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ON PROPERTIES OF M-IDEALS
JUAN CARLOS CABELLO AND EDUARDO NIETO

ABSTRACT. Given 1, s € ]0, 1], consider a Banach space X
which satisfies the following inequality

(*) If +gll = 7l fIl + sllgll

for every f in X* and g in the annihilator of X in X™**. It
is well known that if »r = s = 1, then X is a WCG Asplund
space, satisfying property (u) of Pelczyniski and property (A),
i.e., every isometric isomorphism of X** is the bitranspose of
an isometric isomorphism of X. The aim of this work is to
show that, to have the above-mentioned properties, it is not
necessary to suppose that r = s = 1. We prove, e.g., that
r+ s > 1 implies the Asplundness, r = 1 implies property (u)
(with ku(X) < 1/s), and s = 1 implies X is WCG satisfying
property (A). Also many examples are given. For instance,
a renormed James space J satisfies (%) for s = 1 and the
renorming of cp by Johnson and Wolfe does not have property
(A) and satisfies (x) for r = 1.

1. Introduction. A Banach space X is an M-ideal in its bidual,
in short, M-ideal, if the equality ||¢|| = ||7¢l + ||l¢ — 7¢|| holds
for every ¢ € X***, where m is the canonical projection of X, the
natural projection from X*** onto X*. The class of M-ideals has
been carefully investigated by A. Lima, G. Godefroy and the “Berlin
school”, among others. As a consequence of these efforts, P. Harmand,
D. Werner and W. Werner have published a recent monograph [15]
which is considered the most systematic and complete study about this
class. The spaces ¢o(I), I any set, equipped with their canonical norm
belong to this class, which also contains, e.g., certain spaces K(E, F)
of compact operators between reflexive spaces, see, e.g., [3, 14, 18 and
27] or [15, Chapter VI]. M-ideals are known to enjoy many interesting
isometric and isomorphic properties, e.g., they are weakly compactly
generated (WCG) [8] and Asplund spaces [20], have properties (u)
(with constant one) and (V') of Pelczyniski [11] and [12], satisfy the
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uniqueness property U of Phelps [15] and are proximinal subspaces in
their biduals [1] and [2], and isometric isomorphisms of their biduals
are bitransposes of isometric isomorphisms of them [14]. For more
complete information, see [15, Chapter III].

A large family of generalizations arose after the notion of M-ideal. We
are particularly interested in the ones given in terms of the canonical
projection w of X. In particular, we remark on the notions of HB-
subspace and SU-property introduced by J. Hennefeld [16] and E. Oja
[24], respectively. Indeed, see [24], SU-property is equivalent to
property U, i.e., any element f € X* admits a unique norm preserving
an extension to X**. It is known that if a Banach space X is an HB-
subspace in their bidual, then X is an Asplund space [26] satisfying
property U [16]. Nevertheless, it seems to not be known which of the
remaining properties under consideration remain true.

Recently, Godefroy, Kalton and Saphar have introduced the notion
of a strict u-ideal [10]; actually, if a Banach space X contains no copy
of I1, then X is a strict u-ideal if and only if X has property (u) with
constant one [10]. In the mentioned paper, the authors prove that if
X is a strict u-ideal and [; Z X, then X is an Asplund space such that
every isometric isomorphism of X** is the bitranspose of an isometric
isomorphism of X, X* contains no proper norming subspaces, but X
is not necessarily proximinal in X**. Nevertheless, it seems to not be
known if X is WCG.

We will introduce in this paper some generalizations. One of them
is the concept of U*-space, which is nothing but the dual notion of
SU-property. We prove that if X is a U*-space, then every isometric
isomorphism of X** is the bitranspose of an isometric isomorphism of
X; moreover, if in addition X is an Asplund space, then X is WCG. The
remaining generalizations arise in studying the relation between the
above considered properties and coefficients r and s, and the inequality

el = rlimell + slle —mell, Ve X

For instance, if r + s > 1, then X is an Asplund space and X*
contains no proper norming subspaces. If r = 1, then X has property
U of Phelps and property (u) of Pelczyniski with k,(X) < 1/s, but is
not necessarily proximinal in its bidual. If s = 1, then X is an Asplund
U*-space, but there are Banach spaces without properties (u) and U
satisfying the M (r, 1)-inequality as can be seen below.
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All Banach spaces in this paper are real and infinite-dimensional. If
X is a Banach space, mx will denote the canonical projection of X. If
there is no ambiguity, we write 7 instead of wx. The closed unit ball
and the unit sphere of X are denoted by Bx and Sy, respectively. The
closed ball in X with center a and radius r is denoted by Bx (a,r).

The concepts such as “closed”, “dense”, etc., are related to the norm
topology unless otherwise stated. Given a subset S of a Banach space,
the symbols S, spanS and co S are used to denote the closure, linear
span and convex hull of S, respectively.

Given a closed subspace Z of a Banach space Y, we write, for each
yey,
Pyly) ={z€ Z:[lz—yll = lly + ZII},
that is, the set of the best approximations of y in Z. If Pz(y) contains

exactly (at least) one element for every y € Y, then Z is said to be a
Chebyshev (proximinal) subspace of Y.

A series Yz, in a Banach space X is called weakly unconditionally
Cauchy (wuC) if there exists C' > 0 such that

N
E Enn

n=1

sup <C, VN EeN.

len]|<1

A Banach space X has property (u) if for every ** in the sequential
closure of X in (X**,w*), B,(X), there exists a series wuC ) z,, in X

such that
“+ o0
¥ = w'- Z Ty,
n=1

If X has property (u) and z** € B,(X), we denote its u-constant
ky(2**), see [10, p. 22], to be the infimum of all C. By the closed
graph theorem, there is a constant K such that

ku(z*) < K|z, Va** € Ba(X).

We will denote k,, (X) the least such constant K.

