = Oéqul - IOg

here My,_1 = M — 4 (where M = My, = 2 + p(2q + 1) is as above)
because our new construction uses four fewer diagonals.

We continue this ‘trimming’ process obtaining self-similar limit arcs
F=F9 1=N,N,—1,...,21,0. Our construction of F; uses
M; total diagonals where 0 < M;11 — M; < 4. Thus the dimensions

o = ozl(q) satisfy
log M; 1 — log M, log 5
0< i —a; = og Mjy1 — log IV < og _
logm log(4q + 3)
It is now apparent that the set of dimensions {ozl(q) :1=0,...,Ngq¢c

N} is dense in [1, 2], so by approximating in the Hausdorff metric space
we obtain ¢-CA® Jordan curves F* for each 1 < o < 2, ¢ = ¢(w).

It remains to elucidate how our construction generalizes to higher
dimensions. For convenience we illustrate the case n = 3; the interested
reader can provide the details for n > 3. We divide the cube [0, 1]3 into
m3 subcubes (again, m =p+2,p =4q + 1)

Q,-jk:[i,iJrl]X[j L]X[ﬁ ﬂ]

m’ m m’ m+1 m’ m
0<4,5,k<p+1.

We refer to Q;;r as being in ‘column ¢,” ‘row j’ and at ‘depth k.
Thus the subcubes Q;;o, Qior, Qojxr form the front, bottom, left faces,
respectively. In [0, 1]® we have four possible diagonals: Al A2, A3 A*
which join the vertices (0,0,0) to (1,1,1), (0,1,1) to (1,0,0), (1,0,1)
to (0,1,0), (0,1,0) to (1,1,0) respectively.
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We join (0,0,0), (1,1,1) by using a chain consisting of the diagonals
A}jk and A?jk of certain of the subcubes Q;;.. In addition to the
border ‘safety zones’ (formed by the border cubes Q;jo, Qijp+1, Qiok,
Qip+1,6Q0jks Qpt1,jk, 0 < 4,5,k < p+ 1) we also have ‘safety depth
zones’ formed by the cubes at ‘even depths’ k = 2,4, ... ,4q. We go ‘up’
and ‘down’ the ‘odd depths’; £ = 1,5,... ,4g+1 are the ‘up depths’ and
k=3,7,...,4q — 1 are the ‘down depths.” In each of these ‘up/down
depths’ we mimic the two-dimensional case, using the diagonals A!
and A? in place of AT and A~ respectively. In this way we obtain a
piecewise linear arc which joins the vertices (0,0,0), (1,1,1) of [0, 1]
and consists of
M =2+p(2q+1)?

diagonals each of ‘size’ 1/m.

We iterate obtaining piecewise linear arcs which join (0,0, 0), (1,1,1)
and consist of M' line segments each of ‘size’ 1/m!, and then the limit
arc is an a-set where

NI log M _ log(p(2q + 1) + 2)
Na " logm log(4g + 3)

For large ¢ this dimension will be approximately 3. As before, we
‘trim’ our construction by using fewer and fewer of the diagonals in
the iteration. It is during this ‘trimming’ process that we need to
use the diagonals Af’jk and A?jk. Again we start with the maximal
dimension construction (outlined immediately above) and work our
way through smaller dimensions until we reach the situation where

each ‘up/down’ depth consists of just the ‘diagonal’ diagonals Al;; and
A%. (i =1,...,p). This ‘minimal dimension’ construction yields the
dimension

log My  log(p(2q +1) +2)
ao = =
logm log(4q + 3)
The construction of the ‘in between’ arcs uses M; total diagonals where
0 < Mjy1 — M; < 4. Thus the dimensions o; = al(q) satisfy
log M1 — log M, < log 5
logm ~ log(4g+3)

< 2.

