ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 28, Number 3, Fall 1998

CROSSED PRODUCT DUALITY FOR
PARTIAL C*-AUTOMORPHISMS

JOHN QUIGG

ABSTRACT. For partial automorphisms of C*-algebras,
Takai-Takesaki crossed product duality tends to fail, in pro-
portion to the extent to which the partial automorphism is
not an automorphism.

1. Introduction. Recently Exel [1] introduced the notion of a
crossed product of a C*-algebra by a partial automorphism (an iso-
morphism between ideals), in order to better understand circle actions.
This generalizes crossed products by automorphisms (equivalently, in-
teger actions), and some of the usual theory of crossed products by
actions carries over to this new context [1, 2, 5, 8]. It seems natural
to ask about the Takai-Takesaki crossed product duality [9]. In this
paper we show that, perhaps unsurprisingly (since partial automor-
phisms, being partially defined, miss some of the information of the
C*-algebra), crossed product duality tends to fail for partial automor-
phisms. Indeed, crossed product duality seems to fail more miserably
the more “partial” the partial automorphism is.

To be more precise, from experience with Takai-Takesaki duality for
crossed products by abelian groups, we expect a dual action of the
circle group T on a crossed product by a partial action, and indeed
Exel [1] constructs such a thing. We apologize, but for our purposes we
find it more convenient to work with the corresponding coaction of the
integer group Z. For abelian locally compact groups, statements about
coactions are just Fourier transforms of statements about actions of the
dual groups. However, at a certain point, we need a representation of
the circle group T, which is more easily dealt with as a representation
of ¢o(Z). For the reader’s convenience, in Section 2, after reviewing the
elementary theory of partial automorphisms, we give a rough guide to
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1068 J. QUIGG

what we need from coactions, specialized to Z; suitable references are,
e.g., [4] and [7].

In Section 3 we prove what are surely expected results concerning
invariant ideals, and concerning tensor products with the identity
automorphism.

In Section 4 we obtain a kind of “Wold decomposition” of a par-
tial automorphism, showing that there is a largest subalgebra, which
turns out to be an ideal, on which we have an actual automorphism,
and the quotient partial automorphism is as far as possible from an
automorphism (“completely nonautomorphic”). For these completely
nonautomorphic partial automorphisms, crossed product duality fails
most dramatically, at least under a mild condition that certain projec-
tions be multipliers.

In Section 5 we study how the behavior of the partial action o depends
upon the distribution of the domains and ranges of the powers a”.
Along the way see a more fundamental reason why crossed product
duality fails in general for partial automorphisms.

2. Partial automorphisms and the dual coaction. We begin
with a review and embellishment of some of Exel’s work [1]. A
partial automorphism of a C*-algebra is an isomorphism between two
(closed, two-sided) ideals. Let PAutA denote the set of all partial
automorphisms of A. Since an ideal of an ideal of A is an ideal of A,
PAutA is closed under composition, where the domain of cvo 3 is taken
to be all elements in the domain of 8 which 8 maps into the domain of
a. For o € PAutA we let a® be the identity automorphism of A, and
for n > 0 we let a~" be the nth power of the inverse a~!. We denote
the range of the partial automorphism o™ by D,, (so that the domain
is D_,,). We have

---D sCD_{CA=DyD>DyDD;y---
and

(2.1) a"(DyD_,) = DyyD,, forall n,k € Z.

We refer to the D, as the ideals of « and write D,,(«) when there are
more than one partial automorphism around. Note that D, (a™!) =
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D_,(«). Thus, many properties of the D,, for n < 0 follow from the
corresponding properties for n > 0 by replacing o by a~!; when we
want to invoke this rule, we will just say “by symmetry.”

The crossed product of A by « is the C*-completion, denoted A x, Z,
of the algebraic direct sum (i.e., finite sums) @, D,, equipped with *-
algebra structure

(@) = 3 a* (o H(ze)yn—s)

keZ

(@%)n = a™(2Z,,).

Definition 2.1. p, denotes the identity element of the double-dual
D;* when the latter is canonically embedded as a weak™ closed ideal
of A**.

Thus, the p, are central projections in A**, and D}* = A**p,. By
(2.1) we have

(22) an(pkp—n) = Pn+kPn;

where « has been canonically extended to a partial automorphism of
A**.
A covariant representation of (A,a) on a Hilbert space H is a pair

(w,u), where 7 is a nondegenerate representation of A on H and
u € B(H) satisfies

(2.3) wu* =m(py) and u'u=m7(p_1);
(2.4) Aduom(a) =moa(a) for a€ D_j.