A bounded set C of a Banach space X is called dentable if, for every
e > 0, there exists z. € C such that z. ¢ ¢6 (C\Bx (z.,¢)).
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We will say that a Banach space X is an M-ideal, respectively
canonical u-ideal/U*-space, in its bidual, in short, M-ideal, respectively
canonical u-ideal/U*-space, if, for every ¢ € X*** we have

lell = lle = mell + [lmell,
respectively, ||(1 = 27)(¢)[| < [lell/lle — 7ol < [l¢ll whenever 7¢ # 0.

Note that the notion of canonical u-ideal coincides with the notion
of strict u-ideal [10] whenever the Banach space X contains no copy of
ly.

Finally we introduce the key concept in this paper.

Given r,s € ]0,1], we will say that a Banach space X satisfies the
M (r, s)-inequality if the following condition holds

el = rlimell + sll = moll, Ve X

It is clear that, if r = s = 1, respectively s = 1, then X is an M-ideal,
respectively U*-space.

2. The M/(r, s)-inequality. We shall now prove some results which
will be fundamental in the sequel. First we assert the good stable
behavior of several generalizations.

Proposition 2.1. Let X be a Banach space satisfying the M (r,s)-
inequality, respectively a canonical u-ideal/U*-space. Then every closed
subspace or quotient of X also satisfies the M (r, s)-inequality, respec-
tively is a canonical u-ideal /U*-space.

Proof. Tt is similar to the one given in [15, p. 111]. O

Proposition 2.2. Let X be an HB-subspace, respectively canonical
u-tdeal/U*-space. Then l,(X) is an HB-subspace, respectively canoni-
cal u-ideal/U*-space, for 1 < p < 4o0.

Proof. In the first place, we claim: If Q) is a norm one projection on
a Banach space Z such that

Bz C co (BQ(Z) UKer @),
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then
Blp(Z) C co (BIP(Q(Z)) U lp(KeI‘ Q))

Indeed, given ¢ = (z,) € By, (z), there are sequences (o), (yn) and
(2) in [0,1], Bg(z) and Ker @, respectively, such that

T = pYn + (1 —ap)zn, VneN.

It is clear that

A= [f(annynmp] v

n=1

+o00 1/p
[Z ||an||ﬂ
n=1

lelly < 1.

IA

If A = 0, then the claim is trivial.

If X =1, then ||(z,)|l, = [(Qzx)llp, and since, for every n € N,
1Qz,|l < ||znll, we have that ||z,|| = ||Qzx| so, by assumption,
Qxn = Ty, that is, ¢ € By ((z))-

Otherwise, it is enough to take p1 € By (q(z)) and ¢z € l,(Ker Q)
defined by

p1(n) = A anyn
and
a(n) = (1 =X)L —an)zn, YneN.

Hence, ¢ = Ap1 + (1 — A)p2.

On the other hand, it is straightforward to prove that X is an HB-
subspace, respectively U*-space, if and only if Bx««« C co (X* U Bx~)
and || — wx|| < 1, respectively By« C co(Bx. U X™*). Therefore,
by the claim, denoting ¥ = [,(X) and taking Q = mx, respectively
Q =1 — 7x, and since

Wy(gpn) = (T‘-X‘Pn), V(Qan) c Y***,

we have that
By« C co (Y U By-),
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respectively,
Bysx Cco(ByL UY™).

Also, it is clear that ||I — mx]|| < 1 implies that || — 7y || < 1. The
proof for canonical u-ideals is similar. i

Remark. The M/(r, s)-inequality is not stable by taking [,-sums, as
can be seen below (see Example 3.7).

The next lemma will be needed further on, and its proof has been
suggested to us by E. Oja.

Lemma 2.3. Letr,s €0,1]. If P is a projection on a Banach space
Z, then the following assertions are equivalent:

1. Forallxz € Z,

[zl = r[|Pz|| + s[lz — Pxl.

2. For all z*,y* € Z*,

[rP*a* + s(y* — P*y*)| < max{]la* + Ker P*|, [y* + P*(2°)]]}.

Proof. Denote by T the operator from Z to Z &, Z defined by

Tz = (rPz,s(x — Px)), VYzeZ.

1) = 2). In this case the operator T has norm < 1, so its adjoint also
has norm < 1, that is,

lrP 2" +s(y" — P*y")|| < max{||z*||, [[y"[|}, Va©,y" € 27

Starting from here, the assertion on the norm of x* + Ker P* and
y* + P*(Z*) is obvious.
2) = 1). By assumption, ||T*|| <1, so for every z € Z we have

rl|[ Pzl + slle — Pe| = ||Tz| < [lz]. o
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It is well known that M-ideals can be characterized by intersection
properties of balls [1, Theorem A], cf. [15, Theorem 1.2.2]. In our
context, we can establish the following result.

Proposition 2.4. Let X be a nonreflexive Banach space satisfying
the M (r, s)-inequality. Then, for every z** € X**, ¢ > 0, n € N and
Z1,%2,. .. ,Tn € X with ||z;]| < ||z** + X||, there is a z € X such that

|lra; + sz™ — z|| < ||z** + X|| + &.

Proof. Indeed, since Im7* = X1+, by the above lemma, for every
e X r, e X, i=1,...,n, with ||z;|| < ||l** + X]||, then

[rz; + s(z™ — m*2™)|| < [l=™ + X]|.
Hence,
Xttn ﬂ Bxaw (rz; + sz, ||z* + X||) # 2.
i=1

This means, by a result of A. Lima [19, Corollary 1.3] that, for all
€ > 0, there is a z € X satisfying

z € ﬂBX**(m:,-—&—sm**,Hm**—&—XH~|—8). o
i=1

The case r = s = 1 of the following result is proved in [13, Lemma
4.1], [20, Theorem 2.4] and [21, Proposition 2.7], and our proof follows
from them with some modifications.

