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TIME-MAP TECHNIQUES FOR SOME
BOUNDARY VALUE PROBLEMS

WALTER DAMBROSIO

ABSTRACT. We illustrate the classical time-map technique
for the study of both Dirichlet and periodic boundary value
problems for second order ordinary differential equations. We
also present a new technique for Picard BVPs, which is then
applied to prove existence results for superlinear problems.

1. Introduction. The aim of this paper is to illustrate the concept
of time-map and its applications to various boundary value problems
associated to ordinary differential equations. To do this, we first survey
some classical results; secondly, a new time-map technique is developed
and applied together with some recent continuation theorems in order
to give existence and multiplicity results for superlinear problems.

The notion of time-map arises from simple considerations of phase-
plane analysis for an autonomous equation like

(1.1) u′′ + g(u) = 0

with g continuous. It is well know, see, e.g., [27], that for equation
(1.1) we can write the conservation of the energy

(1.2) H(u, u′) =
1
2
(u′)2 + G(u) = const.,

where G(u) =
∫ u

0
g(t) dt is the potential energy. Under suitable

sign and growth conditions on g, see Section 2.1, in the phase-plane
(x, y) = (u, u′) the level sets of the function H are closed curves
surrounding the origin. According to (1.2), for every α > 0 the time
τ (α; x, y) needed to a solution corresponding to the α2/2 energy-level
to rotate in the phase-plane from a point of abscissa x to a point of
abscissa y is given by

τ (α; x, y) =
∫ y

x

1√
α2 − 2G(s)

ds.
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The function α �→ τ (α; x, y) is called time-map associated to equation
(1.1). According to the boundary conditions that one deals with, a
different choice of x and y is needed in order to describe, by means of
τ , existence (and/or bifurcation) of solutions of the examined boundary
value problem.

The structure of the paper is as follows.

Section 2 is devoted to the definition and main properties of the
time-map and to a survey of the various (classical and more recent)
applications of this notion. In particular, in Section 2.1 we report an
important result contained in the pioneering work of Z. Opial [24],
where the asymptotic behavior of the time-map under a sign condition
only is described (see Theorem 2.3).

In Section 2.2, following the approach of [3], we explain how the time-
map can be used in order to introduce a subset F of R2, called “gen-
eralized Fučik spectrum,” that enables us to characterize the solutions
of (1.1) together with two-point homogeneous boundary conditions

(1.3) u(0) = u(π) = 0

and to prove a classical result for (1.1) (1.3) (see Theorem 2.5) when
g is superlinear, i.e.,

lim
|u|→+∞

g(u)
u

= +∞.

In Section 2.3 we produce a result due to Z. Opial [23], based on the
time-map introduced before, for the existence of solutions of a periodic
problem of the form

(1.4)
{

u′′ + g(u) = p(t)
u(0) − u(T ) = u′(0) − u′(T ) = 0

where the function p is T -periodic (for some T > 0). Afterwards, we
quote the works of several authors, e.g., [6, 7, 10, 13, 22, 26] who, in
more recent years, improved the original result of Z. Opial for problem
(1.4). These papers are based on refined time-map techniques and on
conditions on the nonlinearity g that ensure the “nonresonance” of the
autonomous equation

u′′ + g(u) = 0
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with the classical Fučik spectrum [14].

In Section 2.4 we conclude this brief overview on the use of the time-
map by describing some bifurcation results [28, 30]. In these papers
the point of view is totally different and bifurcation points of a problem
like {

u′′ + f(u) = 0
u(0) = u(λ) = 0

are obtained by the search of critical points of the time-map.

The rest of the paper (Sections 3 to 5) is devoted to the study of a
problem of the form

(1.5)
{

u′′(t) + f(u(t)) = p(t, u(t), u′(t))
u(0) = A, u(π) = B

where f : R → R is continuous and superlinear, p : [0, π] × R2 → R
is continuous and satisfies a linear growth condition in the last two
arguments, and (A, B) ∈ R2.

A problem of this type has been considered in the last few years,
among others, by A. Capietto, J. Mawhin and F. Zanolin (see [3, 4, 5]
and the expository paper [21]) who used topological methods based on
continuation theorems for a coincidence equation of the form

(1.6) Lu = N(u, λ),

with the parameter λ varying in [0, 1], and on the use of a functional ϕ
“evaluated” on the solutions of (1.6).

