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UNSOLVABLE CASES OF P3 + Q3 + cR® = dPQR

ERIK DOFS

Introduction. Consider the diophantine equation
(1) P34+ Q3+ ¢cR® =dPQR

where ¢,d, P,@Q and R are rational integers, all £ 0. The first results
were stated (without proofs) by Sylvester [11] and later the equation
was treated by several authors [9], some of them using the fact that
a nontrivial solution of (1) implies that y* = 23 + (dz + 4c)? has a
(rational) solution with & # 0. This connection with elliptic curves
makes it possible to use the powerful computational techniques for
deciding solvability, that are based on calculation of the appropriate
L-series for a given ¢ and d. Bremner and Guy’s paper [2] on equation
(1) with ¢ = 1 demonstrates well the power of these techniques
for determining the rank and finding solutions in particular cases.
However, classical methods still have some advantages, e.g., they often
cover an infinite number of parameter values and the actual testing
is usually far easier to perform. They may also give complementary
insights, e.g., in this paper a decisive cubic residue condition occurs
in every case. Using classical methods, noticeable progress has been
made regarding the case ¢ = f* when f is a prime number and 3 { k
[5, 9], but very few generic results exist when ¢ has several different
prime factors. This illustrates the difficulties encountered when using
classical methods, but in this paper we show that this path is not yet
fully explored and give results that, together with earlier results, for
¢ =1, f, cover nearly all unsolvable cases for ¢ = 1, f, fg, f%g, 3, f3¢
where f and g are different prime numbers.

For convenience, we make the following

Definitions. If f is a cubic residue of h, we use the notation f ~cr h.
Similarly, f ~crh is used when f is a cubic nonresidue of h. The
subclass S of (positive rational) primes is defined by p € S if and
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only if p = 1 (mod 3). Analogously for the subclass T of (rational)
integers, r € T if and only if |r| = 1 or IIp; and for all p;, p; is a
(positive rational) prime number = 2 (mod 3). Z[p] stands for the set
of integers in Q(v/=3), i.e., the (complex) integers a + bp with a,b € Z
and p = (-1 ++/-3)/2.

In the following we assume that f,g are rational primes, h € S,
M € T and also that upper/lower signs for different variables, in a
given context, correspond.

The solvability of (1) can be decided if a descent can be made, even-
tually leading to another solution Pi, @1, Ry of (1) with |PiQ1R1| <
|PQR)| for a general solution P, Q, R.

The case ¢ = f -g. Working in Z[p], extraneous equations of two
kinds must be excluded in order to make the descent occur [9, 10],
eg.,ifc=f-g:

(2) P?+ fQ* + gR® = dPQR
(3) aU? + BV3 + BV? = 3dUVV,
where o, 8,U,V € Z[p] and o8B = d*> — 27fg. It proves possible to

exclude all extraneous equations (2) and (3) in a multitude of similar
but distinct cases when ¢ = f - g.

(i) 31d. d* —27fg = hM or h2M, f ~crh (or the same for g) and
f#3ifg=h.
(ii) If 3||d, put d = 3D.
) D® — fg=hM (or h>M)= £1,44 (mod 9) and f (or g) ~crh.

(a
(b) D? — fg =M, f =42 (mod 9), g = 4 (mod 9) and D = +1
(mod 3).

(c)D®—fg=M, f =+2, ¥4 (mod 9), g =3 and D = &1 (mod 3).

(d) D — fg = hM, f = £2, ¥4 (mod 9), g = 3, D = F1 (mod 3)
and f ~crh.

(e) D® — fg = 3k - M (with k = 2,3,4), f = -2 (mod 9), g = 4
(mod 9), D=1 (mod 3) and 27t f +g+1—3D.

(f) D® — fg = 3hM and f ~crh.
(iii) Tf 32 | d (£ 0) put d = 9F.
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(a) fg = £1 (mod 9) and 27E3 — fg = M with f = F2 (mod 9),
g = +4 (mod 9).