Proposition 2.5. Let X be a nonreflexive Banach space satisfying
the M (r, s)-inequality. Then

1. If r+s > 1, then X* contains no proper norming subspaces and
X is an Asplund space.

2. If Y is a closed subspace of X such that there exists a space Z with
Banach-Mazur distance d(Y,Z*) < r+ s/2, then Y is reflexive.



68 J.C. CABELLO AND E. NIETO

3. For all z** € X**, there is a net (x,) in X w*-converging to x**
such that

mﬂrx + s(z™ — zy)|| < max{||z|],|z** + X||}, VzeX.

Proof. 1) Let us recall that the characteristic r(M) of a closed
subspace M of X* is defined by

(M) = inf{A > 0: A\Bx- C Ba" 1.
Obviously, 0 < r(M) < 1. In fact, M is a norming subspace if and only
if r(M) = 1.

With a similar argument to the one given in [13, Lemma 4.1], we
obtain, for every proper subspace M of X* that r(M) < 1/(r + s).
Therefore, if r+s > 1, then X™* contains no proper norming subspaces.

On the other hand, if Y is a separable subspace of X, by Propo-
sition 2.1, again Y satisfies the M (r, s)-inequality, and so, no proper
subspace of Y* is norming; therefore, Y* is separable, that is, X is an
Asplund space.

For the proof of assertion 2), it is enough to adapt [20, Lemma 2.3]
as follows.

Lemma 2.6. Let r,s € ]0,1] be such that r + s/2 > 1 and
c€ll/(r+s/2),1[. Suppose that, for every € > 0, there are sequences
() in Bx, (fm) in Bx~ such that

1. fm(zn) > ¢ when m > n.

2. |fm(zn)| < € when m < n.

Then X does not satisfy the thesis of Proposition 2.4 forn = 2. In
particular, X does not satisfy the M (r, s)-inequality.

3) It is a consequence of the following lemma, which is a revisited
version of [28, Proposition 2.3].

Lemma 2.7. Let r,s €10,1]. If Z is a closed subspace of a Banach
space Y such that Z* is the kernel of a norm one projection P, then
the following assertions are equivalent:
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ly*|l > rl|[Py*|| + slly” = Py*|, Vy* €Y.

2. For all y € By, there is a net (z,) in Z such that (zo) — y in the
(Y, P(Y™*))-topology and

lim [|rz + s(y — za)|| < max{]lzl|, [ly + Z|I}, V=€ Z

Proof. 1) = 2). By Lemma 2.3, the proof of (i) = (ii) in [28,
Proposition 2.3] may be adapted without problems in our case.

2) = 1). It follows as (iv) = (i) in [21, Proposition 2.7]. O

Remark. R. Haller and E. Oja have informed us that they have
independently proved Lemma 2.7 in a forthcoming paper.

Now let us collect some consequences.

Corollary 2.8. Let X be a nonreflexive Banach space satisfying the
M(r, s)-inequality for r + s > 1. Then
1. X does not contain an isomorphic copy of l;.

2. If Z is a Banach space such that X ; Z C X**, then there are no
norm one projections from Z onto X.

3. Every subspace or quotient of X which is isometric to a dual space
1s reflexive.

Proof. 1) It follows from the first assertion of Proposition 2.5 and the
fact that [, is not an Asplund space, and this property is inherited by
subspaces.

2) Let @ be a norm one projection. It is clear that, for every z € Z\ X,

Qz € [ Bx(z, ||z —z]).

zeX

So, by [13, Lemma 2.4], X* contains a proper norming subspace,
which is a contradiction with Proposition 2.5.
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3) If Y is a subspace or quotient, by Proposition 2.1, Y again satisfies
the M(r, s)-inequality. Therefore, if Y is isometric to a dual Banach
space, then there is a norm one projection, which is a contradiction to
the above assertion. ]

Corollaries 2.9 and 2.10 below were proved for the case r = s =1 by
G. Godefroy and P. Saphar in [13 Proposition 4.3 and Corollary 4.4].
They follow from Proposition 2.5.

Corollary 2.9. Let X be a separable Banach space satisfying the
M (r, s)-inequality for r + s > 1. Let (T,,) be a sequence of finite rank
operators on X such that

1. sup,, |Tu|| <7 +s,

2. T, Ty, =TT, for all n,k € N,

3. lim,, |[Thz —z|| =0 for allz € X.
Then we have that

lim | Tyz* —z*|| =0, Va*eX™

Corollary 2.10. Let X be a Banach space satisfying the M (r,s)-
inequality for r + s > 1, and let (e,) be a basic sequence in X. If the
basis constant of (ey) is strictly less than v+ s, then (e,) is shrinking.

The next results will be a key tool in the construction of examples of
Banach spaces satisfying the M (r, s)-inequality.

Proposition 2.11. Let X be a Banach space with shrinking basis
(en) and r,s €]0,1]. For n € N, we denote

n —+oo
— Ty — —
P,z = E zie; and P'r=x— P,x = E zie;,
i=1 i=n+1

where x = Z:ﬁ zie;. If, for alln € N, x € Bx and z** € Bx+~,

lim ||r P,z + sP™*z**|| < 1,
m
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then X satisfies the M(r, s)-inequality.