The idea of using such a functional (which reduces to the winding
number of a curve in some concrete problems) has been recently
developed also by M. Furi and M. P. Pera, see, e.g., [15] and references
therein.

The results in [1, 3, 4, 5] are based on the reduction, through a
suitable homotopy, of problem (1.5) to a simplified problem which can
be studied with classical time-map techniques. In this way, in [5] the
existence of two sequences of solutions of (1.5) with prescribed nodal
properties was proved.

In Section 3, we study autonomous problems of the form

(1.7)
{

u′′(t) + g(u(t)) = 0
u(0) = A, u(π) = B
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by means of a new technique based on the use of the time-map. In
order to study (1.7) we need to introduce three time-maps T1, T2

and T3 that describe the solutions of our problem; more precisely, if
T (α) = (T1(α), T2(α), T3(α)) for some α > 0, we will prove that there
exists a set S ⊂ R3 (S consists of four families of planes) such that (1.7)
has a solution if and only if T (α) ∈ S. This set S is a three-dimensional
variant of the two-dimensional Fučik spectrum [14]. The set S leads to
the consideration of some regions of the space where we can compute
the degree of a suitable map whose zeros correspond to (initial values
of) solutions to problem (1.7). In view of the homotopy used in Section
5, it is useful to pay attention to the section of S with the plane x = z
in R3, which corresponds to the case B = −A. This construction
enables us to reduce (1.5) to an autonomous problem by means of a
homotopy different from the one used in [5]. In that paper, the authors
use a homotopy such that, for λ = 0, the boundary conditions are
homogeneous and the degree associated to the autonomous problem is
always different from zero; here we reduce, for λ = 0, to the boundary
condition

u(0) = A, u(π) = −A

which simplifies the structure of the set S, as above described, even if
we still have to deal with some regions with zero degree (cf. Figure 2).

The technique based on the three time-maps introduced here has
various applications. In this paper we use it for the study of problem
(1.5) (in order to give another proof of the result of [5]) and for the
discussion of the existence of positive solutions for an autonomous
superlinear boundary value problem (see Section 4); we also refer to
the paper [2] where an asymmetric nonlinearity is considered.

In Section 4, using the time-maps introduced in Section 3, we deal
with a problem like

(1.8)
{

u′′ + f(u) = 0
u(0) = tA, u(π) = tB

where t, A and B are positive real numbers and f is a suitable superlin-
ear map. Then (see Theorem 4.1) we prove that there exists t̄ > 0 such
that problem (1.8) has a solution without zeros and with a prescribed
number of maxima if t < t̄. The proof of this result involves a detailed
study of the time-maps Ti(α), i = 1, 2, 3; to do this we have to extend
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to our situation the results of Z. Opial on the asymptotic behavior of
the time-maps (see also Lemma 3.2).

In Section 5 we finally get to the study of the nonautonomous problem
(1.5). Our goal is to obtain the existence of two sequences of solutions,
as in [5]. However, in that paper the existence of two solutions
was proved with a modification of the original functional ϕ. In our
approach, inspired by [1], we do not modify the functional and we
consider a slightly different continuation theorem due to M. Henrard
[16] which enables us to find the two solutions through the successive
application of this theorem to two disjoint open sets, both containing
a solution.

Finally, we point out that in [3, 4, 5] the degree that leads to the
existence of solutions for (1.5) is computed only taking into account the
regions where the degree corresponding to the autonomous problems is
not zero; in our paper, we show that it is possible to reach the result
exploiting also the regions of degree zero (see Lemma 5.9). This method
of computation of the degree seems to be of some use; it is also applied
in the forthcoming paper [2].

2. A survey on some time-map techniques for boundary
value problems. In this section we introduce the notion of time-map
(as in the work of Z. Opial [24]) and we illustrate some applications
to the study of boundary value problems. The aim of the section is to
explain how, in the last years, a very simple tool, the time-map, has
been used in different applications. For others applications and a more
general point of view, we refer to the book [28].

2.1. Definition of time-map and asymptotic properties. Let us start
with an equation of the form

(2.1) u′′ + g(u) = 0

where g : R → R is continuous. Let us set G(u) =
∫ u

0
g(s) ds and

suppose

(2.2) g(u)u > 0, ∀u �= 0

and

(G) lim
|u|→+∞

G(u) = +∞.
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We observe that condition (2.2) implies that the “potential energy”
G is bounded below, so that every Cauchy problem for equation (2.1)
has exactly one global solution.