(b) fg = 42, +4 (mod 9), 27TE3 — fg = hM (or h2M) and f (or g)
~crh.

(c) fg==43 (mod 9),g=3,9E% — f = hM (or h2M) and f ~crh,
or (instead of f ~crh) E=1 (mod h) and 3~crh.

To decide the solvability of (1) in these cases, it is sufficient to test

whether it has any solution P, @, R with |[PQ| < 3. We give a proof for
the main part of the simplest case (i).

Theorem 1. Ifc = f-g,31d, d —27fg = hM, f ~crh and
f # 3 in equation (1), then it is solvable if and only if it has a solution
P,Q, R with |PQ| < 3.

Proof. We consider equation (1) withec= f-g
(1) P* 4 Q" + fgR® = dPQR

and (P,Q) = (Q,R) = (R,P) = 1. We use the transformation (with
u, v, w € Z[p])

uw=3P+3Q+dR,
(4) v =3pP + 3pQ + dR,
w =7 = 3pP + 3pQ + dR.

(5) (d® = 27fg)(u+ v+ w)? = 3 dPuvw.

Now ged (u, v, w) | ged (9P, 9Q, (n+6)R) and two cases appear, depend-
ing on whether 3 | R or not.

We assume first that 3  R. Then gecd (u,v,w) = 1 and u = aU3,
v = pV3, w = V3 where a8 = d® — 27fg = hM, a,U € Z and
B,V € Zlp]. Put h = N(n) with n € Z[p] primary. Equation (5)
becomes (3)

aU? + V3 + BV3 = 3dUVV.
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The possible combinations of @ and 8 are (with some m € T):

I II
a=M/m?* hM/m?
B=p’mn  p'm.

Congruences (mod 9), using the assumption that 7 is primary, show
that 7 = 0 in both cases. The combination II gives a descent.

If « = hM/m? and 3 = m, equation (3) becomes
(3" RMU? +m?(V? + V3) = 3m?dUVV.
Using the transformation, where p1,q1,7m1 € Z,

p1=dU+m(V +V),
q1 = dU +m(pV + pV),
r1=dU +m(pV + pV)

gives
(6) falpr + @1 + 7“1)3 =d*prgims.

Then p; = AP, 1 = AQ3, r1 = AfgR3 for some A, Py,Q,,R, € Z
and we have (1’) again

PP+ QF + fgR} = dP1Q1 Ry

as the (extraneous) equation PP+ fQ3+gR3 = dP1Q1R; can be written
as a norm equation in Q(+/f), putting 6 = ¥/,

(7) N[3Py0 +3Q16° + dR,] = (d* — 27fg) R}

and because f is a cubic nonresidue of h, a prime factor in d®> — 27fg,
equation (7) has only trivial solutions.

Assuming that P, @, R is the solution with least height, i.e., |P1Q; R1| >
|PQR)| for all P;,Q1, Ry, we now determine the possible values of |PQ)|.

pLt+qa+n
Ad

|PLQ1R1| =

)

3dU| |3U
Ad| | A
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but also
ww |3
dR| = =3|d| | 7——
I3dR| = |u + v + w| = 3|d| F—27fq
= [3dUV V|
or B
|R| = |[UVV|
leading to

|P1Q1R1| < |3U| < |3R|.

Now |PQR| S |P1Q1R1| S ‘3R‘, i.e., |PQ| S 3.

We now exclude the combination I.

From equation (1) we get P23 + Q3 = dPQR (mod ), where f =
N(p) and ¢ primary (if f =1 (mod 3)) or f = —¢ (if f = —1(mod 3)).

As ¢ 1 PQ and ged (u,v,w) = 1, we also have v = aU3 =
(P+Q)?/PQ (mod ¢) and v = V3 = (P + pQ)?/PQ (mod ¢). As
ged (P, Q) = 1, ¢ divides at most one of P+ @, P + pQ and P + pQ,
thus for some &y, 53 € Z[p], we have

(8) a/=6 (modyp) or B/F=6 (mod ).