Proof. Let ¢ € X** and € > 0. Then there are x** € Bx« and
x € Bx such that

o —mell —& < (p —mp)(z™)
and
el — e < mo().
For n,m € N large enough, we have that

Il — & < mp(Paz)

and
||rPpz + sP™ ™| < 1+c¢,

and it is clear that, for every m € N,

(p = mp) (&™) = (p — mp) (P™"2™),

actually Py*z** € X. Hence,

lell 2 g le(rPuz + sP™ ™)

]' UL KK Kk
=1 sl - TP ) + rrp(Prz) + smp(P™ 2™))|
S

(= m0) (P &™) + ——mip(Pyz)

T 14¢ 1+e

o r‘7,[_()0(-P)7’TL*>'<:'E>9<>9<)‘

?H@—W@H‘i‘
2¢e
l+s 1+8

Zllmell

| SO(PTI’L** **)|‘

Now, since (e,,) is shrinking, \Wga(Pm** **)| < € for m large enough,
indeed wp(P™*z**) € Pm(BX) . O

Remark. The case r = 1 of Proposition 2.11 is contained in [23,
Corollary 3].
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Corollary 2.12. Let X be a Banach space with shrinking basis (en).
If, for alln € N and z € By,

lim sup |[rP,z+ sP™y| <1,
™ yeBx

in particular, if ||rPyx+sP™y|| <1 for allz,y € Bx and alln,m € N
with n < m, then X satisfies the M (r, s)-inequality.

The first example shows a break with the classical case [15, Proposi-
tion II.1.1], since the M(r, s)-inequality does not imply proximinality.

Example 2.13. Let > a, be a convergent series of positive real
numbers. Put a := an a, and suppose 0 < a < 1. For every
z = (n) € cp, define

||| := sup {J;n| + Z |zkak 1 n € N}.

k=1
Then

1. (e, || - ||) is not proximinal in (I, || - ||). In particular, (cq, | -||) is
not an M-ideal.

2. (co, || - ||) satisfies the M (1,1 — a)-inequality.
Proof. 1) Let e = (1,1,...) € loo. If & € ¢p, then
[z —el| = [lz —ef|oc > 1.

Let ¢ > 0. There exists m € N such that Z:iomﬂ ap < . Put
z:=) p,er. Then

+oo
lz—el <1+ Y ap<l+e.
k=m+1
Hence, |le+col| = 1. If thereis x € ¢y such that ||[z—e|| = |le+co]| = 1,

then

1Z|1—xn\+2|1—mk|ak, VneN.
k=1
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Letting n — +00, 1 > 1437 |1 —z,|a,, and this is a contradiction.

2) It is easy to show that the assumption in Corollary 2.12 is satisfied.
O

Remark. It remains an open question if there are Banach spaces
satisfying the M (r, 1)-inequality without being proximinal.

Our second example shows that the M(r, s)-inequality does not imply
property U.

Example 2.14. Let 0 < v < 1. Denote Z = R X ¢y with the norm
(e, 2)|| = max{laf + vl [lz[]}, (@, 2) € R X co,

where ||z|| is the usual norm in ¢y. Then Z satisfies the M (1 — v,1)-
inequality without having property U.

Proof. Note e; = (1,(0,0,...)) and

ens1 = (0,(0,...,0,1,0,...))
N——
n—1

for all n € N. It is clear that (e,) is a shrinking basis. Take
u= (o, (z;)), z = (B, (y;)) € Bz and n < m. Observe that

(L =) Pru+ Pz
(L= (el +v[l(z1, 22, .-, 2n—1,0,...)[),
(1= laf +71(0,0,...,0,Ym, Ym+1, - --)I,
1=z, 2z2,... ,Zn-1,0,...)],
100,0,.., 0, Ym; Ymt1,- - - )|
< max{[|ul], [|z][, (1 = 7)|a] +7llz[]} < 1.

= max

So, by Corollary 2.12, Z satisfies the M(1,1 — ~)-inequality.

On the other hand, it is straightforward to verify that Z*** = R x [},
with the norm

(e, )| = max{[al, [[oll + (L =lal}, (e 9) € R X,
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Now it is easy to prove that, for every (a,¢) € R x [*, holds

Py (a,¢) = {0} x (Big, (¢, max{llp + cq [l,7lel}) N ey).

Therefore, Z does not have property U. o

3. The M(1, s)-inequality and property (u). By a theorem of G.
Godefroy and D. Li [11, Theorem 1], cf. [15, p. 133], and by [15, p. 11],
M-ideals have properties (u) of Pelczyniski and U of Phelps. The aim
of this section is to show that, for these properties, it is not necessary
to suppose that s = 1. More precisely,

Theorem 3.1. Let X be a nonreflexive Banach space satisfying the
M (1, s)-inequality. Then

1. X has property U of Phelps.

2. X has property (u) of Petczyniski with constant k,(X) < 1/s.

Proof. 1) As Px.1 (¢) = {p—7p} for all ¢ € X***, X is Chebyshev,
but this is equivalent to property U [25, Theorem 1.1]. Assertion 1
also follows [24].

Now we proceed to show that X satisfies property (u). The proof
follows essentially the lines of the proof of the main result in [11].
Some extra difficulties are however to be overcome, and this is done in
the next lemmas.

The first lemma is a revisited version of [11, Lemma 2|, which is
crucial to prove that M-ideals have property ().

Lemma 3.2. Let X be a Banach space satisfying the M(1,s)-
inequality and x** € X**. Then z** = hy — ho on Bx-, where hy,hs
are positive lower semi-continuous functions on (Bx«,w*) such that

hi(z*) + ha(z*) < 1/s, YV € Bx-.

Proof. We only give the main ideas of the proof. It is straightforward
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to prove that X satisfies the M (1, s)-inequality if and only if
1
Bxeer Cco | =Bxs UBx- ).
s

It is clear that K = co((1/s)Bx+ U Bx+) is w*-compact.
Fix z** € X** and define h,-- : K — R by

(o) = L #@) i € (1) B p(a™) 20,
’ 0 otherwise,

and ho-- : K = R by

heo (p) = inf{a(p) : a € A(K),hy < a}, Vyp€K,

where A(K) denotes the set of all affine and w*-continuous functions
on K.

Denote

S = co({(k,r) : 0 < 1 < hyee (), € %BXL, k(™) > 0} UK x {0}).

