ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 28, Number 1, Spring 1998

PONTRYAGIN REFLEXIVE GROUPS ARE NOT
DETERMINED BY THEIR CONTINUOUS CHARACTERS

M.J. CHASCO AND E. MARTIN-PEINADOR

ABSTRACT. A theorem of Glicksberg states that, for an
abelian group G, two locally compact topologies with the
same set of continuous characters must coincide. In [12] it is
asserted that this fact also holds for two Pontryagin reflexive
topologies. We prove here that this statement is not correct,
and we give some additional conditions under which it is true.
We provide some examples of classes of groups determined by
their continuous characters.

Let G be an abelian topological group. By a character of G we mean
a homomorphism of G into the group T := R/Z, which can also be
identified with the unit circle of the complex plane. By 7, we denote
the topology of G, and by 7, the weak topology induced by the set G"
of all continuous characters on . In the literature 7, is also called
Bohr topology. For brevity, we write G, instead of G endowed with
7. If G is a locally compact abelian group (LCA), the following facts
hold:

A) G and G, have the same compact subsets.

B) The topology of G is determined by the set of all continuous
characters it produces, i.e., if 7/ is another locally compact topology
on G such that (G, ) and (G, 7’) have the same continuous characters,
then 7 = 7'.

The results A) and B) were proved by Glicksberg [5]. Varoupoulos
independently also proved B) [11, Section 2].

It is a natural question to extend these results to a class of groups
larger than that of LCA groups. In this respect Venkataramann asserts
that A) and B) also hold for reflexive groups [12, Theorem 1.1 and
1.2]. However, Remus and Trigos have proved in [8] that Theorem 1.1
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of [12] does not hold, and they ask if Theorem 1.2 of [12] could be true
in spite of the fact that the proof given relies on Theorem 1.1. We give
below (proposition) a family of spaces which are counterexamples to
Theorem 1.2. To obtain such a family we consider topological vector
spaces in their additive structure, which constitute a qualified class of
abelian topological groups.

2. An extension of a theorem of Glicksberg. Denote by X
a locally convex vector space, by X* the set of all continuous linear
functionals on X and by o(X, X*) the weakest topology in X that
makes continuous all the elements of X*. Let 7, and 7. be the topologies
in X™* of uniform convergence on the bounded subsets of X and on the
compact subsets of X, respectively. We call X; and X the vector
space X* endowed with 7, and 7.. The polar set of a subset M of X
is denoted by M? := {f € X* : |f(z)] < 1, for all z € M}, and if
N is a subset of X}, N° :={h € (X})*: |h(z)] < 1for all z € N}.
A neighborhood basis of zero in 7, respectively in 7, is given by the
polar sets of all bounded, respectively compact, subsets of X.

The space X can be treated as a topological group, and in this case
X" will stand for the set of all continuous characters on X and X'
and X/ will have analogous meaning. We say that X is reflezive as
a space (usual sense of reflexivity) if the canonical embedding from X
into (X;); is a topological isomorphism. It is reflexive as a group or
Pontryagin reflezive if the canonical embedding from X into (X/')2 is
a topological isomorphism of groups.

Proposition. Let X be an infinite dimensional reflexive Banach
space. Then Xy and X are reflerive additive groups, which admit the
same set of continuous characters. Nevertheless, the topologies T, and
7. are distinct.

We will need the following results for the proof.

Lemma 1. Let X be a topological vector space, and let p: X} — X2
be the mapping defined by p(f) = e*™f. Then p is a topological
isomorphism of groups.
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Proof. Tt can be seen in [1, Proposition 2.3]. i

Lemma 2. If X is a reflexive topological vector space, then (X})* =
(Xa)™

Proof. [9, Lemma 1.1]. O

Lemma 3. Let X be a reflexive topological vector space. Then X is
reflexive as a group.