By testing these congruences with the o, 8-values of I, and by using the
multiplicative property of the cubic character, we can rule out these
subcases if (n/¢)s # (77/¢)s. This condition is readily deduced from
the assumption f ~cr h by means of the cubic law of reciprocity. The
choice of factor in f is arbitrary as (n/@)s = (7/¢)s and (7/9)s =

(n/¢)s-

Next we assume that 3 | R and more details are necessary as
ged (u, v, w) = p — p. We either get equation (3) or

pVE - BV?

(9) 3aU? + =3dUVV

with u = 32aU3, v = (p—p)BV3, 5 = (p—p)BV? and a3 = d*> —27fg.

Also here there are two combinations of « and 8 and, to make the
descent, we use the transformation

p1=dU +m(V = V)/(p— p),
q1 = DU +m(pV —pV)/(p — p),
r=dU +m(pV —pV)/(p — p)-
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The further steps of the deduction can be made in full analogy with
the case 31 R above and we get the same condition |PQ| < 3 for the
solution with least height. u]

The proofs for all subcases of ii and iii above follow the same line
of reasoning and the frequent conditions (mod 9) are used to exclude
equations of the type (2).

We treat the cases ¢ = f2g, 3, f3¢g summarily as they can be brought
back to the case c = f - g.

The case ¢ = f2g. It is straightforward to generalize the results for
c=f-g, eg,ifc =23%,d=3D, D} —32f = hM (or h>M)=
+1,+4(mod9), f = D =3 (mod h) and 3 ~cr h, the solvability of (1)
can be decided as in Theorem 1, and this extends Craig’s result [4].

Still, with ¢ = 3%f,ifd = 3°E, 3E® — f = M and f = 42, +4(mod 9),
a descent can be made and the solvability of (1) can be decided. More
generally, the case c = f2g can be treated as if f2 were a prime number,
i.e., as the case ¢ = f - g above, if f~crh and g~crh. The only
complication is that

(10) fP?+ fQ® + gR® = dPQR
occurs in the descent of P? 4+ Q2 + f2gR® = dPQR, and vice versa,
and cannot be excluded. The transformation corresponding to (4) in

the proof of Theorem 1 is modified into u = 3fP 4+ 3fQ + dR, etc., for
equation (10).

The case ¢ = f3. If we first transform P? + Q® + f3R® = dPQR
into f(d? + 3df + 9f%)(u + v + w)® = (d + 6f)3uvw [5], and then if
d? + 3df + 9f? = g, 33g with g € S, we have the case ¢ = f - g and can
decide the solvability if also d — 3f = hM, 3hM and f ~cr h.

The case ¢ = f3g. If c = f3g, d®> — 27f3g = hM and f ~crh, two
equations

P34+ Q@+ f3gR® = dPQR
and

P34+ f3Q3 + gR® = dPQR
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remain for a descent and to be tested for solutions of least height, in this
case with |PQ| < 3f2. The latter equation should now be transformed
(4) by using u = 3fP + 3f?Q + dR, etc.

The case ¢ = f. This case is treated in detail in [5] and a minor
extension can be made to those results. When ¢ = f, the case N3 is
decidable also if D — f = M = 44 (mod 9).

The case ¢ = 1. Several authors have studied this case and, for
historical reasons, we put d = n in equation (1):

(11) 3 4?4 2% = nayz.

We first summarize earlier unsolvability results.

The equation (11) has only trivial solutions for three sets of n-values
characterized by

(1) for all n, n2+3n+9 = p, p> wherep € S, n—3 € Tandn # —1,5
3, 5, 8, 9, 10].

(2) If n =12 (mod 27), put N = (n —3)/9. For all n, N € T and
3N?+3N +1=p,p* where p € S [5].

(3) If n = 3N, for all n such that (N —1)/h € T, where 3~cr h and
N2+ N+1€S [4].