By a Hahn-Banach argument, we have that

~

(g, ha(p)) €S, Ve €eK.

A standard procedure, see, for instance, [15, Lemma 1.2.5] and [11,
Lemma 2] allows us to assert that

(o — 7o) (™) = hyer (@) — hger (=), Vo € Bxwer.

Hence, if we consider the functions g; and g» from K to R given by

_s+e(™) -
- 2 hz**(@)a

e

g1(»)

92()
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for all ¢ € K, it is easy to show that ¢;,gs are positive and lower
semi-continuous functions on (K, w*) such that

(™) = g1(¢) — g2(p) Ve K
and g + g2 < 1/s.

By Saint-Raymond’s lemma [15, Lemma I1.2.8], there are hq,ho
positive and lower semi-continuous functions on (Bx«,w*) such that

m**:hl—h2 and h1+h2§1/5 [}

Now we want to draw attention to a careful reading of the proof of
[15, Theorem I1.2.10] which allows us to assert that:

Lemma 3.3. Let Z be a separable Banach space such that, for
every z** € Z**, there are positive lower semi-continuous functions
hi,ha : (Bz~,w*) = R satisfying

Z**:hlfhg and h1+h2§0

Then, for each z** € Z** and ¢ > 0, there is a sequence (z,,) in Z such
that
“+oo
2 — ¥ Z Zn,
n=1

N

sup < (14", VNeN.

len|<1

Enin
1

n=

Let us now conclude the proof of the theorem.

2) Fix ** € B,(X) and (y,) EN z**, and write Z = span{y, : n €
N}.

According to Proposition 2.1 and Lemma 3.2, Z satisfies the hypoth-
esis of Lemma 3.3, and, therefore, for every € > 0, there is a sequence
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(zn) in X such that

“+ o0
o = wt — Zzn’
n=1
al 1
sup enznll < =(14+¢)||lz*™|], VN eN. O
len|<1 n=1 o

It is known, see, e.g., [15, p. 133], that a Banach space X with
property (u) has property (V), i.e., every subset K of X* satisfying

lim sup |z*z,| =0
n g*eK

for every wuC-series Y z,, in X is relatively weakly compact, whenever
X contains no isomorphic copy of [;. Now we can extend [15, Corollary
I11.3.7] by simply adapting its proof to the new more general situation
with the help of previously stated results.

Corollary 3.4. Let X be a nonreflexive Banach space satisfying the
M (1, s)-inequality. Then

1. Every subspace of X has property (V). In particular, X contains
a copy of ¢y, X is not wsc (weakly sequentially complete) and X fails
the Radon-Nikodym property.

2. X* is wsc and contains a complemented copy of 1.
3. X 1is not complemented in X**.

4. X**/X is not separable.

5. Ewvery subspace or quotient of X which is isomorphic to a dual
space is reflexive.

6. Every operator from X to a space not containing cg, in particular,
every operator from X to X*, is weakly compact.

Example 2.14 and the next example show that condition » = 1 cannot
be dropped in Theorem 3.1.
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Example 3.5. For § > 0, let Js be the space of all null sequences
(o) in R satisfying

n

sup {(aakl S+ Y ok ak,)?

=2

1/2
+ (ks — (5ak1)2} < 400,

where the supremum is taken over all n € N and all finite increasing
sequences k1 < k2 < -+ < kp41 in N, with norm || - ||5 defined by this
supremum. Then

1. For every 8, (Js, || - ||s) is isomorphic to the James space.

2. For § > /2, (Js, || - ||s) satisfies the M (¢, 1)-inequality for all £ > 0
such that

e { (L0 (004 (P 2607} 1

(+) 2 252

Proof. 1) Tt is trivial.

2) It follows from [7, Properties I and II, pp. 81-82] that the sequence
(er), where
en=(0,...,0,1,0,...),
~——

n—1

is a monotone shrinking basis. By [7, Proposition 6.21], we may identify
J¥* with the space of all convergent sequences 8 = (8,,) in R satisfying

m

sup
meN

< +o00,
)

Bie;
1

1=

with norm ||3||s defined by this supremum. In what follows we will use
the following notation. Given | € N, we define () = (,8,@), where

ﬁ(l){ﬁn if n <1,
" 0 ifn>I.
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Now it is clear that, for 8 = (8,) € J;*,

18]l = sup {(55,83 — 802+ 38V - g0 2

kit
i=2
O} ) v
2
+(kn+1_5/8k1)} ?
where the supremum is taken over n,l € N, and finite increasing

sequences k; < ky < --- < kp4+1 in N.

By Proposition 2.11, it is enough to prove that, for ¢ verifying (),
and a = (a,) € J5 and B = (B,) € J3* with ||alls = ||8]ls = 1, and
n € N,

lim [|tPa + P™ 5 < 1.

It is clear that, for all n,h € N, we have

2(5(1” o an-i-h)z < ]-7 2(6ﬁn - ﬂn-l—h)z < ]-7
12(0an)?], 12(88n)*| < 1.

Let 0 < ¢ < 1. Since ||B]ls = 1, there are my,ny € N and
Jj1 < -+ < Jng+1 in N such that, for

s 1= (85" — Bi))?
no
+ 2B - B
1=2

+ (B, 0B,

JIng+1 J1

we have
so>1—¢.

We claim that, for every | € N with | > max{mo,jn,+1} and
hp < -+ < hpyq, a finite increasing sequence in N with h, > jpo41,

p+q—1
> B -8 <12t

i=p
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Indeed, let h, < --- < hpiq be a finite sequence with h, > jn,41.
First, suppose that mg < jn,+1, and denote

kE=min{i € {1,2,... ,n0+ 1} : j; > mo}.

Note that k > 1 since k = 1 implies so = 0, and this is a contradiction.