O<ay1—og =

Again, the set of dimensions {ozl(Q) :1=0,...,Ng;q € N} is dense in
[2, 3], so we can approximate in the Hausdorff metric space to get any
desired dimension « € [2, 3].
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We can verify the #H*-chordarc condition just as in the n = 2
situation. Utilizing induction we find that this entire construction
works for all n. We have now demonstrated how to build a c-CA®
Jordan curve F<, where ¢ = ¢(a,n) and « € [1,n) is arbitrary. O

Now we exhibit numerous examples which have various ‘nice’ proper-
ties yet nonetheless fail to be AR* or CA*. When a > 1 the following
gives examples of bilipschitz homogeneous curves which have uniform
bounds on their upper and lower H“-densities. Among other things,
this example illustrates the necessity of the a-set hypothesis in Theo-
rem F.

Example 5.3. A union of AR® sets need not be AR*.

Proof. We consider 1 < o < 2 leaving the remaining cases as exercises
for the reader. Let C be the union of infinitely many copies of von Koch
snowflake arcs K placed at each integer. Then

N"*H*(C N B(0; N)) = N “2NH*(K®) = 2N~ *—0,

so C' is not AR%. O

At the end of Section 3 we investigated the relationship between the
AR property of a set and uniform bounds on its upper and lower H*-
densities. Now we furnish an example which illustrates that even for
‘nice’ sets it is not enough to simply have bounds on the densities.

Example 5.4. Given 0 < a < n there exist a compact set E C R™ (a
BT Jordan curve when @ > 1) which is a porous a-set with lower /upper
‘H*-densities which are everywhere in E bounded away from 0/c0, yet
E fails to be AR®. When a = 1 we can take E to be a Jordan curve
which has linear density one at each of its points.

Proof. For simplicity we assume that 1 < a < 2 = n. The case
2 < a < n can be dealt with by using the arcs F'® in place of K¢
below, and the Cantor dusts described in Example 5.6 can be used for
the case 0 < a < 1.
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Fix o < f < 2. We construct a-dimensional arcs A; by placing
appropriately shrunken copies of K on the ‘frames’ of the polygonal
arcs which approximate K?. We obtain our desired Jordan curve C
by taking two copies of K together with an infinite union of arcs
B; = p;K® and C; = r; A;. Here C; will have an endpoint z; and since

e “HY(C N B(xi;r;)) > ] “HYC;) = HY(A)—o0  as  i—00,

we see why C fails to be AR®.

Choose t,s so that 4t = 1 = 4s°. Let J; be the polygonal arc
obtained at the ith stage in the construction of K?; thus J; consists of
4% segments each of size s'; see Example 5.1. On each of these segments
of J; we place a copy of s*’ K and let A; be the resulting arc. Thus A4;
is a BT, porous Jordan arc joining 0,1 with H*-densities which satisfy

0<e<D*A;5z) DY(Aj,z)<M<oo forall z¢e A,
where € = ¢(«), M = M («), and with measure
Ha(Az) — 4i7_loc(siKa) — 4isai — 4(17(1/,6)1"

Now take z; = 1/2',r; = 1/ (24(t/2=1/B)1) < 1/4¢ (because 0 <
1/a —1/8 < 1/2) and put p; = x; — ;41 — ri+1. Next let C; be
the arc r; A; placed at z;, so C; joins xz; to x; + r;, and let B; be the
arc p; K placed from ;1 + r;41 to z;. Finally, let C be the Jordan
curve obtained by taking K* and replacing the ‘top’ arc—the one joining
0,1-with U2, (B; U C;). Then C is a BT porous Jordan curve which
fails to be AR® because

7o “HA(C N B(zg;73)) > HY(A;) = 4079F) 00 as i—oo0.

