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ABSTRACT. There has been a considerable amount of re-
cent research on the subject of Sobolev orthogonal polyno-
mials. In this paper, we consider the problem of when a se-
quence of polynomials that are orthogonal with respect to the
(Sobolev) symmetric bilinear form

(p,q)lz/pqduo+/p’q’du1
R R

satisfies a second-order differential equation of the form
az(z)y" (z) + a1(2)y' (z) = Any().

We shall obtain necessary and sufficient conditions for this to
occur. Moreover, we will characterize all sequences of poly-
nomials satisfying these conditions. Included in this classifi-
cation are some, in a sense, new orthogonal polynomials. As
a consequence of this work, we obtain a new characterization
of the classical orthogonal polynomials of Jacobi, Laguerre,
Hermite, and Bessel.

1. Introduction. The study of Sobolev orthogonal polynomials has
been the subject of a considerable amount of recent interest. This area
deals with the study of sequences of polynomials which are orthogonal
with respect to quasi-definite symmetric bilinear forms of the type

(1.1) (p,g)n = Z/Rp("’) (2)g"™ () dpus,
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where each (signed) Borel measure ug, 0 < k < N, has finite moments
on the real line R. When N > 0, the algebraic and analytic theory
of these polynomials is quite different from that of the classical theory
(N = 0). For example, Sobolev orthogonal polynomials, in general,
will not satisfy a three-term recurrence relation, unlike their classical
counterparts; see, for example, the contributions [6] and [7]. More work
needs to be done in order to unify the subject of Sobolev orthogonality
and to understand the many subtle differences and similarities it has
with the classical theory.

In this paper, among other results, we shall characterize all sequences
of polynomials {¢n(z)}22, which are orthogonal with respect to the
bilinear form (1.1) when N = 1 and which are solutions to a second-
order differential equation of the form

(1.2) az(z)y" (z) + a1(z)y'(z) = My(z), n=0,1,...;

here a1(z) and as(z) are real-valued functions and A is a real (eigen-
value) parameter (see Equation (2.9) below for more details). This
will generalize the well-known characterization result of the classical
orthogonal polynomials due to Bochner [2], see Theorem 1.3 below.

We note that the classical orthogonal polynomials of Jacobi, La-
guerre, Hermite and Bessel are Sobolev orthogonal, and they all satisfy
differential equations of the form (1.2), see Example 4.1 in Section 4.

For example, the Jacobi polynomials {PT(la’ﬂ) ()}, o, B8 > —1, are
orthogonal with respect to the inner product

(.0) = [ p@)ale)(1 - 21+ 0 (1L - %) da
i / P (@)q (2)(1 — 2)* T (1 + @) H (1~ 2°) da;
R

here H(z) denotes the Heaviside function. This orthogonality follows
immediately from the well-known results that the Jacobi polynomials
are orthogonal on R with respect to the weight function

Wap(w) = (1—a)*(L+2) H(1 - 2%), a,f> -1,

and the fact that the first derivative {dP,(la’ﬂ ) (x)/dz}5e, of the Jacobi
polynomials are orthogonal on R with respect to the weight function
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Wa+1,8+1(x). We remark here that the Sobolev orthogonality of the
classical orthogonal polynomials has been discussed in detail in [28]
and, more recently, in [10] and [11]. In these latter two references, the
author discusses the Sobolev orthogonality of the Jacobi polynomials
{P,(La’ﬁ ) (z)} and the Laguerre polynomials {L%(z)} for all real values,
and, in particular, all negative integer values, of the parameters o and
B. For example, in [11], the author discusses the orthogonality of the
Laguerre polynomials {L;!(z)} of degree > 1 with respect to the inner
product

H(p,q) = /Ooo {e‘””p'(m)q’(m) + ée‘””p(x)q(w)} dz.

As part of our main results, we show in this paper that the Laguerre
polynomials {L;!(z)} of degree > 0 are orthogonal with respect to the
inner product

o(p.0) = Ap(0)a(0)+ [ " e (@) (@) da,

where A is any positive real number; see (4.7) and Proposition 4.1
below.

Along this line, and for later comparison, we mention the well-
known Hahn-Sonine characterization theorem (see [9] and [29]) for the
classical orthogonal polynomials, which we restate as follows:

Theorem 1.1. The only polynomial sequences {¢,(x)}2, (up to a
complex linear change of variable) that are simultaneously orthogonal
with respect to bilinear forms of the type

(ii) (0,91 = (P, @)o + Jg P/ (2)q' (x) dpa, with po and py being real,
(possibly signed) Borel measures, are the classical polynomials of

(a) Jacobi {P\*)(2)},, —a, =B, —(a+ B +1) € R\N,
(b) Laguerre {L%(z)}2,, —a € R\N,

(c) Hermite {H,(z)}2,, and

(d) Bessel {y%(x)}o>y, —(a+1) € R\N.
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Remark 1. Actually, in 1887, Na.J. Sonine [29] showed that, for
positive Borel measures po and g1, the only polynomials satisfying the
conditions of Theorem 1.1 are those of Jacobi, a,3 > —1, Laguerre,
a > —1, and Hermite. W. Hahn re-discovered this result in 1935 and
F.S. Beale [3] and H.L. Krall [16] independently extended this result
to the general quasi-definite case in 1941, see Section 2 below for the
definition of quasi-definite.

Among other results in this paper, we offer a new characterization of
the classical orthogonal polynomials. More specifically, we shall prove:

Theorem 1.2. Consider the symmetric bilinear form

(1.3) (P g = /R p(2)a(z) dpso + /R P (2)d (z) dyu,

where po and py are real, (possibly signed) Borel measures on the real
line R, each having finite moments and where py s quasi-definite.
Then the only polynomial sequences, up to a real linear change of
variable, that are orthogonal with respect to this form and satisfy a
second-order differential equation of the type (1.2) are the orthogonal
polynomials of

(a) Jacobi {P{P) (2)}2, —a,—B,—(a + B+1) € R\N,
(b) Laguerre {L%(z)}22,, —a € R\N,
c) Hermite {H,(x)}2,,
d) Bessel {y% ()}, —(a+1) € R\N,
e) twisted Jacobi {Pr(ba’ﬁ)(m)}ffzo, —(a+B8+1) € C\N and 8 = a,
and
(f) twisted Hermite {H,, (x)}%.

Furthermore, up to a complex linear change of wvariable, the only
polynomial sets that are orthogonal with respect to a bilinear form of
the type (1.3) and satisfy a second-order differential equation of the form
(1.2) are the classical orthogonal polynomial sets listed in (a), (b), (c),
and (d) above.

(
(
(

The orthogonal polynomials listed in (a), (b), (c), and (d) above are
called the classical orthogonal polynomials. It is natural, therefore,
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to refer to all of the polynomial sets listed in Theorem 1.2 as the
real classical orthogonal polynomials. In Example 4.1 in Section 4, we
shall review some relevant properties of the twisted Jacobi and twisted
Hermite polynomials; these polynomials are discussed at length in [20)]
where they are first introduced.

Besides being close in appearance to Theorem 1.1, the above the-
orem generalizes the following classification theorem which is usually
attributed to Bochner [2] in the positive-definite case and which was
extended to the quasi-definite case by H.L. Krall [16].

Theorem 1.3. The only polynomial sequences, up to a complex
change of variable, which are orthogonal with respect to a bilinear form
of the type

(1.4) (P, a)o = /R p(z)a(x) dpio,

where po is a real, (possibly signed) Borel measure on R, and satisfy
a second-order differential equation of the type (1.2) are the classical
orthogonal polynomials of

(a) Jacobi {P\*P) (2)},, —a,—B,—(a+ B+1) € R\N,
(b) Laguerre {L(x)}2°,, —a € R\N,

(c) Hermite {H,(z)}2,, and

(d) Bessel {y(x)}ory, —(a+1) € R\N.

We remark that, in [20], we generalize Theorem 1.3 in the following
sense:

Theorem 1.4. The only polynomial sets, up to a real linear change
of variable, which are orthogonal to the bilinear form (1.4) and satisfy
a second-order differential equation of the type (1.2) are the

(a) Jacobi polynomials {P,S“"B) ()}, —a, =B, —(a+B+1) € R\N,
(b) Laguerre polynomials {L%(z)}32,, —a € R\N,

(c) Hermite polynomials {H, ()},

(d) Bessel polynomials {y%(z)}o2y, —(a +1) € R\N,
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(e) twisted Jacobi polynomials {Pﬁa’ﬂ)(ac)}?fzo, —(a+p+1)e C\N
and B8 =a, and

(f) twisted Hermite polynomials { H,(z)}2%,.

In this paper, we further generalize Theorem 1.4. Indeed, in Section 5
below, we prove the following classification theorem.

Theorem 1.5. The only polynomial sets, up to a real linear change
of variable, which are orthogonal to a bilinear form of the type (1.3)
and satisfy a second-order differential equation of the form (1.2) are
the

a) Jacobi polynomials {P,S“"B) ()}, (—a,—B,—a+B+1) € R\N,
b) Laguerre polynomials {L%(z)}32,, —a € R\N,

(
(
(c) Hermite polynomials {H, ()},
(d) Bessel polynomials {y%(z)}>2,, —(a+ 1) € R\N,
(

) twisted Jacobi polynomials {P,(La’ﬂ)(x) ® 0 —(a+8+1)e C\N

€ n=0’
and B = a,

(f)
(g) Laguerre polynomials {L;'(z)}5,,
h)

(h) Jacobi polynomials {Py(b_l’ﬂ)(:v)}zozo, —(B+1) € R\N (or
(P V@), ~(a+1) € RAN), and

(i) twisted Jacobi polynomials {P,S_l’_l)(x)}?fzo.

twisted Hermite polynomials {H,(z)}2,-

Furthermore, up to a complex linear change of variable, the only
polynomial sets that are orthogonal with respect to a bilinear form of
the type (1.3) and satisfy a second-order differential equation of the
form (1.2) are the polynomial sets listed in (a), (b), (c), (d), (g) and
(h) above.