If £ = 2, then sqg = 2(6ﬂj1)2. Take hp+q+1 € N with hp+q+1 >
max{l, hptq}, and consider the finite sequence

J1<hp <--- <hprg < hpigi1-

Then we have that

pt+q

! 1 ! l
08, — B2+ (6 =B )P+ (B —68;)2 < B8l} =1.
i=p

So,
l rt l l l
(385 —BIDZ+ 3 (B =B )2+ (B, )P+ (98;,)* < 1.
i=p
Hence,
p+q-1 . .
S B -8 ) <1 (38;,)°
i=p
—1- %
2
1
< 1-— 5(1 — E)
11
BCRIPN
If £ > 2, then
k—2
S0 = (6/8j1 - /8j2)2 + Z(ﬂh - Bji+1)2 + (/Bjk71)2 + (557'1)27
i=2

and taking the finite sequence

Ju < <k <hp <o <hpig < hpigir
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with hpyq41 > I, which gives that

P

k—2
(885, = Bia)* + D (Bi. = Bjuy)? + (Bjuy — BL)?
1=2

p+g—1

+ Z hz+1 (’Bthrq)z + (6Bj1)2 < ”/BH(% =1,

we deduce that

p+q—1 . l
>0 B BT <1 s+ (8,
i=p

Finally, suppose that mg > jn,+1. In this case
no
2 2
S0 = (551'1 - ﬁjz)z + Z(ﬂh - ﬂji+1) + (/Bjno+1 - 5[31'1) )
i=2
and taking the finite sequence,
J1 < <ngt1 < hp <o < hpig,

which gives that

(5ﬂj1 - ﬁj2)2 + Z(ﬁ]z - /Bji+1)2 + (ﬂjn0+1 - }(Llp))z

i=2
p+g—1 l
+ Z WG -8 < 18lE =1,
we have that
p+q—1 . .
Z (ﬁ’(h) - )(”)Jrl)z S 1-— So + (Bjn0+1 - 55]1)2

i=p

<1+6
5 .
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Fix m € N such that m > max{n, mg, jn,+1}, and let us denote by
~v = (yn) the sequence

tPna+Pm**B = (talata27"' atanaoa"' 7075m+1aﬂm+27"')‘

Given [ € N and a finite sequence k; < ky < -+ < kpy1 in N, we
denote by

l l
= (07 — 4)? Z ka )? + (%i,,)+1 7))

Ifl <mor kp;1 <m, then

S = (6ak1 —ozkz +Z 1+1 )2+ (a ("11—(501,(:;))2
<o} =
<l+e.

Assume that I > m +1 and k,11 > m + 1. If by > m + 1, then
l I l
S = (38 - 8 Z o)+ (Bl — 8B

<|8lI5 =1
<1l+e.
If n < k; < m, and we denote r = min{i € {1,... ,p+ 1} : k; >
m + 1}, we have that
p+1

l l l
= (/Bkr)2 + Z ( IE:I) - ’Eii)Jrl)z + ( IE?;;)+1)2

i=r+1

1 1 1
_(524— +e<1l+e

If k; < n, and we denote s = max{i € {1,... ,p+1} : k; < n}, in the
case s = 1 and r = 2, we have that

S = (Stag, — B2 + Z z+1 +(BY ), — btay,)?

(1+6t)2 1 (1+5t)
< X T A T
< 252 + -+ 252 +¢€
<l+e.

N |
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If s=1and r > 2, then

S = (Stan,)? + (6) +Z B =B )2+ (B, — ota,)?

(5t)2 1 (1+5t)
<SEtaptatoam e
<l+4e.

If s>1and r =s+1, then

s—1
S = (dtay, — tak2)2 + Z(taki - taki+1)2 + (tag, — ’Bks+1)
i=2
+ Z k1+1 (Bk i1 Staug, )?
i=s+1
1+t)?2 1 (1446t)?
§t2+( +?) +—+7( + 0t) +e

262 2 262
<1l+4e.

If s>1and r > s+ 1, then

s—1

S = (8, — tar,)? + > (tak, —tag,,,)? + (tax,)? + (B)?

=2
+Z - k1+12+(ﬂk+1—5tak1)2
11 (1+46t)?
<P+ =+ -+ —
+262+2+ 252 +e
<l+e.
Therefore,

lim [|tP,o + P™* 3| < 1,

as required. a

83

Remark. The renorming of the James space Js shows that, in general,
the Banach spaces satisfying the M (r, s)-inequality cannot be renormed
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to be M-ideals. Note that M-ideals contain ¢y and this is not true for
the James space.

The next result of this section is new even for M-ideals.

Theorem 3.6. Let s €]0,1]. If X is a nonreflexive Banach space
satisfying the M (1, s)-inequality, then every slice of Bx has diameter
greater than or equal to 2s. In particular, Bx is not dentable.

Proof. Let z** € X**. We can suppose, without loss of generality,
that ||lz** + X|| = 1. Fixe > 0and 0 < § < /2. Take z € Sx and
x* € Sx~ such that z*x > 1 — 4. By Proposition 2.5, there exists a net
(z) in X w*-converging to z** satisfying

lim ||s(z** — z4) 2| < 1.

Denote by S the slice {y € Bx : z*y > 1 —¢}. For a suitable
0 < A <1 and « large enough, we have

|sz* (™" — xy)| < 0,

Mz £ s(z™ —z4)) € 3.

Therefore,

diam S = diam 5 > AM|(z+ s(z™ —z4)) — (z — s(z™ — z4))]|
= 2)s||z™" — 24|
> 2Xs|jz™ + X||
= 2\s.