In addition to these sets, see Table 1, there were a few other n-
values for which the equation (11) was known to have only trivial
solutions, n = —6, —3,0 [5,9], but recently Bremner and Guy [2] made
a computer investigation of (11) with ¢ = 1, |n| < 100 and, as the Birch
and Swinnerton-Dyer conjecture [1] has been proved for elliptic curves
which are modular [7], their list of unsolvable equations with n-values
in the investigate range is complete if the Taniyama-Weil conjecture is
assumed to be true. In any case, their results are perfectly consistent
with earlier unsolvability results and the new ones given here. By
making some variations of the proof technique in Theorem 1, we are
able to add the following sets of n-values

(4) for all n, n —3 = hM, or h?M, n?>+3n+9 = f-gand f, or g,
~crh.
For the sets (5)—(7), we put N = (n —3)/9 € Z.
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(5) If n = 3 (mod 27), for all n, N/3*¥ € T for some k < 3 and
3N?2+3N +1 = f-g where f = —2 (mod 9), g = 4 (mod 9) and
271 f+9g—3N —-2.

(6) If n = 12 (mod 27), for alln, N = hM, 3N?+3N +1 = f-g and
f,org, ~crh.

(7) If n =21 (mod 27), for alln, N € T and 3N2+3N +1=f-g
where f = -2 (mod 9) and g =4 (mod 9).

Probably all these sets are infinite, and they contain (together with

n = —6,—3,0) all unsolvable cases where |n| < 81 except those where
n? 4+ 3n + 9 has three prime factors.

TABLE 1. Unsolvable case of 3 + y® + 2% = nayz.

Set# mn-values in the range |n| < 81 for sets (1)—(4),
|n| < 729 for sets (5)—(7)
(1)  -61,-52,-41,-31,-26,-20,-19,-14,-13,-8,-7,-5,2,1,2.4,7,8,11, 23,
95,28,32,37,43,49,50,56,58
(2)  -69,-42,-15,12,39
(3)  -75,-54,-39,-18,24,42,45,60,81
(4)  -T4-T1,-70,-62,-58,-23,22,34,46,52,55,59,65,68,79,80
(5)  -618,-591,-483,-456,-429,-402,-267,-78,-51,111,138,165,327,
543,624,651
(6)  -663,-582,-555,282,390,552,660,687
() -357,-141,48,75,183,264,399,426,453,480,6 15

In [6] an extended list of solutions of (11), relative to that in [5],
was given. A comparison with Bremner and Guy’s list shows that
four solutions were missing, n = —80, —63, —53,72. The solution with
n = —b3 should have been found by my search program, but a minor
error in the definition of the search domain excluded it.

The proof that equation (11) has only trivial solutions for the n-values
of set (4), e.g., is essentially the same as for Theorem 1, but (11) should
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first be transformed with
p =nx + 3y + 3z,
q =3z + ny + 3z,
r =3z + 3y + nz,
into
(12) (n* +3n+9)(p+ g +7)° = (n+6)°pgr.

Now, for some a,b,c € Z with abc = n? +3n + 9 = f - g and some
P,Q,ReZ:

(13) aP? +bQ* + cR* = (n + 6)PQR.

As in the proof of Theorem 1, a = b =1 because f ~cr h and we have
equation (1'). Here d®>—27fg = (n—3)3 = h3M? and five combinations
of a, 8 occur when h|ln — 3, both when 31 R and 3 | R. We give the
combinations when 3 t R, three of which, II, III, IV, can be excluded
with cubic character arguments, while the other two, I, V, give descents:

I II II7 % %
a=M3/m? | M3/m? | hM3/m? | R2M3/m? | 3 M3 /m?
B=pmn® | pPmhny | pPmn> | pimny p’m

In the descent cases, e.g., for combination I, the transformation

p1 = (hRM + 9)U + hm(nV +7V),
q1 = (hM + 9)U + hm(pnV + piV),
r1 = (hM + 9)U + hm(pnV + piV)

should be used to eventually reach the condition |[PQ| < 3 for a
nontrivial solution. The further steps of the deduction can be made in
full analogy with Theorem 1 above and no nontrivial solution occurs.
The case h?||n — 3 gives ten combinations of a and 3 but the same
method of proof can be used.