The work in this paper is, in part, motivated by a recent and
important example of R. Koekoek [13]. Koekoek produced the first
known example of a differential equation having a full sequence of
polynomial solutions which are orthogonal with respect to a Sobolev
inner product of the form (1.3) and which are not orthogonal with
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respect to a bilinear form of the type given in (1.4). This differential
equation, which is of order eight, is interesting from the viewpoint of
spectral theory since it gives the first known example of a right-definite
formally symmetric differential operator defined in some Sobolev space
which has a sequence of orthogonal polynomial eigenfunctions; see [8].
It is natural to ask if there are differential equations of this type but
of smaller order. Indeed, we shall produce such examples below in
Section 4.

In Section 2 below, we discuss various background results and nota-
tions that we shall need for the rest of the paper. One of the main
results of this paper, see Theorem 3.3 in Section 3, is to give necessary
and sufficient conditions for the existence of real Borel measures pg and
p1 for which the polynomials orthogonal with respect to the bilinear
form (1.3) will satisfy a differential equation of the type (1.2). This
work generalizes previous work of Littlejohn [22], Krall and Littlejohn
[14] and Kwon, Kim and Han [18], which all deal with symmetry equa-
tions associated with differential equations. This work on symmetry
equations has proven to be a valuable technique in constructing weight
functions for certain systems of orthogonal polynomials. Indeed, the
important contribution [18] uses this method to construct a real-valued
signed measure of bounded variation for the Bessel polynomials. At the
end of Section 3, we give a proof of the above-mentioned Theorem 1.2.
In Section 4 we construct, using Theorem 3.3, some nonclassical poly-
nomials which satisfy second-order differential equations of the form
(1.2) and which are orthogonal to a bilinear form of the type (1.3).
Lastly, in Section 5, we prove Theorem 1.5.

2. Preliminaries. The real and complex number fields will
be denoted by R and C, respectively, with Z denoting the complex
conjugate of z € C. The set of positive integers {1,2,...} will be
denoted by N while the set of nonnegative integers {0, 1,2, ...} will be
represented by Ny.

All polynomials throughout this paper are assumed to be real-valued
polynomials of the real variable x; the collection of all such polynomials
will be denoted by P. We shall denote the degree of a polynomial 7 € P
by deg(7), with the convention that deg(0) = —1; hence, if deg(r) = 0,
then 7 is necessarily a nonzero constant. We call any linear functional
o : P — R a moment functional and denote its action on a polynomial
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7w by (o,7). In particular, the nth moment of o is given by (c,z"),
n = 0,1,.... With this action, any moment functional o will define
a bilinear quadratic form through the formula (o, pq), p,q € P, which
may or may not be a (positive-definite) inner product.

By various representation results like Boas’ moment theorem [1] or
Duran’s generalization [5] of Boas’ theorem, any moment functional o
will have a representation of the form

<c7,7r>:/R7r($)d00, reP,

or

(o,m) = /Rﬂ'(ac)wa(x) de, mewP,

where oy is, in general, a signed Borel measure having bounded vari-
ation on R, and where w, is a C*° weight function of the Schwartz
class. With this in mind, we note that the bilinear form given in (1.3)
can be rewritten as

(2.1) (@)1 = (o,pg) + (1, P'').

As we shall see, it is somewhat advantageous for us to use this abstract
notation involving moment functionals instead of using one of the above
integral representations for o and 7.

For a moment functional ¢ and m € P, we let o', the derivative
of o, and mo, multiplication of o by a polynomial, be those moment
functionals defined by

(22) <0J7p> = _<Uapl>a pe Pa
and
(2.3) (mo,p) = (o,mp), pEP.

It is easy then to obtain the following Leibniz rule for any moment
functional o and polynomial 7:

(2.4) (o) =n'oc + o'
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We say that a moment functional o is quasi-definite, respectively
positive-definite, if the moments

on = {0,z"), mn € N,

of o satisfy the Hamburger condition

oo 01 On
g1 g9 cee Op41

(2.5) Ap(o) :==det | . : . " #0, n € Ny,
On Op4l .- O2n

respectively A, (o) > 0,n € Ny.

It is well known, for example, see [4, Chapter 1], that a moment
functional o is quasi-definite, respectively positive-definite, if and only
if there is a sequence of polynomials {P,(z)}22,, with deg(P,) = n,
such that

(2.6) (0, PPp) = Kp0pm, m,n € Ny,

where K, # 0, respectively K,, > 0. In this case, it is customary,
see [15], to call {P,(x)}2, a Tchebycheff polynomial system, TPS for
short, relative to . When each K, > 0, a TPS is usually referred
to as an orthogonal polynomial system, OPS for short. In either
case, we say that o is an orthogonalizing moment functional for the
polynomial system { P,,(2)}5°,. For more information on this and other
terminology, we refer the reader to the paper of Everitt and Littlejohn
[8].

By a polynomial system (PS), we mean a sequence of polynomials
{n(z)}32, with deg(¢,) = n, n € Ny. Notice, then, that a PS is
a basis for P. Any PS {¢,(z)}°, determines a moment functional
o (uniquely up to a nonzero constant multiple), called a canonical
moment functional, see [26], for {¢,(x)}2,, by the conditions

(2.7) (o,00) #0 and (o,¢,) =0, neN.

Note that if a PS {¢,(x)}52, is a TPS relative to o, then o must be a
canonical moment functional for {¢,(x)}22,.
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If {¢pn(x)}52, is a PS and, for each integer n > 0, ¢, () satisfies the
second-order differential equation

(2.8) Lly|(z) == az(x)y" () + a1(2)y'(z) = Any(),

where az(z) # 0, see Remark 3 below, and ), is a real parameter
depending only on n, we shall refer to this PS as a differential polyno-
mial system of order two, DPS(2) for short. Of course, Theorem 1.3
precisely characterizes the systems of polynomials that are in the inter-
section class TPS N DPS(2). For the remainder of this section, we shall
concentrate on stating several algebraic results concerning the class PS
N DPS(2); these results will be necessary in subsequent sections.

Firstly, if {¢,(2)}5%, is a PS and, for each n € Ny, ¢,,(x) satisfies
(2.8), then it is necessary that the coeflicients a;(x), az(z) and A, be
given by

M)~

aj(zr) = Lixt, j=1,2,
(29) .7( ) 7y J

o

An =nli1+n(n—1)la2, ne Ny l%,1 + lg,z # 0.

Indeed, this was first observed by Bochner in [2].

By direct calculation, it is easy to see that (2.8) has a unique monic
polynomial solution of degree n for each nonnegative integer n except
possibly for a finite number of values of n. For these exceptional cases
of n, there may be no polynomial solution of (2.8) of degree n or there
will be infinitely many monic polynomial solutions of degree n.

Lemma 2.1. If the differential equation (2.8) has a PS {P,(z)}32,
of solutions, then any canonical moment functional o of {P,(z)},
must satisfy

(2.10) (az(z)o)" — ay(z)o =0,
which is equivalent to the recurrence relation

(nla2 +111)0nt1 + (nl2y +110)0n + nl2gon_1 =0,

(2.11)
n € No; 0_1 =0,
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where {op}52, are the moments of o.

Proof. Let o be a canonical moment functional of {P,(z)}32,. Then
we have for each integer n > 1,

0= Au{o, P) = (0, \n Py)
= (0,a2P! + a1 P.)
—<(a20')l — ajo, PTIL>,

which implies (2.10) since {P)(z)}32, is also a PS. Furthermore,
equation (2.10) means that

{(ago) —ajo,z™) =0, n € Ny,

which, when written out, is the recurrence relation (2.11) in terms of
the moments {0}, of o. o

Remark 2. Notice that no assumptions are made in the above
lemma concerning orthogonality of the PS {P,(z)}32, relative to o;
see Theorem 2.5 below, which covers the case when a PS is a TPS.
Indeed, a PS is a TPS if and only if its canonical moment functional is
quasi-definite.

We call (2.10) the weight equation for the differential expression L[]
defined in (2.8), while (2.11) is called the moment equation for L[-]. It
must be understood that the lefthand side of (2.10) is interpreted as
being the zero moment functional; that is to say, all of the moments of
the functional (as(x)o)’ — a1 (z)o are zero. There are several examples
of zero moment functionals available; for example, the functional w

defined on P by
w.p)i= [ plalgle)ds,
R

where g(x) is Stieltjes ghost function, given by

(2.12) (z) = 0 ifz <0
' I = et sin(z'/4) if z >0,

is the zero moment functional; see [31, p. 126] and [4, p. 73].
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If, in Lemma 2.1, the sequence {P, ()}, is actually a TPS and
o is an orthogonalizing moment functional for {P,(z)}2,, then the
weight equation (2.10) may be used to find such a o. The idea is to
interpret (2.10) as a distributional differential equation. To do this,
however, the righthand side of this equation is no longer necessarily
the function that is identically zero. Indeed, the zero functional should
be replaced, in general, by a function that has zero moments, for
example, the one given in (2.12). We then seek a nontrivial solution
w € D', the space of Schwartz distributions, to this nonhomogeneous
equation. This solution w, of course, must have finite moments which
satisfy the moment equation (2.11). This method has been effectively
used by Littlejohn [22] and Kwon, Kim and Han [18] to construct
orthogonalizing weight functions for certain systems of Tchebycheff
polynomials. In [18], the authors use this technique to construct
an orthogonalizing Borel measure of bounded variation for the simple
Bessel polynomials {y2 ()} ,; see Example 4.1 in Section 4 below.