Now, letting A — 1, we can conclude that diam S > 2s so, by the
Hahn-Banach theorem, By is not dentable. a

Remark. Notice again that the condition r = 1 is essential. In fact,
since the bidual of the James space is a dual separable, by the Dunford-
Pettis theorem, see, e.g., [6, Theorem 1], has the Radon-Nikodym
property so every bounded subset of J;s is dentable [4].
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To end this section we show, following an idea of [10, Proposition
4.4], that there are separable canonical u-ideals, simultaneously U*-
spaces and HB-subspaces, which cannot be renormed to satisfy the
M (1, s)-inequality.

Example 3.7. If X is a nonreflexive separable M-ideal, then [,(X),
1 < p < +00, is a canonical u-ideal, U*-space and HB-subspace, but
cannot be renormed to satisfy the M(1, s)-inequality for any s € ]0, 1].

Proof. If X is an M-ideal, then it is a canonical u-ideal, U*-space
and HB-subspace and so, by Proposition 2.2, [,(X) is also a canonical
u-ideal, U*-space and HB-subspace.

We denote Y = [,,(X). Let 0 < s <1 and (,,) a sequence in R" such
that Z:z dn, < +00. Suppose that Y satisfies the M (1, s)-inequality.
In order to reach a contradiction, we shall show by induction that there
exists a sequence (z,) in X satisfying ||z,| > s/2 and

l(z1, 22, ..., 20, 0,...)]|lp < Cpny, VneN,

where C,, = [];_;(1 + 6). Indeed, for an arbitrary z; € X with
|lz1]] = s/2, it is clear that

I(21,0,...)|l, = s/2 < Ch.

Assume that we have found z,xs,...,z,_1 as above, and denote
Sp-1 = (21,22,... ,Zpn_1,0,...), X,, to the subspace of Y defined by

{(0,...,0,2,0,...):z € X}.
———

n—1

Since X is a proximinal subspace of X**, see, e.g., [15, Proposition
I1.1.1], we can take e}* € X;-+ with

llen’llp = llen” + Xanllp = s.

By Proposition 2.5, there exists a sequence (zx) in Y (or in X,,, by
Proposition 2.1) w*-converging to e}* such that

@Hsnfl +e, — Zk“p <Cp1.
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Let £ € N be such that ||S,_1 + e}* — z&|l, < Cn. By Goldstine’s
theorem, it is easy to find a sequence (u;) in X,, w*-converging to
ey* — z, such that

[Sn—1 = ujlly < Cn

and
lim [Jug|| > [lep" + Xnllp = s
J

Now it suffices to take z,, = u; for j large enough. O

4. U*-spaces. In this section we show that, for a Banach space X
to enjoy the previously not considered known properties of M-ideals, it
is enough to suppose that X is a U*-space. Observe that if X satisfies
the M (r,1)-inequality, then X is a U*-space. The converse is not true,
as we will see below.

The next result is crucial in what follows.

Proposition 4.1. Let X be a U*-space. Then
1. X does not contain an isomorphic copy of l;.

2. If Q is a norm one projection on X*, then Q(X™*) is w*-closed.

Proof. 1) If a Banach space X contains an isomorphic copy of Iy,
then ||I — «|| = 2 [10, Proposition 2.6], and this is a contradiction to
the assumption on X.

2) First of all, we claim that Q**7rQ** = 7Q**.

In fact, if ¢ € X***, then it is clear that Q**7mQ**p € X*, and
so, TQ*wTQR* = Q**7wQ**. By the assumption on X and @, if
T(Q**TQ**p — Q**p) # 0, then

Q™ ¢ — Q™| 2 |Q™mQ™ ¢ — Q™ ¢

> Q7 mQ™ ¢ — Q™ p) = m(Q™ Q™" — Q™" p)|
= Q"¢ — Q"¢

and this is a contradiction. Therefore,

ﬂ_Q**(p _ WQ**WQ**S@ — Q**'/TQ**(«P-
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Since
= iX*(iX)*, Q**(X***) _ Q(X*)LJ_’
and

Q™ix» =1x+Q,
(where ix denotes the canonical embedding) we have that
iX*(iX)*Q** — WXQ** — Q**ﬂ_XQ**
— Q**iX* (Z'X)*Q**
=ixQ(ix) Q™.

So, since ix~ is injective, we have that

(ix)"(QX*) M) = (ix)" (@™ (X™*))

(¢
Q(ix)" Q@™ (X™") € Q(X7).

Therefore, Q(X™*) is w*-closed. mi
Our next result is proved for M-ideals in [14, Proposition 4.2].

Theorem 4.2. Let X be a nonreflexive U*-space. If Y is a Banach
space such that ||I — wy|| < 1, then every isometric isomorphism from
X** onto Y*™* is the bitranspose of an isometric isomorphism from X
onto Y.

Proof. Let ¢ € X** and z* € X* with mx¢ # x*. Then

o —a*|| > [l — 2" —mxp+ nxa*|| = |lo — x|

Therefore,
Px-(p) ={mrxp}, Vee X

Of course,
TyX € Py«(X), VXxeY*™.

Now let U : X** — Y™** be an isometric isomorphism. Since X and
Y contain no copy of {3 [10, Proposition 2.6], by [10, Lemma 5.6] and
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[9, Corollary 5.5], U is w*-continuous. In particular, U*(Y*) = X*. It
is clear that

U*x — UrnyX|| = [|[Xx — 7y X]|
=[x+Y"
:||U*X+X*||, VXEY***,

and so,
U*ﬂ'y = 7TxU*.

Hence,
U*(yt)=x+.

Therefore, by the Hahn-Banach theorem, U(X) = Y. Now we can
define H: X — Y by

Hz =iy'Uixz, Yz € X.

The operator H is continuous and H** coincides with U on X. Since
both operators are w*-continuous, H** = U. O

The above theorem is not true for the M(r, s)-inequality with s < 1,
not even with r = 1 as shown by the following renorming of ¢q due to
Johnson and Wolfe [17].