As in [24], we give the following:

Definition 2.1. We call time-map associated to equation (2.1) the
function

(2.3) τg(α) =
√

2
2

∣∣∣∣
∫ α

0

1√
G(α) − G(s)

ds

∣∣∣∣,

defined for every α ∈ R, α �= 0.

We remark that if we make the weaker hypothesis

lim
|x|→+∞

g(x)sgn (x) = +∞,

then the function τg is defined only for sufficiently large α.

If we write equation (2.1) as an autonomous system, then, under
our assumptions, the solutions are closed curves in the phase-plane
(x, y) = (u, u′) and they lie on the level sets of the energy

H(u, u′) =
1
2
(u′)2 + G(u)

of the system.

For every α ∈ R, α �= 0, the function α �→ τg(α) represents the time
needed to a solution u of energy α2/2, i.e., to a solution such that

H(u, u′) =
1
2
α2,

to rotate, in the upper half-plane if α > 0, in the lower half-plane if
α < 0, from the point (0, α) to the point (C(α), 0), where

G(C(α)) =
1
2
α2, sgn C(α) = sgn α.
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With this notation, the time map (2.3) can also be written as

τg(α) =
∣∣∣∣
∫ C(α)

0

1√
α2 − 2G(s)

ds

∣∣∣∣.

We set, for every α > 0,

τ+
g (α) =

∫ C2(α)

0

1√
α2 − 2G(s)

ds

and

τ−
g (α) =

∫ 0

−C1(α)

1√
α2 − 2G(s)

ds

where C1(α) > 0 and C2(α) > 0 are such that

G(C2(α)) =
1
2
α2 = G(−C1(α)).

In [24], the author proved the following theorems that illustrate the
asymptotic behavior of the time-maps:

Theorem 2.2. If g(u)/u is increasing (decreasing) in (0, +∞), then
τ+
g (α) is decreasing (increasing) for α > 0.

If g(u)/u is decreasing (increasing) in (−∞, 0), then τ−
g (α) is de-

creasing (increasing) for α > 0.

Theorem 2.3. The following relations hold:

(i)

lim
u→±∞

g(u)
u

= k±, 0 ≤ k± ≤ +∞,

=⇒ lim
α→+∞ τ±

g (α) =
π

2
√

k± ;

(ii)

lim
u→0±

g(u)
u

= h±, 0 ≤ h± ≤ +∞,

=⇒ lim
α→0

τ±
g (α) =

π

2
√

h± .
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Remark 2.4. We emphasize that Theorem 2.2 and Theorem 2.3 hold
only under the conditions (2.2) and (G) and that these results are
independent of (possible) boundary conditions associated with equation
(2.1).

2.2. An application to an autonomous Dirichlet problem. Now,
moving away from the papers of Z. Opial, where a periodic problem
was studied, let us consider equation (2.1) together with two-point
homogeneous boundary conditions

(2.4) u(0) = u(π) = 0.

Because of the meaning of the time-map in the phase-plane, it is easy
to check that a solution u(·; α) of the initial value problem

{
u′′ + g(u) = 0
u(0) = 0, u′(0) = α

is a solution of the boundary value problem (2.1) (2.4) if and only if
there exist two integers m, n ∈ N with |m − n| ≤ 1 such that

2mτ+
g (α) + 2nτ−

g (α) = π.

This leads to consideration of the following subset of R2 [4]:

F = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 2mx + 2ny = π

for some integers m, n ∈ N with |m − n| ≤ 1},

called the “generalized Fučik spectrum” for problem (2.1) (2.4). Then
problem (2.1) (2.4) has a solution of energy α2/2 if and only if

(τ+
g (α), τ−

g (α)) ∈ F .

The name “generalized Fučik spectrum” is due to the fact that the set
F reduces to the well-known Fučik spectrum {(µ, ν) ∈ R2 : µ > 0, ν >
0, m/

√
µ + n/

√
ν = 1 for some integers m, n ∈ N with |m − n| ≤ 1}

in the particular case of g(u) = µu+ − νu−, where u+ = max(u, 0),
u− = max(−u, 0) and µ > 0, ν > 0, see [14].
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By means of these considerations we can prove an existence theorem
for problem (2.1) (2.4) with

lim
|u|→+∞

g(u)
u

= +∞,

i.e., a “superlinear” problem. We observe that this superlinear condi-
tion implies that

lim
|u|→+∞

g(u)sgn (u) > 0,

so that the time-maps τ±
g (α) are defined for sufficiently large α.