Definition 2.1 (Krall and Scheffer [17]). The differential expression
L[], defined in (2.8), is called admaissible if

(2.13) An # Am for m # n.

Lemma 2.2. For the differential expression L[], given in (2.8)
with coefficients satisfying the conditions in (2.9), the following four
statements are equivalent:

(i) L[] is admissible;
(11) Ap = nll,l + TL(TL — 1)1272 75 0, n € N;
(111) 11,1 ¢ {—’nlg,g | —nc No};

(iv) For each n € Ny, the differential equation (2.8) has a unique
monic polynomial solution of degree n.

Moreover, if the differential expression L[-] is admissible, then the
weight equation (2.10), or equivalently the moment equation (2.11), is
uniquely solvable in the sense that it has only one linearly independent
solution o.

Proof. The proofs of (i) = (ii) and (ii) < (iii) are trivial.
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(ii) = (i). This follows from the identity

(m+m)(An — Am) = (n—m)(n+m)(lzo(n+m—1) + 11 1)

(i) = (iv). For any fixed integer n > 1, let
P(z) =) Cpa*, Cr=1
k=0

be a monic polynomial of degree n. Then P, (z) satisfies (2.8) if and
only if

(2.15) la0(k+2)(k+1)CF o + (k+1)(l2,1k +11,0)Cr iy
F %= A)OE =0, k=0,1,...n—1,
where CJt,; = 0. If the operator L[:] is admissible, then all C},

k = 0,1,...n — 1, are uniquely and successively determined by the
equation (2.15) and C7? = 1.

(iv) = (i). Assume that the differential equation (2.8) has a unique
monic polynomial system {P,(z)}>2, of solutions but L[] is not ad-
missible. Hence, from (ii), we have A\, = A\g = 0 for some integer p > 1.
But then

L[P, + kPy] = AP, + kAo Py = 0 = A\, (P, + kP)

for any constant k. Hence L[y] = Apy has infinitely many monic
polynomial solutions of degree p, which contradicts our assumption.

Finally, the last statement in the Lemma follows immediately from
Equation (2.11). o

Proposition 2.3. If the differential equation (2.8) has a TPS
{Pn(2)}52, of solutions, then L[| is admissible.

In order to prove this Proposition, we need the following fact:

Lemma 2.4. Let o be a moment functional.
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Then o = 0 if and only if o' = 0.
If o is quasi-definite and p(z)c = 0 for some p € P, then
0.

Proof. (i) Suppose o = 0. Then, for any n € Ny, (¢/,z2") =

—n{o, 2" 1) = 0. Conversely, if o' = 0, the required result follows
from (z+1y
n\ __ z" _ -1 ron41\
<0’,$>—<0’, n+1>_n+l<0’m >_0

(ii) Suppose {P,(z)}52, is a TPS relative to o satisfying the or-
thogonality condition (o, P,,P,) = Kpdpm for all m,n € Ny, where
K, #0,n € Ny. Write p(z) = Zivzo ¢k P (), where we suppose that
deg(p) = N. Then, for n =0,1,... N, we have

N

0= (po, P) = > cx(o, PuPp) = cn K.
k=0

It now follows that ¢, =0, n =0,1,... N, and hence p(z) =0. i

Proof of Proposition 2.3. Suppose o is a quasi-definite moment
functional with TPS {P,(x)}3%,. Then ¢ is a canonical moment
functional for {P,(z)}52, and, by Lemma 2.1, o satisfies the weight
equation

(CLQO')’ —Qa10 = 0.

If L[] is not admissible then, from Lemma 2.2(ii), there exists an integer
N > 1 such that Ay = 0. Consequently,
0= AnPy(z)o = (az(z) Py () + a1(z) Py (x))o
= (a2(z) Py (x)0)" — Py (z)(az(z)0) + Py(z)(ai(z)o)
= (az(z) Py (x)0)".
Hence, by Lemma 2.4(i), aaPyo = 0 and, by Lemma 2.4(ii), we see

that asPy, = 0. However, az # 0 so we must have Py (z) = 0. Of
course, this forces N = 0, contradicting the fact that N > 1. a

We are now in a position to state the following special case of a general
characterization theorem of H.L. Krall [14] for second-order differential
equations.
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Theorem 2.5. A PS {P,(x)}, is a TPS satisfying the differential
equation (2.8) if and only if its canonical moment functional o is quasi-
definite and satisfies the moment equation (2.11).

In view of Lemma 2.2, we can restate the above theorem as:

Corollary 2.6. A PS {P,(z)}2°, is a TPS satisfying the differential
equation (2.8) if and only if the weight equation (2.10) has only one
linearly independent solution o which is quasi-definite.

For a new and simple proof of Theorem 2.5 above, the reader is
encouraged to consult [19]; for another proof of the general Krall result,
see [20].

The rest of this section is concerned with results necessary to establish

the proof of Theorem 1.5 given in Section 5.

For any monic PS {P,(z)}22,, there are constants {a,}>°; and
{Bn}52 such that

PnJrl(x) - (m - an)Pn(m) + IBnPnfl(x)v n e N,

is a polynomial of degree < n—2. In fact, if P,(z) = Y_1_, Cra* (C7 =
1), then
an = C" | — O,

n

and
(2.16) Bn=Cp_y—(Ch_y — CZH) n1— ng%a Cil =0.

At this point, we recall Favard’s theorem, see [4, Chapter 1.4], which
asserts that a monic PS {P,, ()}, is a TPS if and only if {P,(z)}32,
satisfies a three-term recurrence relation of the form

Pn+1(x) = (xfan)Pn(x) 7ﬁnPn—1(x)a n € N,

where (3, # 0.

As defined in [17], we shall call a PS {P, (2)}52, a weak Tchebycheff
polynomial system (or WTPS) if there is a nontrivial moment functional
o such that

(6, P, Pp) =0, m#n.



562 K.H. KWON AND L.L. LITTLEJOHN

In this case, we say that {P,(z)}32, is a WTPS relative to o.

If {P,(2)}2, is a WTPS relative to o, then o must be a canonical
moment functional of {P, ()} ,; however, < o, P2 > may or may not
be zero for n € N. The following improvement of Favard’s theorem for
WTPS’s is due to Krall and Scheffer. The proof can be found in [17,
Lemma 1.1].

Lemma 2.7. A monic WTPS {P,(z)}22, is a TPS if and only if
Pn#0, neN,

where B, is defined in (2.16).

The next lemma is important in establishing a key result (Theorem
2.12), which is necessary for our proof of Theorem 1.5.

Lemma 2.8. Assume that L[] is not admissible, where L[] is defined
in (2.8), but there exists a PS {P,(x)}, such that

(2.17) L[P,(z)] = AnPn(z), mn € No.

Then B, = 0 for some integer n > 2, where 3, is defined in (2.16).

Proof. For each n € Ny, let P,,(z) = Y_,_, CtzF, C" = 1, be a monic
polynomial of degree n. Then P, (x) satisfies the differential equation
(2.17) if and only if

(2.18) lz0(k+2)(k+1)Cfyo + (B +1)(l21k +11,0)Criq
+ (A —Ap)C =0,

k=0,1,...,n — 1, where C}},; = 0. Since L[] is not admissible, it
follows from Lemma 2.2 that there exists an integer N > 1 such that
An = 0. This implies that A\y # A, for £k = 0,1,...n —1,if n > N.
It follows that equation (2.18) is uniquely solvable for {C}'}7_, when
n > N, beginning with C]? = 1. It follows that Sny11 = 0 by solving
(2.18) for C’]]\\{if,CﬁH, and CY ™! and substituting these back into
(2.16). O
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The following theorem, established in [20, Theorem 2.9], is used to
prove Theorem 1.4. It plays an important role, as well, in our proof of
Theorem 1.5.

Theorem 2.9. The differential equation (2.8) has a TPS of solutions
if and only if

(1) ll,l ¢ {—nl272 | n e No}, and
(i) By # 0 for n € N, where 3, is given in (2.16), with

n _ TL[ZLO + 1271(77, — l)]
TP g+ 2 (n—1)

and
n n(n - 1)[l270(l171 + 21272(71 - 1))

"2 7 9l + 2 p(n — 1)l + la2(2n — 3)]

(L0 +12,1(n—2))(l1,0 +12,1(n — 1))]
2[[171 + 2[272(11 — 1)][[171 + l2,2(2n — 3)] )

The following result, interesting in its own right, is important in
subsequent discussions in this section.

Lemma 2.10. Let L[-| denote the differential expression in (2.8).
Suppose p and q are polynomials with L[p| = Ap and L[q] = pq, where
A # u. Then

(o,pq) =0

for any solution o to the weight equation (2.10). In particular, if L[]
is admissible and {P,(x)}22, is a PS of solutions, then {P,(x)}2, is
a WTPS.