An interesting fact is that the congruences corresponding to (8) in the
proof of Theorem 1 are solvable for some combination of o and 3, other
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than the ones giving a descent, if n—3 has two (or more) different prime
factors € S, which indicates that (11) always has a solution for such
n-values. This may also be trueif n —3 = hM and n2+3n+9=f € S
as > = f(mod h) has the solution z = (n + 6)/3(mod k) for all such n.

It is normally easy to verify that the proof fails for (n-values of)
known parametric solutions [6, 12], e.g., if n = N2 +5, n —3 = hM
and n? +3n+9=f.g, f,g €S, then f = N2+ N + 7 and the test for
set (4) regarding f ~ecrh fails as £ = =N — 1 solves the congruence
3 = f (mod n — 3), implying that 3 = f (mod h) is solvable.

TABLE 2. Parametric solutions of P3 + Q3 + cR® = dPQR.

{¢,d} = {P,Q, R} =
{1+6e¢,3+8(c+¢)%} {e,¢,—(+ 0O}

{-€® - % +de¢,d} {&,¢, 1}
{1+e(6%*+62+1),6%+5+4¢e} {62+6+1,62 -6 +1,2}

{—(1+6)(6%2 +36 +1),e(6 +1)% + 26} {1 + 95 + 3262 + 626 + 825*
+8665 + 6755 + 3167 + 858 + 6% + (6 + 952 + 326° + 635 + 8865
+1016% + 8867 + 4968 + 1569 + 2610) + £2(85 + 6% + 1567 + 2068 + 156°
+6610 +611), —1 — 95 — 3462 — 6762 — 666% — 2165 + 1265 + 1367 + 558 + &°
—&(25 + 1852 + 6863 + 13954 + 1625° + 10356 + 2867 — 368 — 45° — §10)
—€2(82 + 963 + 345% + 716% 4 9065 + 7187 + 3468 + 98° + 619), 35 + 2162
+578% + 7864 4 6165 + 2768 + 657 + 58 + £(362 + 218° + 616% + 9555 + 8556
+4367 + 1168 + %) + €2(8% + 76* + 2165 + 3565 + 3567 + 2168 + 76° + 619)}

Parametric and numeric solutions. There exist parametric solutions
of (1) in two and three parameters and those with the highest density
of small ¢- and d-values are given in Table 1. Despite appearance, the
derivation of these solutions is exceedingly simple. If P3 + Q3 + cR® =
dPQR, then the equation with ¢ = ¢ + 6PQ, d = d + §R? is also
satisfied by (P, @, R). The P, Q, R-values of the last solution are found
by means of Sylvester’s theorem of derivation [11], applied upon the
second solution with ¢ = § + 1, ( = §, d = 2§, to generate small
¢, d-values. The ubiquitous small solutions, in P,Q, R, in Table 4 [5]
are generated by these parametric solutions. We have found several
new numeric solutions of (1) in the domain |¢|] < 27, |d|] < 27 in
addition to those given in [5], or possible to derive from those, and
the solvability of equation (1) can now be decided in remarkably many,
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1454 out of 1485, instances within that domain. Most of the undecided
cases occur if ¢ = f2 with the additional conditions d — 3f € T,
d>+3df +9f? = hyhoM and f ~crh;,i = 1,2. In some instances, when
no generic case did apply, a more direct method to exclude extraneous
equations that works in the real domain was used.

1. Test the equations corresponding to (2) moduli h, h2(h | d*> —27c).

2. Transform the equations corresponding to (3') and (9) in the proof
of Theorem 1, using

3U=A+B+C, 3V=A+pB+pC, 3V =A+ pB+ pC

where A, B,C € Z. The resulting equation is of the form, with 4,
C; € Z for all,

(14) C1(A® + B® + C3) + C2(A®B + B*C + C?A)
+ C3(AB* + BC? + CA?) + C4ABC = 0.

3. Test (14) moduli f, f2(f | c¢) with all combinations of A, B, C'(modf)
or (mod f?).
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