Thus, u is a partial isometry with range and domain projections
m(p1) and w(p_1), respectively. Similarly to what we did for partial
automorphisms, we let «® = 1, and for n > 0 we let =™ be the nth
power of the adjoint u*.

n __

Lemma 2.2. If (m,u) is a covariant representation, then u™u~
m(pn) and Adu" om(a) =mwoa"(a) for alln € Z, a € D_,,.
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Proof. This follows from the definitions and (2.2). O
In particular, the u™ are all partial isometries.

Definition 2.3. For a covariant representation (,u), we write

C*(m,u) = Z m(Dy)u™.

nez

A quick calculation shows that, for n,k € Z, a € D,,, and b € Dy,
m(a)u"m(b)uf = 7o a™(a " (a)b)u"*

and

(r(a)u™)* =moa "(a")u™",
so C*(m,u) is a C*-algebra. For every covariant representation (m, u) of
(A, @) there is a unique nondegenerate representation = X u of A x4 Z
determined by

m X u(a) = Zﬂ'(an)un for ac€ @Dn,

n

and conversely every nondegenerate representation of A X, Z is asso-
ciated in this way with a unique covariant representation.

A is faithfully and nondegenerately embedded in A x, Z, hence in
(AXoZ)**; let i: A — (AX4Z)** be this embedding. Then the universal
representation of A X, Z in (A X, Z)** is of the form ¢ x m for a unique
partial isometry m € (A X, Z)**. Moreover, a« = Adm and

AXyZ=C%i,m)= ZDnm”.

Definition 2.4. We refer to m as the canonical partial isometry
implementing a in (A X Z)**.
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We now briefly review the elementary theory of coactions, specialized
to Z. A coaction of Z on a C*-algebra B is a nondegenerate injection
d: B — B ® C*(Z) satisfying the coaction identity

(0®1)od=(1®dz)006,

where ¢ always denotes the identity automorphism, and dz: C*(Z) —
C*(Z) ® C*(Z) is the homomorphism determined by §(n) = n ® n for
n € Z. Coactions of Z correspond bijectively to actions of Z =T,
and if 3 is the action of T associated to the coaction § of Z, then the
coaction identity for § says exactly that 8;6; = B4 for s,t € T. For
example, if B is the action of T on C(T) given by

Bs(f)(t) = [(st),
then the associated coaction ¢ of Z is given on monomials by
i(z")=2"®@n for zelZ.
If § is a coaction on B, the spectral subspaces of B are
B,={beB|§b)=bon} for necZ.
The disjoint union of the B,, forms a C*-algebraic bundle over Z:

BnByi C Buy and B =B_,.

A covariant representation of (B,Z,0) is a pair (w,u), where m
and p are nondegenerate representations of B and c¢y(Z), respectively,
satisfying a certain covariance condition. In this case it is convenient
to recast the covariance as a relation between the spectral subspaces
B,, and the associated partition of unity

an = 1(X{n})-
By [7, Lemma 2.2], the covariance condition becomes
m(b)gr = gn+rm(b) for n,k € Z,bc B,.
If every covariant representation factors through (m, u), then

m(B)u(co(Z))
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is called the crossed product B X §Z, and it is unique up to isomorphism.

The coaction § is called inner if there is a nondegenerate homomor-
phism of ¢y(Z) into M (B) which is covariant for the identity map of B,
i.e., there is a partition of unity ¢, in M (B) such that lim, , 1. g, =0
strictly and

bgr = gnirb for mn,k € Z,b€ B,.

In this case by [6, Theorem 6.9] or [4, Theorem 2.9] we have
B xsZ=B®cy(Z).

In particular, this holds for the trivial coaction b — b ® 1 of Z on B
(take g, = 1 for n = 0 and 0 otherwise).

A nondegenerate homomorphism p of B to C'is called equivariant for
coactions ¢ and ¢ if

cop=(p®)od.

In this case, p(B) is an e-invariant subalgebra of C, i.e., e(p(B)) C
p(B) ® C*(Z). If I is an invariant ideal of B, I x5 Z is an ideal of
B x5 Z, and there is a natural coaction ¢ of Z on B/I such that

(B Xs Z)/(I X Z) = (B/I) X§ Z.