Proof. The first part of this Lemma follows from the calculation

(A = w){o,pq) = (o, L[plg — pL[q])
= (0,a2p"q + a1p'q — a2q"p — a1¢'p)
= ([(a20)" — a10]'q + 2[(az0)" — a10]q’, p)
0,
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and from Lemma 2.4. The last statement of the lemma follows im-
mediately since the weight equation (2.10) can have only one linearly
independent solution when L[] is admissible. O

For any PS {P,(x)}52,,, write
n—2
(2.19) Ppi1(z) = (x—ay)Py(z) —BnPn_l(a:)—Z d*Py(z), ne€N,
k=0

where dY = d;' =0 and P_;(z) = 0. The following result is necessary
for Theorem 2.12 which follows.

Lemma 2.11. Assume that the differential equation (2.8) has a
monic PS {P, ()}, of solutions. Let N > 0 be the largest integer
such that Ay = 0. Then we have

(i) d’=0ifn>2andn+1+#N, and

(ii) for any moment functional o of the weight equation (2.10),
(220) <07P72L>:ﬁn'ﬁnfl"'/BN+1<07PI%/>a TLZN—F].,
where d° and (3,, are the constants defined in (2.19).

Proof. Observe that A, = A\, for m # n if and only if m +n = N.
Hence, by Lemma 2.10, we have

(2.21) (0,Pn,P,) =0, m+#mnandm+n#N,

for any solution o of the weight equation (2.10).

(i) Let o be a canonical moment functional of {P,(x)}5°,. Then o
satisfies the weight equation (2.10) by Lemma 2.1. If we apply o to the
equation (2.19) we obtain, for n > 2,

0= <Ua Pn+1>
n—2
= (0,2P,) = an(0, Po) = Bn(0, Po1) — Y _ di (0, Pr)
k=0

= (o,zP,) — d%(a, PBy),



SOBOLEV ORTHOGONAL POLYNOMIALS 565

since (o, P,) = 0 for n > 1. Hence, we have proven (i) since (o, Py) # 0
and (o,zP,) = (0, PLP,) =0forn > 2 and n+ 1 # N by (2.21).

(ii) Let o be any solution of (2.10). If we multiply equation (2.19)
by P,_1(x) and apply o we obtain, by (2.21),

0= <Ua Pn+1Pn—1>
= <07 anPn71> - an<07 PnPn71>
n—2
— Buloy Pa_y) = Y di{o, PuPy1)
k=0
= <U’ Pr%> - ﬁn<o'7 P’VZL*1> - d?z<07 POPn71>

forn > N+ 1. If n > N+ 1, then (0, PyP,_1) = 0 by (2.21). If
n=N-+1and N > 1, then d(])\,Jrl = 0 by (i). Finally, if N = 0, then
dj = 0. Therefore, we have

<O-’P3>:Bn<o'apf—1>a n>N+1,
from which (2.20) follows. O

Theorem 2.12. Assume that the differential equation (2.8) has a
PS {P,(z)}5%, of solutions. If {P,(x)}°%, is not a TPS, then for any
solution o of the weight equation (2.10), there is an integer m > 0 such
that

(0,P2) =0, foralln>m+1.

Proof. Let N > 0 be the largest integer such that Ay = 0. If
N > 1, then L[] is not admissible and By11 = 0, see the proof of
Lemma 2.8. Hence, from equation (2.20), it follows that (o, P?) = 0
for n > N+ 1. If N =0, then L[] is admissible and hence, from
Lemma 2.10, {P,(2)}52, is a WTPS. Consequently, 8, = 0 for some
integer k > 1 by Lemma 2.7. Thus, (o, P2) = 0 for all n > k by (2.20).
]

3. Sobolev orthogonality. For any symmetric bilinear form
#(-,-) defined on P x P, we call the double sequence {@mn, :=



566 K.H. KWON AND L.L. LITTLEJOHN

¢(z™,z")}55 ,—o the moments of ¢ and say that ¢ is quasi-definite,
respectively positive-definite, if

$o0 P01 .- Pon

$10 P11 .- P1n
(3.1) An(¢) :=det | . R .
¢n,0 ¢n,1 v ¢n,n
respectively A, (¢) > 0, n € Nj.

Lemma 3.1. A symmetric bilinear form ¢(-,-) on P X P 1is quasi-
definite, respectively positive-definite, iof and only if there is a PS
{Qn(2)}2, and real constants K,, # 0, respectively K, > 0, n € Ny,
such that

(32) ¢(Qm; Qn) = Kn(snma m,n € NO-

Proof. Assume that ¢-,-) is quasi-definite. Define a sequence of
polynomials by

Qo (:E) =1
®0,0 $o1  ---  Pon

$1,0 $11 . Pin
(33)  Qulx) = (An-1(9)) " det | SR
Pn-10 On-11 --- Pn-1n

1 T x"

n € N.

Then {Qn,(z)}32, is a monic PS and we have (3.2) with K,, =
A, (P)/An—1(¢), A3 = 1. Conversely, assume that there is a poly-
nomial set {Q,(x)}22, satisfying (3.2), which is unique if we assume
each @, (z) is monic. Writing

Qn(z) =) _ Crak,
k=0
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we see that the orthogonality condition (3.2) gives for j =0,1,...n,

D 65kCp =" Cro(al,a*) = ¢(a, Qu(x))
k=0 k=0
= ¢(Q]($), Qn(x)) = Kn(sjk;.

(3.4)

Since the simultaneous equations (3.4) have a unique nontrivial solu-
tion, we must have A, (¢) # 0 for any n € Ny. Finally, we have that
K, >0, n € Ny, if and only if A,(¢) > 0, n € Ny. o

We call a PS {Q,(z)}2, associated with the bilinear form ¢(:,-)
in Lemma 3.1 a Sobolev-Tchebycheff polynomial system relative to ¢,
STPS for short. If the bilinear form ¢(-,-) is positive-definite, then we
shall refer to {Qn(z)}32, as a Sobolev orthogonal polynomial system
relative to ¢, SOPS for short.

From here on, we shall consider only a symmetric bilinear form ¢(-, -)
on P x P of the form

(3.5) ¢(p,q) = (o,pq) +(7,0'd), p,a€P,
where ¢ and 7 are moment functionals. We call such a form a symmetric
Sobolev bilinear form.

We note that it is possible that ¢, given in (3.5), is quasi-definite and
yet neither o nor 7 is quasi-definite. Indeed, Duran [6] produced the
following example.

Example 3.1. Define a moment functional o by its moments

1 1
oo = 3, o1=1, and o, = :/ z" dx
n+1 0

n> 2.

Since Az(0) = 0, o is not quasi-definite. Similarly 7 = §, where 6(z) is
the Dirac moment functional defined by

n 1 ifn=0
<(5(”“")’3”_{0 if n €N,
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is not quasi-definite. However, the form ¢ on P x P defined by

¢(p,q) = (o, pq) + é(é, )

is positive-definite. Indeed, Duran shows that

1 2
o) = [ p2<w)dm+(ﬁp<0)+$p'(0)) -0,

peP.

Lemma 3.2. Suppose ¢(-,-), as given in (3.5), is quasi-definite and
{Qn(2)}32 s an STPS relative to ¢. Then o is a canonical moment
functional for {Qn(z)}52 . In particular, (o,1) # 0.

Proof. In Equation (3.5), let p = @, and ¢ = Qg. If n > 1, then 0 =
¢(QTL7Q0) = <Ua QnQ0> and if n = 07 then 0 # ¢(Q07Q0) - Q(2)<07 1>

O

The main question that we wish to address in this section is the
following: when does an STPS {Q,(z)}22, relative to the form ¢(:,-)
defined in (3.5) satisfy a second-order differential equation of the form
given in (2.8)7

Theorem 3.3. Let {Q,(2)}5%, be an STPS relative to the (quasi-
definite) symmetric Sobolev bilinear form ¢(-,+), defined in (3.5). Then
the following statements are equivalent:

(1) {Qn ()}, satisfies the differential equation L[y] = \,y, defined
in (2.8), i.e.,

(l222% + 217 + 12,0) Q0 (z) + (l117 + 11,0) Q% (2) = M\ Qn (),

n € Np.

(ii) The differential operator L[-], defined in (2.8), is symmetric on
polynomials relative to ¢(,-), i.e.,

(3.6) o(Llpl,q) = ¢(p, L)), p.q€P.
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(iii) The moment functionals o and T satisfy the weight equations

(3.7) (az(z)o)" — a1(z)o =0,
and
(3.8) az(z)7" — ay(z)T = 0.

(iv) The moments of ¢(-,-),c, and T, given respectively by

¢mn = ¢(mm’wn)’ Op = <Ua xn>,
and
Tn = <T7 mn>, m,n € Ny,

satisfy the equations

(3'9) Omn = Ontm + MNTyin—2, T_2=7_1=0,

(3.10) (nla2 +1i1)ont1 + (nl2g +110)on + nl2gon_1 =0,
' o_1 = 0,
((m+2)l22+li1)Tht1 + (n+ 1)1 + 11 9)Tn + 1l gTh_1 =0

3.11
( ) T—1 = 0.

Proof. (i) = (ii). If L[Q,] = A\n Q@ for each integer n € Ny, then for
all integers m,n € Ny, we have

P(L[Qm], Qn) = ¢(Qm, L[Qn]) = (Am — An)d(Qm, Qn) = 0.