Proof. Combine Theorem 1 of [9] with Lemma 1. O
Lemma 4. If X is a Banach space, then X is reflexive as a group.
Proof. 1t is Theorem 2 of [9] plus Lemma 1. O

Proof of the proposition. If X is an infinite dimensional reflexive
Banach space, so also is X, and applying Lemma 3 we obtain that X
is a reflexive group. On the other hand, by Lemma 1, the group X
is topologically isomorphic to X/'. Now X7 is reflexive by Lemma 4,
taking into account that the dual of a reflexive group is again reflexive.

By Lemma 2, combined with the fact that the mapping p of Lemma 1
is in particular an algebraic isomorphism, we obtain that (X;)" =
(X"

Finally X;" and X are nonisomorphic groups. For, suppose otherwise
that ¢ : X; — X is a topological isomorphism; in particular, it has to
be linear. Take U the unit ball of X}, ¢(U) is a zero neighborhood in
X?; then there exists a compact subset K of X such that ¢(U) D K°.
By Lemma 2, (X})* = (X;)*, and by reflexivity of X, we have that
both sets may be identified with X. Call ¢* : (X))} — (X;); the dual
mapping of ¢. It is also a topological isomorphism.

Let us see that K% is compact in (X);. By the bipolar theorem
and the reflexivity of X, K% can be identified with the o(X, X*)-
closed convex hull of K U {0}, which is compact due to completeness

of X [6, p. 241]. Thus, (¢(U))° C K% is relatively compact in (X} );.
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Since 7, and 7. are compatible with the duality (X7, (X;)*), they have
the same bounded sets; therefore (X;); and (X7); coincide. From the
equality U° = ¢*((#(U))°), we conclude that the closed unit ball of X
is compact, which contradicts the fact that X is infinite dimensional.
O

Glicksberg’s theorem holds for reflexive groups if a further assumption
is made. Following the terminology of [8], if a topological abelian group
(G, 7) verifies A), we will say that G respects compactness. Now it is
straightforward to prove the following:

Theorem. Let G be an abelian group. If 7 and 1o are group
topologies on G such that

i) (G, ;) respect compactness for i =1,2.
ii) (G, 7;) are reflexive (or metrizable) for i =1,2.

iii) They admit the same set of continuous characters,
then T1 = T2-

Some classes of groups determined by their continuous char-
acters.

1. Reflexive (or metrizable) nuclear groups. Nuclear groups were
introduced by Banaszczyk in [1]. Roughly speaking, they constitute
the smallest class of abelian groups which includes locally compact
abelian groups and nuclear vector spaces considered in their group
structure, and is closed through the operations of taking subgroups,
Hausdorff quotients and arbitrary products. In [2], it is proved that
nuclear groups respect compactness.

2. Banach spaces with the Schur property. If B is a Banach space,
B is reflexive as a group. If, moreover, B has the Schur property,
every weakly compact set K C B is compact. Indeed, by [8], weakly
compact sets in the topology induced by all the continuous characters
(Bohr topology) are weakly compact in the weak topology induced by
all the continuous linear functionals. Take now a sequence (Z,)nen
in K. Due to the Eberlein theorem [3], it has a weakly convergent
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subsequence, say (z;, )nen. Since B has the Schur property, (z;, )nen
is also convergent in the ordinary sense. Thus, K is compact.

3. Montel spaces. In [8], it is proved that a reflexive linear space
respects compactness if and only if it is a Montel space.

Remark 1. In the category of locally compact abelian groups, it is
proved that Pontryagin duality is unique up to natural equivalence (see,
for example, [4]).

The proof of this fact relies on assertion B). Thus, a generalization
of B) can be interesting in order to determine for which other classes
of groups there is essentially one duality theory.

Remark 2. V. Tarieladze has pointed out that our counterexample
can be generalized to reflexive non-Montel vector spaces, i.e., if X is
a reflexive, linear non-Montel space, X; and X are distinct reflexive
groups, which admit the same family of continuous characters.
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