If « is an actual automorphism of A (so n — «a™ is an action of Z
on A), Takai-Takesaki duality says (in the language of coactions) that
there is a coaction & of Z on A X, Z such that

(AxaZ) x4 Z= AR K(1%(Z)),
where K here stands for compact operators. While the construction of
the dual coaction for partial automorphisms, indicated in the following

proposition, is the same as for actions, the crossed product duality is
largely destroyed, as we will see in Section 4.

Proposition 2.5 [8]. If a is a partial automorphism of A, then there
18 a unique coaction & of Z on A X4 Z such that

d(am™) =am™ @n for ne€Z,a€ D,.
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The spectral subspaces are

(AXyZ), =D,m".

3. Invariant ideals.

Definition 3.1. A C*-subalgebra B of A is called a-invariant if

(3.1) a(BND_;)CB and o }(BND,)CB.

Lemma 3.2. If (and only if) B is a-invariant, then

(3.2) a"(BND_,)=BND, for nel.

Proof. Equation (3.2) is trivial for n = 0. Since o and o~ ! are

inverses, (3.2) for n = %1 follows from (3.1). Inductively, assume k > 1
and (3.2) holds for |n| < k. Then

a"(BND_})=a(@ Y (BND_})) ca(BND, 1 ND_;)
CBNDiND,=BNDy.

Symmetrically,
a (BN D) Cc BND_y.

k

Since o and a~* are inverses, we must have (3.2) for n = +k. O

Thus, if B is a-invariant, then « restricts to a partial automorphism,
which we also denote by «, of B, with ideals B N D,,.

McClanahan [5, Proposition 5.1 and Corollary 5.2] proves most of the
following result for partial actions of arbitrary discrete groups; the basis
for the techniques of Propositions 3.3 and 3.4 can actually be found in
[3, Lemma 1]. Since our notation is different, and since we include the
dual coaction, we give the proof for the reader’s convenience.

Proposition 3.3. Let I be an a-invariant ideal of A, let q be the
identity element of I** in A**, and let i:1 — A be the inclusion map.
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Then (i,qm) is a covariant representation of (I,a), and i X gm is an
isomorphism of I xo Z onto the ideal ), ID,m™ of AxyZ. Moreover,
this isomorphism is equivariant with respect to the dual coactions.

Proof. We first show that m commutes with ¢ in (A x, Z)**:

gm = gpym = a(gp—1)m = mgp_m*m

=mgp?®, = mp_1q = mq.

Thus,

n n

(gm)"(gm) " =gm"m " =¢qp, for n€Z,

and, since ¢ is the identity of I**,
Ad(gm)oi(a) = Admoi(a) = a(a) for a€ID_;.

We have

(i x qm)(I xo Z) = Y IDy(qgm)" = > ID,m",

which is obviously an ideal of A X, Z. The equivariance is now obvious.

It remains to show ¢ X gm is injective, and this is accomplished
by showing that every covariant representation (m,u) of (I, ) factors
through (¢,gm). Let T be the unique representation of A extending 7.
We verify that (7, u) is a covariant representation of (A, ). First, if
{e;} is an approximate identity of I, then, taking weak operator limits,

n

7_r(pn) = limw(eipn) — W((Ipn) — u"u"

Now change {e;} to an approximate identity of ID_;. Then {a(e;)}
is an approximate identity of D1, so for a € ID_; we have

Adu o 7(a) = lim Adu o w(e;a) = lim 7 o a(e;a)

= limw(a(e;)a(a)) = 7 o ala). o

Let I be an a-invariant ideal of A, and let {: A — A/I be the quotient
map. Then & o ¢ = { o o determines a partial automorphism & of A/1,
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with ideals (D)
precisely, (**(pn))

Moreover, the identity of ¢(D,)** is {(pn) (more

Proposition 3.4. Let I, (, and & be as above, and let m be the
canonical partial isometry implementing & in (A/I x5 Z)**. Then
(¢, m) is a covariant representation of (A, ), and { X m is a surjection
of AXoZ onto A/I x5 Z with kernel I X, Z. Moreover, this surjection
s equivariant with respect to the dual coactions.

Proof. We have
m"m~" =((p,) for neZ,
and
Admo(=ao(=C(oa.