Equation (3.6) now follows by linearity since {Q,(z)}52, is a PS.
(if) = (i). Since L[®,] is a polynomial of degree < n, we may write

n

L[Qn](x) = Z Cj,an (CE),

i=0
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for some constants c; . Then for k =0,1,...n — 1,

Crn®(Qrs Qk) = Y ¢ind(Qj, Qk) = S(L[Qn], Qi)

=0

= ¢(Qn, LIQk]) = 0,

since deg(L[Qx]) < k. Hence, c;n = 0 for each k =0,1,...n — 1, and
thus L[Qn](z) = cnn@n(z). By comparing coefficients of 2™ on both
sides, it is easy to see that ¢, , = nly1 +n(n — 1)y = Ay.

(ii) & (iii). The reader may check the following identities, valid for
any polynomials p, g € P:

o(Llpl, q) = (L*[go],p) — (LT [(¢'T)'], )

and

¢(p, L{q]) = (Llqlo, p) — (((L[a])'T)", p),

where L*[] is the formal Lagrangian adjoint of the expression L[],
defined by L*[y](x) := (az(x)y(x))” — (ai(x)y(x))’. Hence, condition
(3.6) is equivalent to:

L¥[go] = L*[(¢'7)'] = Liglo + ((Llg])'r)' =0, q€P,
which, when written out and simplified, yields for all g € P,
(2a17 — 2a27')q(3) + (=3(ax7") +3(a17))q"
+ (=(aa7")" + (a17)" + 2(az0)" — 2a10)q
+ ((azo)” — (a10)")g=0.

From this, we see that statement (ii) is equivalent to the fact that o
and 7 satisfy the four functional equations

( ) azT/ —a1T = 0,
(3.13) (az7") — (a17) =0,
(3.14) —(a2™)" + (a17)" + 2(az0) — 2a10 =0,
(3.15)

(a20)" — (a10) = 0.
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Lemma 2.4 asserts that (3.12) and (3.13) are equivalent. Moreover,
(3.14) simplifies to (az0)’ — ayo = 0, which is equivalent to (3.15) by
Lemma 2.4. Thus the four equations (3.12)—(3.15) are equivalent to
(3.7) and (3.8).

(iii) < (iv). Note that

Gmn = ¢(mm,wn) = <07 mm+n> + <T’ (mm),(xn),>

= Ont+m + MNTp4m—2-

Furthermore, the reader can check that the moment functionals o and
7 satisfy (3.7) and (3.8) if and only if their moments satisfy (3.10) and
(3.11), respectively. o

We call the functional equations (3.7) and (3.8) the Sobolev weight
equations for the differential expression L[-]. As we shall soon see,
these Sobolev weight equations are the tools for which we construct
second-order differential equations having Sobolev orthogonal polyno-
mial solutions. We call equations (3.10) and (3.11) the Sobolev moment
equations. Observe that, when 7 = 0, the Sobolev weight equations
(3.7) and (3.8) reduce to the weight equation (2.10). Consequently, in
view of Theorem 2.5 and Corollary 2.6, we see that Theorem 3.3 gives
a generalization of H.L. Krall’s result, Theorem 2.5, for second-order
differential equations. More specifically, we have

Corollary 3.4. Consider the bilinear form ¢(-,-) defined in (3.5)
with moments ¢mn = (™, 2"™) = Optm + NMTpim—2, m,n € Np,
where {op,}2, and {1,152, are the moments of o and T, respectively.
Then there exists an STPS {Q,(x)}2, relative to ¢(-,-) with Q,(x)
satisfying the differential equation (2.8) if and only if

(i) ¢(-,-) is quasi-definite, and

(i) {on}2y and {1}, satisfy the Sobolev moment equations

(3.10) and (3.11), respectively.

Proof. This follows immediately from Lemma 3.1 and Theorem 3.3.
]

Remark 3. When ay(z) = 0, the differential equation (2.8) reduces to
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the first-order equation

(li1z + 110)Y (z) = nly1y(z),

which can have a PS {P,(x)}5%, of solutions only when l; ; # 0.

The reader can observe that the proof of Theorem 3.3 remains valid
if az(z) = 0. In this case, the Sobolev weight equations (3.7) and (3.8)
reduce to

(li1z +li0)o = (lL1z +l10)T =0,

l
o= 016<m+ ll—’0>,
11

l
T= 025<m+ ll—’0>,
1,1

where ¢; and ¢y are arbitrary constants. When these functionals are
substituted into (3.5), the corresponding bilinear form ¢(-, ) cannot be
quasi-definite. Consequently, the above first-order differential equation
can never have an STPS of solutions. In particular, it can never have
a TPS of solutions.

from which we see that

and

Remark 4. We note that if we differentiate (2.8) with respect to « and
replace dy/dz by z(z), we get the second-order differential equation

s1g)  ME@ = @@:@) + (6 + o) @)

= (Ant1 — a1 (2))2(2).

It is interesting to note that Equation (3.8) is the weight equation for
M][-] in the sense of Lemma 2.1.

Remark 5. Observe that Equations (3.7) and (3.8), considered as
classical differential equations, will always have solutions ws(z) > 0
and wq(z) > 0, respectively, that are defined on any interval I = (a, b)
where as(z) > 0. Consequently, the differential expression L[y] =
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az(x)y"” + a1(x)y’ will be a formally symmetric operator with respect
to the bilinear form @, w, (-, ) defined by

b b
buran(£.9) = [ T@g@wr(@)de+ [ ()g @us(a) do.

This generalizes the well-known fact that any second-order differential
expression with smooth coefficients can be made formally symmetric in
some weighted L2-space. In view of this, we shall call the pair (w;,ws)
a Sobolev symmetry factor for L[-]. For work on symmetry factors in
the L? sense, see the contributions [23] and [24].

We are now in a position to prove Theorem 1.2, given in Section 1,
which we restate in terms of moment functionals ¢ and .

Theorem 3.5. Suppose that

(1) {Qn ()} is an STPS relative to the symmetric bilinear form
&(+,+) defined in (3.5), and

(ii) for each integer n € Ny, Q,(x) satisfies the second-order differ-
ential equation (2.8). If the moment functional o is quasi-definite, then
{Qn(2)}32, is orthogonal with respect to o and is, up to a real linear
change of variable, necessarily one of the following sets of polynomials:

(a) Jacobi {P\* (2)}°,, —a,—B,—(a+ B+ 1) € R\N,

b) Laguerre {L%(z)}2,, —a € R\N,

c) Hermite {H,(x)}2,,

d) Bessel {yg(x)}22,, —(a+1) € R\N,

e) twisted Jacobi polynomials {Pysa’ﬂ)(x)}zozo, —(a+p+1) e C\N
and B = a, or

(f) twisted Hermite polynomials { H, (z)}5,.

(
(
(
(

Moreover, if o is quasi-definite, the moment functional T is necessar-
ily of the form

(3.17) T = kaz(x)o,

for some real constant k. Furthermore, up to a complex linear change
of variable, the only polynomial sets that are orthogonal with respect to



574 K.H. KWON AND L.L. LITTLEJOHN

a bilinear form of the type (3.5) and satisfy a second-order differential
equation of the form (2.8) are the classical orthogonal polynomial sets
listed in (a), (b), (c), and (d) above.

Proof. We may assume that @, (z) is monic, n € Ny. Let {P,(z)}52,
be the monic TPS relative to the quasi-definite moment functional
o. From Theorem 3.3, we see that o satisfies the weight equation
(3.7). Hence, by Theorem 2.5, { P, (x)}5°, also satisfies the differential
equation in (2.8). By Theorem 1.3 or Theorem 1.4, {P,(z)}22, is one
of the above mentioned TPS’s. By Proposition 2.3, we then see that
L[] is admissible. Since @, (z) is a monic polynomial solution to (2.8)
for each integer n € Ny, we apply Lemma 2.2 (iv) to conclude that
P,(z) = Qn(z), n € Ny. Lastly, to prove that 7 is given as in (3.17),
we note that since the operator L[-] is admissible, so is the operator M|-]
defined in (3.16). Consequently, by Lemma 2.2, the associated moment
equation (3.11) for M[] is uniquely solvable. Define 7 = ay(z)o; then
7 # 0 by Lemma 2.4 (ii) and the fact that o is quasi-definite. Moreover,
7 satisfies the weight equation (3.8). Indeed, since (az20)’ = a0 by
(3.7), we see that

as7 — a17 = az(az0) — a1(az0) = az(ai0) — a1 (azo) = 0.

However, since 7 is a solution to (3.8), which is uniquely solvable by
Lemma 2.2, we must have that 7 = k7 for some constant k. ]

Remark 6. The hypothesis that ¢ is quasi-definite cannot be relaxed.
Indeed, in the next section, we produce nonclassical (in a sense)
examples of STPS’s that satisfy second-order differential equations of
the form (2.8).

Corollary 3.6. (a) If 7 # 0 in Theorem 3.5, then T is quasi-definite
and {Q),(z)}2, is a TPS with respect to T.

(b) Suppose {Qn(2)}5°, is an STPS with respect to the bilinear form
é(-,-) defined in (3.5). If o is quasi-definite and T # 0 is not quasi-
definite, then {Qn(z)}22, cannot satisfy a differential equation of the
form (2.8).