Example 4.3. Let 0 < u < 1. We consider in ¢j the following norm:

L1
Joll = sup { 221, koy — o — ... |,

where x = (z1,22,...) € ¢cg. We denote s := (1 — u)/(1+ u). Then
1. X = (co, || - ||) satisfies the M(1, s)-inequality.

2. X is neither a canonical u-ideal nor an HB-subspace. In particular,
X is not an M-ideal.

3. The isometric isomorphism V of X** defined by

V(/Bn) = (_BI;BQ — 2,81,... 7/671 — 2B1,) V(,Bn) € X**,

is not the bitranspose of any isometric isomorphism of X.
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Proof. 1) It is easy to show that X satisfies the assumption in
Corollary 2.12.

2) In this case, X satisfies the equality ||I — || =1+ p [17]. Now it
is enough to observe that ||I — 27|| = 1 implies that ||[I — 7| = 1.

3) Consider U : X* — X* defined by U(M\,) = (un) where p; =
—A1—2 Z:iz An and p, = A, for every n > 2. Then U is an involutive
isometry of X* [17]. Let V be the transpose of U so that V is the
involutive isometry of X** given by V(8,) = (o), where a; = —f
and o, = B, — 2p for every n > 2. Then clearly V(cp) # co. i

Remark. Using [23, Corollary 3], assertion 1 of the last example was
proved in [24, Example 4], where it was also observed that X is not an
HB-subspace.

The next results are proved for M-ideals in [8, Theorem 3|. Our
proof involves looking at Propositions 2.1 and 4.1, and it is based on
the classical case.

Theorem 4.4. Let X be a nonreflexive Asplund U*-space. Then X
is WCG.

Proof. According to [8, Theorem 1], there are a nondecreasing “long
sequence” of subspaces {M, : w < a < u} of X and a “long sequence”
{Ps : w < a < pu} of linear projections on X* such that M, = X, P, is
identity, and for all w < a < p, where p denotes the first ordinal with
cardinality dens X, the following conditions hold.

L ||Pall =1,

2. dens P, (X™*) < ||,

3. P,P3 = PgP, =P if B < q,

4. Up<caPp+1(X™) is dense in P, (X™),

where |a| denotes the cardinality of the ordinal a. (A “long sequence”
{P, : w < a < pu} of linear projections which shares the above
properties is called a PRI). Moreover, from (vii) in [8, Theorem 1],
Ker P, = M1, so it is w*-closed and, since by Proposition 4.1, Im P,
is w*-closed, then P, is w*-continuous. This means that P}(X) C X;
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hence, defining Q,z = P}z for all z € X, we have Q% = P,. Now we
can follow as in the proof of [8, Theorem 3]. o

Remark. It remains an open question whether there are Banach
spaces X satisfying the M (1, s)-inequality without being WCG.

Since a U*-space contains no isomorphic copy of /3, X is a strict
u-ideal if and only if X is a canonical u-ideal [10, Proposition 5.2].
Therefore, we can state the following.

Corollary 4.5. Let X be a nonreflexive U*-space which is a strict
u-ideal or satisfies the M (1, s)-inequality. Then X contains a copy of
co- In particular, every copy of co is complemented in X.

Proof. According to [10, Proposition 2.8] or Propositions 2.1 and
2.5, X is an Asplund space. By the above theorem, X is WCG. By
a standard procedure, see, e.g., [5, p. 149], one can get that there
exists a nonreflexive separable subspace Y of X, together with a norm
one projection @ from X onto Y. By Proposition 2.1, Y is a strict
u-ideal or satisfies the M (1, s)-inequality, and by [10, Theorem 5.4]
and [15, p. 133] or Corollary 3.4, it contains an isomorphic copy of c.
Hence, by Sobczyk’s theorem, see, e.g., [22, Theorem 2.f.5], there is a
projection P : Y — ¢y. Then P o @ is a projection, showing that ¢ is
complemented in X. u]

The following examples clarify the relation between U*-spaces and
the M (r, s)-inequality.

Example 4.6. Let X and Y be two M-ideals. Given 0 < v < 1, we
denote

]l + [yl }
T, = max\ ||z|], , , re X, yeY.
R (A yev

Then Z = (X xY,||||) satisfies, simultaneously, the M (1, v)-inequality
and the M (v, 1)-inequality. Moreover, if v # 1, then Z is not an M-
ideal.
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Proof. We will need the following technical lemma, whose proof is
straightforward.

Lemma 4.7. For every 0 < v < 1, consider the norm in R? defined

by
|(a,b)|, = max{|a| +7|b],[b] + vlal}, a,b€R.

Then, for every a,b,c,d € Ra', we have that

[(a+b,c+d)ly 2 l(a, )]y, [(b; d)l4]5-

It is easy to prove that Z* = (X* x Y* || - ||*), where

1", yO)I" = max{{lz* [ +[ly" [l [ly"| + ][}, 2" e X, y" Y™,

According to the above lemma and by the assumptions on X and Y,
the projection 7z (= mx x my) satisfies

Iz (@, 201l + (1 = TFZ)(SO»X)H,}

) = max { 1709 00 T TN

for every (¢,X) € Z***. If v < 1, then it is straightforward to prove
that 7z is not an L-projection [14, Proposition 3.1]. O

Example 4.8. Let X = ¢y @, ¢p. Then X is a U*-space failing the
M (r, s)-inequality for all r, s € ]0,1] with 2 + s? > 1.

Proof. 1t is clear that
X" =1 &, U, X =l iy loo,

and
T = Mgy X Teg-

Suppose that X satisfies the M (r, s)-inequality for certain r, s € ]0, 1]
with 72 + 52 > 1. Let ¢ € cé‘ and ¥ € [y, and write

a=re¥ll, b= lle—meoll
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By assumption, we have that
a® + b > r?a® + s%b? + 2rsab,

and, of course, for appropriate a and b, that is, ¢ and v, the above
inequality is not true. |
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