Clearly ¢ x m is a surjection of A x4 Z onto A/I x5 Z.

Since ¢ x m vanishes on ID,m" for every n, ker(¢ x m) D I X, Z.
For the opposite containment, let (7,u) be a covariant representation
of (A, a) with ker(m X u) = I x4 Z. Then kerm D I since I xq Z D I
and (7w x w)|I = w|I. So, there is a representation 7 of A/I such that
m =7 o(. Then (7,u) is a covariant representation of (4/I,&), and

mxu=(7xu)o (¢ xm).

Hence
ker(¢ x m) C ker(m x u) =1 x4 Z.

For the equivariance, if a € D,, we have

We will need the following elementary result on tensor products of
partial automorphisms.



1076 J. QUIGG

Proposition 3.5. Let o € PAutA, and let B be a C*-algebra. Then
t® a € PAwtB® A, with domain B® D_1, and

(B®A) X190 Z=B®(Ax, Z),

where the minimal tensor product is used throughout.

Proof. Crossed products by partial automorphisms of Z are auto-
matically reduced [1, Theorem 5.2; 5, Proposition 4.2]. If B and A are
faithfully and nondegenerately represented on Hilbert spaces K and #,
respectively, then BQ A is so represented on KCQH. So, (BRA) X,ga,rZ
and B® (A X, Z) are both represented on K@ H ®1%(G), and a mildly
careful examination of these representations yields the fruit that these
C*-algebras are in fact equal. i

4. Duality. In this section we begin to examine the extent to which
Takai-Takesaki crossed product duality fails for partial automorphisms.
Definition 4.1. Let

Dy = ﬂDn and D_, = ﬂDn.

n>0 n<0

Lemma 4.2. D, and D_,, are a-invariant.

Proof. Let a € DyD_y. Then a € D,D_, for all n > 0, so
a(a) € Dypyq for all n > 0, hence a(a) € Dy. If a € Dy, then
a € Dpyq foralln >0,s0 a"1(a) € D, foralln > 0, s0 a~(a) € Du.
The invariance of D_, follows by symmetry. ]

Proposition 4.3. « restricts to an automorphism of Do D _ o .

Proof. Since both Dy, and D_,, are a-invariant, so is Dy,D_.
Since D D_,, C D1D_y, we are done. a

The next result shows that D, D_, is a kind of “automorphic core”
of a.



CROSSED PRODUCT DUALITY 1077

Lemma 4.4. D, D_,, = {0} if and only if there is no nonzero
C*-subalgebra B of A such that «|B is an automorphism.

Proof. If such a B exists, we have B C D, for all n, so

Do D_, D B # {0}.
The converse is trivial since a|DyD_ o is an automorphism. O

Definition 4.5. We call o completely nonautomorphic if DooD_o, =

{o}.

Proposition 4.6. The quotient partial automorphism on
A/(DooD_ ) is completely nonautomorphic.

Proof. Let (:A — A/(DxD_s) be the quotient map. Recall that
the ideals of the quotient partial automorphism are ((D,). Since
Do D_, C D, for all n, we have

ﬂC(Dn) = ﬂDn/(DoonOO)
_ (ﬂDn>/(DOOD_OO)

= (DooD_o)/(DosD—oo) = {0}. O

The following result shows that crossed product duality tends to be
maximally false for completely nonautomorphic partial automorphisms.
Let p (respectively, p_o,) denote the identity of D** (respectively,
D** ) in A**.

Theorem 4.7. If a is completely nonautomorphic and lim,,_, + o, p, =
Dioo Strictly in M(A), then the dual coaction & of Z on AxZ is inner,
50

(AXaZ) X6 Z > (AXqZ)®co(Z).
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Proof. We must produce a partition of unity {g, | n € Z} in
M (A x4 Z) such that lim,,_, 1 o g, = 0 strictly and

(4.1) am”qg = gnyrgam”™ for n,k € Z,a € D,.

Define .
Gn = {poo(pn+1 _pn) lf n < 07

Pn — Pn+1 ifn>0.

The ¢, for n > 0 form a partition of 1 — p,, and the ¢, for n < 0

form a partition of p,, since
0 = PooP—0o = Wweak*- lim peopn.
n——oo

Further, the hypotheses imply lim,,_, 1 o, g, = 0 strictly in M (A), hence
in M(A x4 Z).