Proof. 1t is well-known, see [9] or [30], that if {Q,(z)}52, is
classical and orthogonal with respect to a moment functional o, then
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{Q),(z)}22, is orthogonal with respect to as(x)o. This fact, together
with the proof of Theorem 3.5, yield both (a) and (b). o

Remark 7. The STPS {Q, ()}, in Corollary 3.6 (b) may satisfy a
second-order differential equation with polynomial coefficients depend-
ing on the parameter n. One such example is to be found in the recent
contribution of Marcelldn, Pérez, and Pifiar [25] in which they study
an STPS relative to ¢, where o is a quasi-definite moment functional
for the generalized Bessel polynomials and 7 = A§(z) for some nonzero
constant A. However, from Corollary 3.6, this STPS cannot satisfy a
second-order equation of the form (2.8).

If we assume that 7, instead of o, is quasi-definite we have the
following result:

Theorem 3.7. Let {Qn(x)}22, be an STPS relative to the form
é(-,-) defined in (3.5), and suppose that, for each n € Ny, Qn(x)
satisfies (2.8). If the moment functional T is quasi-definite, then

(i) {Q,(z)}ry is a real classical polynomial sequence, see Theo-
rem 1.2, that is orthogonal with respect to T and for each integer n € N,
Q. (z) satisfies equation (3.16);

(ii) the operator M| in (3.16) is admissible, i.e., 11 ¢ {—nlaz2 |
n > 2};

(iil) {Qn(z)}32, is weakly orthogonal with respect to o, i.e.,

(3.18) (0,QnQm) =0, ifm#n
and (o, Q%) may or may not be zero (but (o, Q2) # 0);

(iv) az(z)o = kt for some constant k; hence, either 0 = 0 or az(x)o
18 quasi-definite.

Proof. We may assume that @Q,(z) is monic for each n € Nj.
Since {Qn ()}, satisfies (2.8), it follows that {Q], ;1 (z)/n + 1},
is a monic PS which satisfies the differential equation given in (3.16).
Let {P,(z)}5°, be the monic TPS relative to 7. By Theorem 3.3, 7
satisfies the weight equation given in (3.8). Hence, from Theorem 2.5
and Remark 4, it follows that for each n € Ny, P,(x) satisfies
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equation (3.16) and {P,(x)}52, is one of the real classical TPS’s. By
Proposition 2.3, equation (3.16) is admissible. Hence, by Lemma 2.2
(iv), we must have

Qn1(2)

= P,(), No.
il (:E) n € Ny

This proves (i) and (ii). Part (iii) follows immediately from (i) and the
orthogonality of {Q,(z)}22 , with respect to the form ¢. Finally, from
Lemma 2.2, since equation (3.16) is admissible, the weight equation
(3.8) has only one linearly independent solution. Since 7 and as(z)o
both satisfy this weight equation, we must therefore have as(z)o = k7
for some constant k. O

4. Examples in the class STPS N DPS(2). From Theorem 3.5
we immediately obtain the following results concerning the Sobolev
orthogonality of the real classical orthogonal polynomials; in each case
below, the parameter k is an arbitrary real number.

Example 4.1. The real classical orthogonal polynomials. (i) The
Jacobi polynomials {P}f"ﬁ) ()}, (—a,—B,—(a+ B+ 1) € R\N,
satisfy the second-order differential equation

(4.1) (1-2*)y" +(B—a—(a+B+2)z)y = Ay,

where A\, = —n(n+ a+ 8 +1), and are orthogonal with respect to the
Sobolev bilinear form

(p,q)s = / p(z)a(z)(1 —2)*(1 + z)° da

-1

+k /dp'(;v)q'(m)(l — )1+ )P da

p,q €P.

(ii) The Laguerre polynomials {L%(x)}22,, —a € R\N, satisfy the
second-order differential equation

(4.2) zy' + (1+a—2)y = Ay,
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where \,, = —n, and are orthogonal with respect to the Sobolev bilinear
form

(p,q)r = /000 p(z)q(z)z%e™" dz + k /000 p'(x)q (z)z* e " dx

p,q €P.

(iii) The Hermite polynomials {H,(z)}>2, satisfy the second-order
equation
y' = 2zy’ = Ay,

where A\, = —2n, and are orthogonal with respect to the Sobolev
bilinear form

p,q €P.

(iv) The Bessel polynomials {yo(z)}o%y, —(a + 1) € R\N, are
solutions of the second-order equation

2y + ((a+2)z +2)y' = Any,

where \,, = n(n+a+1), and are orthogonal with respect to the Sobolev
bilinear form

(p,q)B = (0,pq) + k(z?0,p'q),

where o is any orthogonalizing moment functional for the Bessel poly-
nomials. For example, when a = 0, Kwon, Kim, and Han [18] have
shown that the moment functional o, defined by

o =- /( / eQ/tt—2g<t>dt)p<x>dm, pep,
0 T

where ¢(t) is the function defined in (2.12) is an orthogonalizing
moment functional for the Bessel polynomials {y2(z)}5°,,.

(v) The twisted Jacobi polynomials {Pr(ba’ﬁ)(ac)}?fzo, —(a+p5+1) €
C\N and 8 = @, are given by P,Sa’ﬂ)(w) = i"P,(la’ﬂ)(—im), where
piP) (z) is the monic Jacobi polynomial of degree n and i = /—1.



578 K.H. KWON AND L.L. LITTLEJOHN

For each n € Ny, y(z) = pP (z) is a real polynomial satisfying the
(real) second-order differential equation

(4.3) 1+2°)y" + (a+B+2)z+ (a—B)i)y =n(n+a+B+1)y.

From Theorems 3.3 and 3.5, we see that the twisted Jacobi polynomials
are Sobolev orthogonal with respect to the bilinear form

(p,q)es = (o,pq) + k{0, (L +2°)p'd'), p,q€P,

where ¢ is any nonzero moment functional satisfying the weight equa-
tion
(1+2%)0" + (~(a+ B)z + (8 — a)i)o = 0.

At this point, an explicit weight function for the twisted Jacobi poly-
nomials is unavailable; it is known (see [20]), however, that o is quasi-
definite but never positive-definite.

(vi) The twisted Hermite polynomials { H, (z)}°_, are defined through
the formula H, (z) := i"H,(—iz), where H,(z) is the monic Hermite
polynomial of degree n. For each n € Ny, y(z) = H,(z) is a real
polynomial and satisfies the second-order differential equation

Y+ 2xy’ = 2ny, n e Ny.
They are Sobolev orthogonal with respect to the bilinear form

(p,Q)tr = (o,pq) + (o,0'd"), p,geP,

where o is any nonzero moment functional satisfying the weight equa-
tion
o' —2z0 = 0.

As in the twisted Jacobi case, no orthogonalizing weight function has
been explicitly determined at this point; however, it is known that such
a o is quasi-definite but never positive-definite.

As we shall see, the nonclassical examples that we discuss in this
section are really not new at alll Indeed, they are almost (real) classical
OPS’s except that the parameters used in their definition exclude
them from being called (real) classical. A complete classification of
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polynomial sets in the intersection class STPS N DPS(2) will be
presented in Section 5.

If x € R and k is a nonnegative integer, we remind the reader of the
notation

<:;> :{:f(:cl)---(xk—i-l)/k! i:i(l)

Example 4.2 (Laguerre: o = —1). The differential equation
(4.4) zy" —xy = —ny

is a special case of the general Laguerre differential given in (4.2). By
Lemma 2.2, equation (4.4) is admissible and has a unique monic set of
polynomial solutions which are the Laguerre polynomials {L;*(z)}2,
defined explicitly by

Ly'(z) =1

and

n n— _N\k
L) = (-1 S <n B ;) ( kl!) o, neN.
k=0

By Theorem 2.5, this PS cannot be a TPS with respect to any moment
functional. Indeed, the moments {un}5 , associated with this PS are
such that p, = 0 for n € N. However, {L,!(z)}%, is an STPS. To
see this, we apply Theorem 3.3. The Sobolev weight equations (3.7)
and (3.8) are, respectively,

(4.5) (zo)' 4+ zo =0,
and
(4.6) z7' + 27 =0.

The solutions of these functional equations are given by

oc=c10(z) and T=coH(z)e ",
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respectively, where ¢; and co are arbitrary constants and H(z) is the
Heaviside function. When these functionals are substituted into the
form (3.5), we obtain

6(p, ) = c1p(0)g(0) + 3 / T e p (@) (@) de, pgeP.

In order for ¢(-,-) to be quasi-definite, it is necessary that cy # 0.
Hence, by setting A = ¢y /cz, we may consider the one-parameter family
of bilinear forms

(4.7) da(p,q) = Ap(0)q(0) + /000 P () (z)e " dz.

Proposition 4.1. The bilinear form ¢4(-,-) in (4.7) is
(i) quasi-definite if and only if A # 0,
(ii) positive-definite if and only if A > 0.
In either case, the monic STPS or monic SOPS relative to ¢4(-,-) is
{L;Y(z)}2,. Furthermore,
A ifn=0

(71771) (71171) —
pa(ln L ) { (n1)? ifn>1.

Proof. We first recall the following well-known facts, see [30]:
(a) L,1(0) =0 for all n € N,

n

(b) (L, (x)) = nL,_1(z), where {L,(z)}2, is the simple (a = 0),

n

Laguerre PS defined by
. n . n (_1)k k
Ln(z) = (1) n!kZ:O (n_k> e meN,

(©) J5° Ln(#)Lin(z)e™® dz = (n!)*6nm, n,m € No.