Since a function u(·; α) is a solution of (2.1) (2.4) if and only if
(τ+

g (α), τ−
g (a)) ∈ F , the solutions of (2.1) (2.4) correspond to the in-

tersections between the lines belonging to the set F and the support of
the curve in R2 defined by

τ : α �−→ (τ+
g (α), τ−

g (α)).

We know that the set F consists of infinitely many straight lines;
moreover, let us denote by Pm(π/(2m), 0) and Qn(0, (π/(2n)) the
intersections of each line with the coordinate axes. Then, the distances
between Pm and O(0, 0) and between Qn and O(0, 0) tend to 0 when
m and n go to infinity. This means that every neighborhood of (0, 0)
in R2 contains infinitely many points of F .

Using Theorem 2.3, in the superlinear case we deduce that

lim
α→+∞ τ+

g (α) = lim
α→+∞ τ−

g (α) = 0.

Thus, the support of the curve τ crosses infinitely many times the set
F before getting to (0, 0). Every intersection gives rise to a solution of
(2.1) (2.4). Thus, we have proved the following classical “phase-plane
analysis” result:

Theorem 2.5. If

lim
|u|→+∞

g(u)
u

= +∞

then problem (2.1) (2.4) has infinitely many solutions. Moreover

lim
|(u,u′)|→+∞

H(u, u′) = +∞.
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The importance of the time-map does not come down to the possi-
bility of proving Theorem 2.5. In the next sections, we will see how
to extend the notion of time-map, in order to prove the existence of
infinitely many solutions for some two-point nonhomogeneous nonau-
tonomous boundary value problems as well.

2.3. An application to a nonautonomous periodic problem. In this
subsection, we present a classical approach [23] to a nonautonomous
periodic problem. The main tool used is the time-map associated to
the autonomous problem and introduced in Section 2.1. We will see
then how the original result of Z. Opial has been improved in more
recent years by several authors, see, e.g., [6, 7, 8, 13, 26].

Let us consider the equation

(2.5) u′′ + g(u) = p(t)

with g : R → R and p : R → R continuous. Let us assume condition
(2.2) and

(2.6) lim
|u|→+∞

g(u) = +∞.

Let us look for T -periodic (for some T > 0) solutions of (2.5), i.e., for
solutions of (2.5) satisfying the boundary conditions

(2.7) u(0) − u(T ) = u′(0) − u′(T ) = 0.

Using the previously defined maps τ+
g (α) and τ−

g (α), we set

τg,+ = lim inf
α→+∞ τ+

g (α)

and

τg,− = lim inf
α→−∞ τ−

g (α).

Thus, the following holds:

Theorem 2.6 [23]. Under hypotheses (2.2) and (2.6), if for some
T0 > 0 and T ′

0 > 0 we have

τg,+ ≥ T0 and τg,− ≥ T ′
0,
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then for every T < T0 +T ′
0 problem (2.5) (2.7) has at least one solution

for every T -periodic function p.

The proof of this result is based on the concept of index of a vector
field with respect to a zero and on the homotopy invariance of this
index. It is meaningful to observe that in the proof the author
reduced the nonautonomous problem to an autonomous one and used
a continuation theorem in order to carry to the starting problem the
results for the autonomous problem. This kind of process is still
used nowadays in order to obtain existence results for problems like
(2.5) (2.7) via topological degree methods. For the complete proof of
Theorem 2.6 we refer to [23]; here we recall only a preparatory lemma
where the properties of the time-maps are used.

Lemma 2.7. Under the hypotheses of Theorem 2.6, if K is an
integral curve of equation (2.5), then for every T < T0 we have

T1 > T/4,

being T1 = b − a, where for every t ∈ [a, b] we have x(t) > 0, y(t) > 0,
(x(t), y(t)) ∈ K.

Proof. We only need to prove the result for a solution (x(t), y(t)) =
(u(t), u′(t)) of (2.5) such that

x(0) = 0, y(T1) = 0, y(t) > 0 ∀ t ∈ [0, T1).

Under these assumptions, the solution x(t) is increasing in [0, T1). If
we denote by t = t(x) its inverse and write p(x) = p(t(x)), then there
exists p > 0 such that

|p(x)| ≤ p ∀x ∈ [0, x0], x0 = x(T1).