By induction and taking adjoints, and since m® = 1 and the ¢,, are
in the center of A**, (4.1) will follow from
(4.2) mqr = qpeam for k€ Z.
We first show

(4.3) mpp = pgr1m for ke Z.

For k>0
_ _ _ ko —k,  —1
mpr = mp_1Px = MpPgp—1=mm m "m "m

k+1, —k—1
=m"m m = Pk+1M,

while for £ < 0

mpr = mm*m=F

= Pk4+1P1M = Pr+1M,

k+1m—k 1

1 _
=mm=m m = P1Pk+1M

showing (4.3). Since m commutes with peo, (4.2) follows for all k # —1.
For the remaining case,

mg—1 = MPoo(Po — P—1) = PooMm(Po — P—1)

= Poo(Mpo — MP_1) = Poc(m — m) =0
=pom —pim = (po —p1)m =qgom. O
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Corollary 4.8. Let o be completely nonautomorphic, and assume
the projections py1 and pioo are in M(A). Then (assuming A # {0})
A contains a nonzero a-tnvariant ideal I such that & is inner on I X, Z.

Proof. First note that m € M(A x4 Z) by [8, Proposition 2.13], so
for all n € Z we have m™ € M (A X4 Z), hence p, € M(A). Let

I = Zpoo(pn+1 7pn)A

n<0

I2 = Zp—oo(pn—l _pn)A
n>0

I3= > (1= Poo = Poo)(P1n — P—n)(Pr—1 — Pk)A.
n,k>0

Then each I; is an a-invariant ideal to which the hypotheses of Theo-
rem 4.7 apply, and A = ®31;. i

5. The distribution of ideals. The ideals D, decrease in
both directions from n = 0. In each direction, the behavior of the
partial action is dramatically influenced by whether the ideals are
eventually constant or strictly decreasing forever, and upon whether
the intersection is {0}.

Lemma 5.1. For n > 0, the following are equivalent:
(i) Dn = {0};

(i) D, = {O};

(iii) Dp—1D_1 ={0};

)
(IV) lenDl = {0}
Proof. Since « is injective, this follows from the following relations:

D,=a"(D_,)=a(D, D) =a""Y(D; ,D;). @O

Definition 5.2. A partial automorphism such that D,, = {0} for
some n > 0 will be called nilpotent.
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The next result concerns the most trivial nilpotent partial automor-
phisms.

Proposition 5.3. If D1 = {0}, then A x, Z = A and the dual
coaction & is the trivial coaction a — a ® 1, so

(AXaZ)XaZ =2 AR cy(Z).

Proof. This follows immediately from the definitions, since &, D,, =
A and m = 0. O

Perhaps the simplest nontrivial nilpotent partial automorphisms are
given by the following example.

Example 5.4. Define o,, € PAutC” by
on(21y oy 20-1,0) = (0,21, ..., 2p—1)-
We will refer to this as the shift on C™. Exel [1] shows that
C" Xo, Z = M,,

the algebra of n X n matrices.

The next lemma shows that all nilpotent partial automorphisms
contain shifts.

Lemma 5.5. Let n > 1, and suppose D,,_1 # {0}, D, = {0}, and
A=Dy_p+DypDy+Ds_pDy+---+ Dp_y.
Then (A, @) is isomorphic to (Dyp—1 ® C",t ® 0,,), so
AXyZ=D,_1Q M,

Proof. Tt suffices to prove (A, a) is isomorphic to (D;_, ® C",t®0ay,),
since composing with o~ ! ® ¢ will then give an isomorphism with
(Dp—1 ® C™, 1 ® 0,,). The hypothesis implies

D_1=Dy_n+Ds yD1+D3_pnDy+--+D_1Dp_»
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and that the ideals Dy_,,, Dy_, D1, D3_,Ds, ..., D,_1 have pairwise
zero intersection. Define 0: D;_,, ® C™ — A by

Oa® (21,..-,2n)) = Zziai_l(a).

0 is clearly an isomorphism, and

O(Dy 0 (C™ % {0)) = 3 0 (Dy )

n—1

= Z D; nD;1=D_.
1

We have

o (t®on)(a® (21,.-+,20-1,0)) =0(a® (0,21,...,2n-1))

The following theorem shows that A can have many subquotients (in
fact, it is sometimes an inverse limit of such) on which « looks like a
nilpotent shift.