From these facts, we obtain

A ifn=m=0
pa(L;N L) =< (n)? ifn=m>0
0 if n # m,
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and the result follows. O

We refer the reader to [11] for related work on the Laguerre expression
(4.4). There is a connection between our inner product ¢+ (-,-) and the
left-definite inner product given in [11] when a = 0.

Example 4.3 (Jacobi: o = 8 = —1). The differential equation
(4.8) (1-2%)y" = -n(n—-1)y

is a special case of the Jacobi differential equation (4.1); indeed,
equation (4.8) is obtained from (4.1) by setting & = 8 = —1. Using
Lemma 2.2, it is easy to see that equation (4.8) is not admissible but
there is a unique monic polynomial solution P,(fl’fl) (x) of degree n to
(4.8) for all n # 1. Indeed, for n € Ny but n # 1, it is given explicitly

by
P11 () = <2nn— 2> ! i <n ; 1>

(4.9) k=0

When n = 1, any polynomial of the form Pl(fl’fl)(m) =x+7, v an
arbitrary constant, is a solution to (4.8). As in Example 4.1, the PS
{P,(l_l’_l)(ar:)}s;o=0 (with any choice for a monic Pl(_l’_l)(:z:)) cannot be
a TPS. However, this PS does form an STPS. In this case, the weight
equations (3.7) and (3.8) become, respectively,

(4.10) (1 —2%)0o) =0,
and
(4.11) (1—2*)r" =0.

From these equations, we find that

oc=c10(l —z)+cd(l+x) and 7=c3H(1—2z?),
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where ¢;, 7 = 1,2, 3, are arbitrary constants. The corresponding bilinear
form (3.5) becomes

6(p,q) = c1p(1)(1) + cap(~1)a(—1) + cs / p(2)'(z) dz.

-1

As in the Laguerre case above, in order for ¢ to be quasi-definite, it is
necessary that c3 # 0. Hence, by setting A = ¢1/c3 and B = cg/c3, we
may consider the two-parameter family of bilinear forms

1

(4.12) ¢a.B(p,q) :Ap(l)Q(1)+BP(—1)Q(—1)+K1P'($)q/($) dz.

Proposition 4.2. The bilinear form ¢4 g(-,-) gven in (4.12) is
(i) quasi-definite if and only if A+ B # 0 and 2AB+ A+ B # 0,
(ii) positive-definite if and only if A+ B >0 and 2AB+ A+ B > 0.

In either case, the monic STPS or monic SOPS relative to ¢a.5(,")
is {P,S_l’_l)(a:)};’f:o, where Pr(b_l’_l)(:v) is given in (4.9) forn # 1 and
Pl(fl’fl)(m) =z +, where y = (B — A)/(A + B). Furthermore,

A+ B ifn=20
Gap(PTHTY P =0 A(v+1)2 4+ B(y - 1)2+2 ifn=1
n?K,_1 if n>2,

where

1 2n+1 4
2 (n!)
= (0’0) 2 =
K, [I(Pn (z))* dz )@ £ 1)1 n € Ny.

Conversely, for any real number -y, {Py(b_l’_l) ()}, where Pl(_l’_l)(x)
=+, is an STPS relative to ¢4, p(-,-) where A and B are real num-
bers satisfying

A+B#0, Av+1)*+B(y—-12+2#0

and
A(v+1)+ B(y—-1)=0.
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Proof. From Proposition 4.1, we see that
¢A,B(P,(n_1’_1), P,s_l’_l)) =0 for0<m<n
and
(m,n) # (0,1).

With the help of the following well-known facts,

(i) P,(L_l’_l)(:lzl) = 0 for all integers n > 2,

(ii) d(PT(fl’fl)(m))/da; = nP,_1(z), where P,(z) is the Legendre
polynomial defined by

~1[n/2]
2n> ! (=1)k(2n —2k)! o

n € Ny,

n (n—k)!k!(n—Qk)!m ’

Pu(z) = <

k=0

(iii) f_ll P, (z)Ppn(z)dz = Kpdpm, n,m € Ny, where K,, is defined
as above, we obtain the identity

¢A B(P£71,71)7 Py(nfl,fl))

0 if 0 <m < n,(n,m)#(1,0)
Ay+1)+B(y 1) if (n,m) = (1,0)
=({ A+B ifn=m=0
Ay+1)?+B(y-1)2%?+2 ifn=m=1
n2K, _1 ifn=m > 2,
from which the result follows. ]

Example 4.4 (Jacobi: o = —1,—f € R\N). Consider the Jacobi
differential equation (4.1) when oo = —1:

(4.13) (1=2%)y" + (B+ 1A -2)y = —n(n+ By,
where —3 € R\N. Unlike the previous example when o = 8 = —1,
equation (4.13) is admissible and the PS of solutions to (4.13) is the
Jacobi polynomials {Pr(fl’ﬁ ) (x)}22 ), defined explicitly by

P16 (z) = <2n +8- 1> - z": <n - 1)
n = k
‘ <n+,3

o k> (z—1)"*(z+1)*, neN,.
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As in the previous two cases, this PS cannot be orthogonal with respect
to any quasi-definite moment functional but it does form an STPS. The
weight equations (3.7) and (3.8) are, in this case,

(4.14) (1—2%)0) - (B+1)(1 —z)o =0,
and
(4.15) (1-2*)7r" —(B+1)(1L—2)r =0.

These equations have solutions
o=ci6(x—1) and T=co(l+ w)i'HH(l —x),

where c¢; and ¢y are arbitrary constants; see Remark 8 below for
information on the distribution (1+ :c)f_“. The corresponding bilinear
form (3.5) is

$(p,9) = c1p(1)q(1) + e2((1 + @) H(1 = 2),p(x)d (z)),
p,q €P.
In order for ¢(-,-) to be quasi-definite, it is necessary that ca # 0;

hence, by setting A = ¢;/c2, we may consider the one-parameter family
of bilinear forms

¢5(p,q) = Ap(1)g(1) + (1 + )] H(1 - 2),p (z)d (z))

4.16
( ) p,q € P.

The following result can be proved in a similar way that we established
Propositions 4.1 and 4.2.

Proposition 4.3. The bilinear form ¢>i(-, -), defined in (4.16), is
(i) quasi-definite if and only if A#0 and —f8 ¢ N,
(ii) positive-definite if and only if A >0 and 8 > -2, B # —1.
In either case, the monic STPS or monic SOPS relative to ¢>g(-, \) s
{P,(l_l’ﬂ)(ac)}?fzo. Furthermore,
A ifn=20

B (p(-1.8) p(-18)) _
Pa(Py ' In ) {n2Kn_1(0,,6+1) ifn>1,
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where
Kn(0,8+1) = (1+2){T H(1 - ), (PP (2))?)

2282 (ID(n + B + 2))°
S I'@2n+B+3)2n+B+2)

n € Ny.

Remark 8. For any real number a, consider the function

f(w):{a;“ ifz>0

0 ifz<oO.

There always exists a distribution ¢ on R which coincides with f,(z)
on R\ {0}. If a > —1, then f,(z) is locally integrable on R so that
% = fa(z) and, if otherwise, z¢ is the regularization of f,(z). For
more details on the distribution 29, we refer to Hérmander [12, 3.3.2].

Example 4.5 (Jacobi: —a € R\N, g = —1). By switching the
roles of « and [ in the previous example, it is easy to see that the

Jacobi polynomials {P,(La’_l) (x)}22, forms an STPS. More specifically,
we have the following result:

Proposition 4.4. The Jacobi polynomials {P,(La’_l)(m)};’fzo are
orthogonal with respect to the bilinear form ¢%(-,-), defined by

¢%(p,q) = Bp(~1)g(-1) + (1 — 2)F H(1 + z),p'(2)d (x))

4.17
( ) p,q € P.

This bilinear form is
(i) quasi-definite if and only if B # 0 and —a ¢ N,
(ii) positive-definite if and only if B > 0 and o > —2, a # —1.

Furthermore,

B ifn=20

a P(a,—l) P(a,—l) —
95 (P i ) n?K,_1(a+1,0) ifn>1,
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where
Kn(a+1,0) = (1 - 2)$ H(1 + ), (P*T9(2))?)

22ntat2(pIl(n + a + 2))?
= , ne Np.
r2n+a+3)I'2n+a+2)

Example 4.6 (Twisted Jacobi: o = —1,8 = —1). Consider the
twisted Jacobi equation (4.3) when o = 8 = —1:

(4.18) (1+22)y" =n(n—1)y.

From Lemma 2.2, this equation is not admissible; however, there is a
unique (real) monic polynomial solution Pr(fl’fl)(m) for each n # 1
given by

P (g = <2nn— 2> ! kz: (n ) 1)
- <Z B ;) (@ — i) F(x + i)k

For n = 1, any polynomial Pl(_l’_l)(m) = x + v, where v is an
arbitrary real number, is a solution to (4.18). From Theorem 1.4, the
PS {15,(171’71)}%0:0 cannot be a TPS but it does form an STPS for any
choice of v € R. Indeed, the Sobolev weight equations (3.7) and (3.8)
associated with equation (4.18) are, respectively,

(4.19) (1 +2*0o) =0,
and
(4.20) (1+2*)7" =0.

Equation (4.19) has two linearly independent solutions (see Remark 9
below):

n

— -1 2n
o1 = 1; ((273! 6 (z)
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and

oy o (D" oni1) .
2_;(271—1-1)!6 ).