It remains to verify that C' is an a-set with lower/upper H-densities
which are everywhere in C' bounded away from 0/cc. Note that

HO(C) = re MO (A) = 1/2% = o > pf = HO(By)

and thus

oo

D HH(C) = %% > " HY(B).
i=k

i=k
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In particular,

2 <HHC)=2 H*(B; HH(C;)) <

(©) =2+ (B +H(O) < 5
and we see that C is indeed an a-set. Now we establish the bounds on
the H*-densities. Obviously we need only examine these at the origin.
It is immediate that

D*(C,0) > D*(K*,0) > ¢ > 0;

in fact we also have D*(|J(B; U C;),0) > 0. To show that the upper
H*-density is finite it suffices to demonstrate that the H*-measure of
U(B; U C;) N [0,7] is comparable to r* and we need only do this for
r = xp + r for arbitrary k. This follows from our calculations above

since
o0

HY(U(B; UC;) N[0, r]) = E (H®(B;) + H*(Cy))
i=k
2 2« 2
< -~ < =
= akga 1= 201

The truly interested reader can readily check that we do get linear
density one everywhere when o = 1, provided we change our choice of
i to ry = 1/(4140-1/B)), O

Our next example reveals the necessity of the BT hypothesis in part
(c) of Theorems B and 4.6.

Example 5.5. There are Jordan curves C for which the #*/diam
condition (HD) holds for all arcs A C C, yet C fails to be BT.

Proof. We assume « = 1; for a > 1 just replace each line segment by
an appropriately scaled snowflake arc K®. We construct C as a limit
in the Hausdorff metric of a sequence of Jordan curves C%. We begin
with an equilateral triangle C; with vertices 0,z,w where z = e™/6
and w = Z. The curve Ck41 will be obtained from Cj, by constructing
certain isosceles triangles inside C; with bases on the edges [0, 2], [0, w].
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Let a; = (2 + w)/3 = 1/4/3 be the centroid of C; and let 2; =
z/2,w; = w/2 be the midpoints of [0, 2], [0, w]. Choose points v; €
[zl,al],ul € [wl,al] with "Ul — CL1| = \ul — CL1| = 1/10 Let T3
and S; be the isosceles triangles with vertices w1, (1 + 1/5)z; and
u1, (1 £ 1/5)wy, respectively. Put C2 = Cy A (11 U S1), where A
stands for symmetric difference. Assume that Cj as been defined. Let
2, = 2/2F, wy, = w/2% ar = a1/2% 1 and choose points v € [zk, a]
and uy € [wy, ax] with |vg — ax| = |up — ax| = 1/10%. Let T} and Sy, be
the isosceles triangles with vertices vy, (141/5%) 2, and ug, (1£1/5%)wy,
respectively. Put Ci1 = Cp A (T U Sk).

Let C be the limit, in the Hausdorff metric, of the curves C. It is easy
to see that C' is not BT because |vy —ug| < |vi, —ag|+|up —ag| < 2/10%
while diam (C(vg,ug)) > |2 = 1/2*. Thus it remains to verify that C
satisfies the H*/diam condition (HD), and, since o = 1, it suffices to
establish that

[(A) < cdiam (A) for allarcs A C C.

This is clear if A contains any two of the points 0, z, w so we assume
that A is a subarc of C' which lies in C(0, z) with endpoints z, y chosen
so that 0, x,y, z lie in order on C. When « and y are close enough, e.g.,
if they both belong to the same triangle T}, our desired conclusion is
an easy consequence of the triangle inequality. Thus we may assume,
e.g., that = and y belong to triangles T; and 1} respectively with i > j.
Easy estimates now show that

1(A) <1(C(0,y)) < c|zj| < cdiam (A),
thus verifying the #®/diam condition (HD). o

Finally, we turn our attention to Cantor dusts. Falconer gives a
detailed description for constructing generalized Cantor dusts; see [5,
pp. 56-59]. We restrict our attention to his Example 4.4 on page 57
where each kth stage basic interval is replaced by m equally spaced
equal length subintervals; here m is allowed to vary considerably.
Verification of the following is a fun exercise which we leave to the
reader.

Example 5.6. The above mentioned Cantor dust is AR if and only
if m is bounded.
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