Theorem 5.6. For each n > 1 the ideal
I,=D;y n+ Dz D1+ D3 ,Dy+---+ Dy 1

of A is a-invariant. Moreover, I, O I,4+1, and if B, is the quotient
partial automorphism of I,/I,, 11, then

(In/In+17ﬂn) = (anl/(Dn + anlDfl) ® an L® Un)-
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Consequently,

In/In+1 xBn Z= Dn—l/(Dn + Dn—lD—l) & Mn

Proof. We have

a(I,D_1) =a(D1—p+Ds_pD1 + -+ D_1Dy_5)
=Dy_,Di1+---+D,_1 CI,.

The containment I,, D I,41 follows from D,, D D, ;. Noting that the
ideals of (3,, are

Dk(ﬁn) = InDk/In-i-lea

we see that (I,/I,+1, 8,) satisfies the hypotheses of the above lemma.
We finish by observing that

In+1Dn—1 = Dn + Dn—lD—la
SO

anl(ﬁn) :anl/(Dn+Dn71D71)- o

A version of the above result holds even for n = 1, although it (like
the empty set) is best dealt with separately:

Theorem 5.7. Let I = D_1 + D;. Then
(AxqZ)/(I xqZ) =2 A/I
and
(AXaZ)XaZ)/ (I X0 Z) xaZ) 2 AJI @ co(Z).
Proof. We have
(AxXaZ)/(IxaZ)=A/IXgZ
and

(AXaZ) xa Z)/((I Xa Z) xa Z) = (A/I Xg Z) X5 Z,
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where [ is the quotient partial automorphism. But 8 has domain {0},
so by Proposition 5.3,
A/l xgZ = AJI

and
(A/TxpZ) x3 Z= A/I®co(Z). O

We use the above results to show that crossed product duality fails
in general for partial automorphisms. To be precise, crossed product
duality demands a canonical isomorphism of (A X, Z) x4 Z with A ®
K(1%(Z))—an “accidental” isomorphism is irrelevant. Without putting
too fine a point on it, let us agree that “canonical” implies at least
that if I D J are a-invariant ideals of A, then the isomorphism carries
(I xoZ)x4Z onto I®K(I1%(Z)), and similarly for J. Taking quotients,
we get an isomorphism of (I/J x4 Z) X5 Z with I/J ® K(1*(Z)). But
with I = I,, and J = I,, 41, the above results would then imply

I/J@K(I*(Z)=1/J® M, @ co(Z),

which is false except in very special examples. This failure of crossed
product duality has an advantage over Corollary 4.8, since it does
not require any projections to be multipliers. However, this does
not handle all cases: the following example shows that even when
Do, = D_o, = {0}, we can have I, = A for all n > 0.

Example 5.8. This example was invented by Nandor Sieben. Here
A will be Cp(R) and « will be translation by =

a(f)(t) = f(t —m),

with domain

D_,={feA|f(t)=0forteS}

where
"1
S={0}lu<{ £ - N ;.
o=y glnen)
The reader can check that

U (S+nm) and U (S + nm)

n>0 n<0
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are both dense in R, so
D., = D_,, = {0},

and moreover, for each n > 0,

0(S+kﬂ)ﬂb(s—kﬂ) =g,
k=1 k=0

SO
Int1 DD, +D_, = A.

We saw in the preceding section that D, and D_., are a-invariant.
What can we say about the restricted and quotient partial automor-
phisms?

Definition 5.9. « is a forward shift (respectively, a backward shift)
if D, = A for all n < 0 and D, = {0} (respectively, D,, = A for all
n>0and D_,, = {0}).

Of course, « is a forward shift if and only if o ! is a backward shift.
The simplest nonnilpotent forward shift is

o:(z1,x2,...) — (0,z1,22,...)

on ¢y, whose crossed product is the compact operators. If we adjoin
an identity to cg, the crossed product becomes the Toeplitz algebra
generated by a nonunitary isometry [1]. The following result shows that
nonnilpotent forward shifts tend to look like the preceding example on
a certain ideal.

Proposition 5.10. Let a be a forward shift, and assume p; € M(A).
Then

I= Z(pnfl _pn)A

n>0

is an a-invariant ideal, and

(I,alI) 2 ((1 —p1)A®co, Lt ® o),
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where o is the forward shift on cg. A similar result holds for backward

shifts.