The reader can check that neither of these moment functionals is quasi-
definite. Equation (4.20) has only one linearly independent solution 7,

given by
(D" o)
= oV (z);
T=2 Gz’ @)
n=0
this moment functional is quasi-definite. Hence, as before, we consider
the two-parameter family of bilinear forms

¢A,B(pa q) = A<017PQ> + B<02apq> + <T7 plq’>a

4.21
( ) p,q € P.

The proof of the following proposition is similar to that of the proofs
of Propositions 4.1 and 4.2.

Proposition 4.5. The bilinear form da p(-,-), defined in (4.21),
is quasi-definite (but never positive-definite) if and only if A jé 0 and
A— A? — B2 #0. In this case, the monic STPS relative to ¢4 p(-,-)
is {P,(fl’fl)(a:) & 4, where Pl(fl’fl)(a:) =z +v and v = B/A.
Furthermore,

A ifn=20
$ap(BSH D PUET)) =S AP = 1) +2By+1 ifn=1
n?K, 1(0,0) ifn > 2,
where
. . _4 n ! 4
£ (0,0) = (r, (PO0(2))2) = =" () n € Ng.

(2n)!(2n + 1)’

Conversely, with any choice of v, {15571’71)(30)}%0:0 is an STPS relative
to ¢4 B(--) if A and B are such that

A#0, AR*—=1)+2By+1#0, and Ay+B=0.
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Remark 9. For any moment functional o with moments {0, }52, the
formal d-series expansion of o is

- (71)n0n n
n=0
This was first introduced by Morton and Krall in [27].

5. A Proof of Theorem 1.5. In this section, we shall show that the
only polynomials that satisfy a second-order differential equation of the
form (2.8) and are orthogonal with respect to a Sobolev bilinear form
of the type (3.5) are the examples listed in Section 4; this will establish
a proof of Theorem 1.5. In order to carry out this classification, we
shall consider three cases:

(i) Type A: o is quasi-definite;
(ii) Type B: ¢ is not quasi-definite and 7 is quasi-definite;

(iii) Type C: both o and 7 are not quasi-definite.

Type A. o is quasi-definite. In this case, we apply Theorem 3.5 to
conclude that the only such Sobolev orthogonal polynomials are those
listed in Example 4.1 (or those listed in Theorem 3.5).

Type B. o is not quasi-definite and 7 is quasi-definite.

Case B.1. deg(az) = 0. In this case, we see from Theorem 3.7 (i) and
(iv) that ¢ = 0 and the PS orthogonal with respect to

o(p,q) = (1,0'd"), p,qeP,

is necessarily one of the real classical orthogonal polynomial sequences
listed in Example 4.1.

Case B.2. deg(az) > 1. Through a real linear change of variables, we
may assume that ax(z) is one of the following: (a) 1 — z?, (b) 1 + 22,
(c) z2, or (d) z.
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Case B.2(a). az(z) = 1 — z?. In this case, equation (1.2) has the
form
(1—-2*)y" + (Az + B)y' = n(A —n+1)y,

where A and B are arbitrary constants. Without loss of any generality,
we let A= —(a+ B +2) and B =0 — a, where o and § are arbitrary
real constants. In this case, the above equation becomes

(5.1) 1—2*)y" +(B—a—(a+B+2)z)y =-—n(n+a+p+1)y;

that is to say, the Jacobi equation given in equation (4.1). The Sobolev
weight equations (3.7) and (3.8) become, respectively,

(5.2) (1=2*0o) = (B—a—(a+pB+2)x)o =0,
and
(5.3) (1-2*)7 - (B—a—(a+B+4)z)r =0.

It is easy to check that equation (5.2) has no quasi-definite moment
functional solution if and only if —(« + 8+ 1) or —a or —f is a
positive integer. Similarly, equation (5.3) has a quasi-definite moment
functional solution if and only if none of —(a+ 8+ 3), —(a + 1), and
—(B + 1) are positive integers. Hence, the four following distinct cases
arise for the real parameters o and (3:

)a+B+1=-1,-a¢{2,3,4,...} and -3 ¢ {2,3,4,...},
(i)a+B+1=-2,—a¢{2,3,4,...} and -3 ¢ {2,3,4,...},
(i) e =—-1and -8 ¢ {2,3,4,...},
(iv) 8=—-1and —a ¢ {2,3,4,...}.

Case B.2a(i). a+p8+1 = -1, —a ¢ {2,3,4,...} and —f ¢
{2,3,4,...}. In this case, we see that a;(z) = 8 — a. In general,

equation (2.8) has no polynomial solution of degree 1 if deg(a;) = 0.
Consequently, we must have a1 (z) = 0 so that 8 = o = —1. This leads

to the Jacobi PS {P,(fl’fl)(w)}ffzo discussed in Example 4.3.

Case B.2a(ii)). a+08+1 = -2, —a ¢ {2,3,4,...} and -3 ¢
{2,3,4,...}. In this case, it is easy to check that equation (5.1) has no
polynomial solution of degree 2; hence, there is no STPS in this case.
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Case B.2a(iii)). a = —1 and —8 ¢ {2,3,4,...}. If —3 = 1, then this
case reduces to Case B.2a(i). Hence we assume that —3 ¢ N. In this

case, we obtain the Jacobi polynomials {PT(L_I’B)(J;)};?:O discussed in
Example 4.4.

Case B.2a(iv). 8 = —1 and —a ¢ {2,3,4,...}. Similar to the
previous case, this leads to the Jacobi PS discussed in Example 4.5.

Case B.2(b). az(x) = 1+ x%. When ax(x) = 1 + 22, equation (1.2)
has the form

(5.4) (1+2%)y" + (bz +c)y' = n(n+b— 1)y;

moreover, the Sobolev weight equations (3.7) and (3.8) become, respec-
tively,

(5.5) (1 + 2?)0) — (bx + c)o =0,
and
(5.6) (1+2%)7" — (bx + ¢)T = 0.

Equation (5.5) has no quasi-definite moment functional if and only
if —b € Ny, whereas equation (5.6) has a quasi-definite moment
functional solution if and only if —b ¢ {2,3,4,...}. Hence, there
arise two cases: (i) b = 0 and (ii) b = —1. However, if b = —1,
then equation (5.4) has no polynomial solution of degree two. When
b = 0, it must be the case that ¢ = 0. Indeed, as remarked earlier,
equation (2.8) cannot have a polynomial solution of degree 1 when
deg(ai(z)) = 0. Consequently, it follows that we obtain the twisted
Jacobi case discussed in Example 4.6.

Case B.2(c). az(z) = . In this case, equation (2.8) becomes
(5.7) 2%y" + (ax +b)y' =n(n+a—1)y, a,becR.
The two Sobolev weight equations associated with (5.7) are

(5.8) (z%0) — (az +b)o =0
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and
(5.9) 227" — (ax + b)T = 0.

Equation (5.8) has no quasi-definite moment functional if and only if
—a € Ny or b = 0, whereas equation (5.9) has a quasi-definite moment
functional solution if and only if —(a + 2) ¢ Ny and b # 0. It follows
that there are two cases to consider: (i) a =0, b # 0, and (ii) a = —1,
b # 0. However, in both cases, equation (5.7) has either no polynomial
solution of degree one or of degree two. Consequently, this case does
not yield any STPS’s.

Case B.2(d). a2(x) = =z. In this case, we may assume that
equation (2.1) has the form

(5.10) zy" +(l+a—2z2)y =-ny, acR.

The two Sobolev weight equations are

(5.11) (zo) —(1+a—z)o =0,
and
(5.12) zr' — (1+a—z)r =0.

Equation (5.11) has no quasi-definite moment functional solution if and
only if —a € N, whereas equation (5.12) has a quasi-definite moment
functional solution if and only if —a ¢ {2,3,4...}. Hence, in this
case, « = —1 and we obtain the Laguerre polynomials discussed in
Example 4.2.

Type C. Both o and T are not quasi-definite. We remind the reader
of Example 3.1. It is possible that the bilinear form ¢(-,-) in (3.5)
is quasi-definite and yet neither moment functional ¢ nor 7 is quasi-
definite. However, in this case, we prove:

Theorem 5.1. Suppose {P,(x)}2, is an STPS relative to the quasi-
definite bilinear form ¢(-,-), defined in (3.5). If both o and T are not
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quasi-definite, then { P, ()}, cannot satisfy a differential equation of
the form (2.8).

Proof. Assume that {P,(z)}22, does satisfy a differential equation of
the type (2.8). By Theorem 3.3, the moment functionals o and 7 satisfy
the Sobolev moment equations (3.7) and (3.8). From Lemma 3.2, o is
a canonical moment functional for {P,(z)}22,. However, since o is
not quasi-definite, {P,(z)}>2, cannot be a TPS (see Corollary 2.6).
On the other hand, {P/ (z)}5, is a PS satisfying equation (3.16) and
has 7 as a canonical moment functional. Hence, by Corollary 2.6, the
PS {P)(z)}>2, cannot be a TPS with respect to 7. Therefore, by
Theorem 2.12, we have

(0, Pa) = (m,(P,)*) =0
for all sufficiently large n. Hence, there exists N € N such that for
n>N,
¢(Pn7Pn) = <Uv P73> + <Tv (P1lz)2> =0,

which contradicts our assumption that { P, ()}, is an STPS relative

to @(-, ). O
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