Proof. The hypotheses imply

I=@a™((1-p1)A),

n>0

and the proposition follows easily. a

Proposition 5.11. If « is completely nonautomorphic, then a|D _
is a forward shift and a|D, is a backward shift.

Proof. The ideals for a|D_, are D, D_,, which coincide with D_
for n <0, and we have

ﬂ Dy,D_o = DooD_o, = {0}.
n>0

The other statement follows by symmetry. u]

Note that it is possible for Do, D_o, = {0} while neither Do, nor
D_ is {0}, e.g., the direct sum of a forward shift and a backward
shift. In fact, this is almost typical, as we will discuss after the next
result.

Proposition 5.12. If & is the quotient partial automorphism on
A/Dy, (respectively, A/D_o,, A/(Ds + D_)), then Dy (&) = {0}
(respectively, D_o(&) = {0}, Doo(@) = D_oo(@) = {0}).

Proof. The first part follows from
(Dp+ Dy)/Doo = Dy, /Dy, for n >0,

and the other parts are shown similarly. ]

In particular, a completely nonautomorphic partial automorphism
falls naturally into three pieces: a forward shift on D_.,, a backward
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shift on Do, and a quotient partial automorphism on A/(Dy + D_ )
satisfying Do, = D_o, = {0}. The simplest nonnilpotent illustration
of the latter phenomenon is ®,¢(C",0™). This can also be visualized
as the partial automorphism on c¢q(N?) with domain {z | z,;1 =
0 for all n € N} and which takes such an x to y, where

y _ {mn—l,k—i-l ifn > ]-7
7o ifn=1.

Note that in this case
I, = {ka |k+1>n+1}.

The following result shows that partial automorphisms with D, =
D_, = {0} tend to look like the preceding example on a certain ideal.

Proposition 5.13. Let a satisfy Doo = D_o = {0}, and assume
P1,P—1 € M(A) Then

I=Y" (p1n—P-n)(Pr-1—p)A

n,k>0

is an a-invariant ideal, and
(I, T) = P ((p1-n — p-n)(1 —p1) AR C", 1 @ 7).
n>0
Proof. The proof is almost as easy as in Proposition 5.10, noting that

a((p—k —P—k—1)(Pi-1 —m)) = (P1—k — P—k) (Dt — P141) for Kk, 01>0

and the hypotheses imply

n=1 k=

n—

o*((pr—n —p-n)(1—p1)A). O

Note that the summands in the above proposition are the subquo-
tients of Theorems 5.6 and 5.7.
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The nilpotent partial automorphisms studied in the preceding section
gave trivial examples of the D,, being eventually constant. We finish
by examining the general case.

Lemma 5.14. Ifn <0 and D,, = D,,_1, then
(5.1) D, =Dy forall k<n,
and similarly for n > 0.
Proof. The hypothesis implies
D, ,=a (D,D,)=a (D, 1D;) =D, »,
giving (5.1) by induction. The other part follows by symmetry. O

Thus, if n < 0 and D,, = D,,_1, then D,, = D__ is a-invariant.
Curiously, a partial converse holds:

Proposition 5.15. Ifn <0 and «(D,,) C D, then D,, = D,,_;.

Proof. We have

D.D,_1 =a YDny1D,D;) = a Y (a(D,)D,)
=atoa(D,)=D,,

so D,, C D,,_1, whence D,, = D,,_1. u]
What can we say about «|D,,? It depends on the Dy, for k > 0:

Lemma 5.16. If

n=max{j <0|D; =D;_1} and
k=min{j > 0| D; = Dji1}

are both finite, then n = —k and « restricts to an automorphism of D,,.
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Proof. Assuming without loss of generality that n > —k, it suffices
to show a(D,) = Dy:
Oé(Dn) = a(anl) = DnDl = D,le
Ol_k(Dka+1) = Oé_k(Dk)
=D_, =D,,. O

Thus, if the D,, are eventually constant in both directions, then this
behavior starts at the same place forward and backward, generalizing
Lemma 5.1. Moreover, when D,, = D,, 1 = Dy, = Dy4q forn = —k <
0, then D,, is the automorphic core Do, D_,,. On the other hand, if
n < 0and D, = D,_1, but Dy # Dy for all & > 0, then in any
event Do, C D, and the quotient partial automorphism on A/D,, is
nilpotent. As usual, similar statements hold for n > 0.
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