With respect to the function y(x) = y(t(x)), we have

y
dy

dx
= −g(x) + p(x), ∀x ∈ [0, x0]

and
−g(x) − p ≤ y(x)y′(x).
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Integrating, we infer

T1 =
∫ x0

0

dx

y(x)
≥ 1√

2

∫ x0

0

dx√
G(x0) − G(x) + p(x − x0)

;

from Theorem 2.3(i) we deduce

lim inf
x0→+∞

1√
2

∫ x0

0

dx√
G(x0) − G(x) + p(x − x0)

= lim inf
x0→+∞

1√
2

∫ x0

0

dx√
G(x0) − G(x)

≥ T0

4
>

T

4
,

and the lemma is proved.

In order to apply Theorem 2.6, conditions are needed that ensure the
validity of the inequalities

τg,+ ≥ T0, τg,− ≥ T ′
0.

Using Theorem 2.3 and some considerations on the asymptotic behavior
of the time-maps, Z. Opial proved the following:

Theorem 2.8 [23]. If the function g satisfies conditions (2.2) and
(2.6) and if

T <
π
√

2√
k

+
π
√

2√
h

where
lim

x→+∞
G(x)
x2

= k, lim
x→−∞

G(x)
x2

= h,

then problem (2.5) (2.7) has a solution for every T -periodic continuous
function p.

Starting from the work of Z. Opial, in more recent years several
authors studied the existence of solutions of periodic boundary value
problems under suitable hypotheses on the nonlinearity. Here, we
present some of these results that improve the original one explained
above.
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In [13], A. Fonda and F. Zanolin, making use of a continuation lemma
based on topological degree arguments, proved the following:

Theorem 2.9. Let τ±
g = lim supα→±∞ τ±

g (α). Assume that

lim
|x|→+∞

g(x)sgn (x) = +∞

and that

τg,− + τ+
g > T(2.8)

or

τg,+ + τ−
g > T.(2.9)

Then problem (2.5) (2.7) has at least one solution for every T -periodic
integrable function p.

As already observed, the crucial point in the applicability of Theorem
2.9 is to verify condition (2.8) or (2.9). In order for (2.8) or (2.9) to
be fulfilled, we have to give some conditions on the nonlinearity g;
in this direction, a lot of papers [22, 29, 31] deal with the so-called
“one-sided growth restrictions.” Following this approach, more recently,
first in [10] and then in [8] in a more general setting, the existence of
solutions of (2.5) (2.7) has been proved under conditions like

(2.10) lim inf
x→+∞

g(x)
x

= 0,
xg′(x)
g(x)

≤ M for x ≥ d > 0

or

(2.11) lim inf
x→+∞

2G(x)
x2

<

(
π

T

)2

.

On the same lines, in [13], the authors proved the following existence
result:

Theorem 2.10. Let us assume

(g(x) − p̄) ≥ 0 for |x| ≥ d, p̄ =
1
T

∫ T

0

p(x) dx



898 W. DAMBROSIO

and

(2.12) lim inf
x→+∞

g(x)
x

= ρ <

(
π

T

)2

.

Let us also suppose that for positive large x the map g(x) − ρx is
nondecreasing. Then problem (2.5) (2.7) has a solution.

Conditions like (2.10), (2.11) or (2.12) guarantee a “nonresonant”
asymptotic behavior of the nonlinearity with respect to the spectrum
specT (−x′′) of the differential operator x �→ −x′′ subject to T -periodic
boundary conditions. The necessity of ensuring such a fact led some
authors to a different approach to (2.5) (2.7), see, e.g., [6, 7, 19, 26].

In [19], the existence of solutions to (2.5) (2.7) was proved under the
nonresonant assumption

(2.13)
ω2j2 < g∗ = lim inf

|x|→+∞
g(x)
x

≤ lim sup
|x|→+∞

g(x)
x

= g∗ < ω2(j + 1)2,

where ω = 2π/T and j ∈ N. In more recent years, in [7] T. Ding and
W. Ding defined the equation

(2.14) u′′ + g(u) = 0

to be asymptotically resonant if

lim
α→+∞ τ+

g (α) =
T

j

for some integer j ∈ N. Under the assumptions

(g1) g globally Lipschitz in R

(g2) g(x)/x ≥ δ > 0 for |x| ≥ d > 0,

they proved that (2.5) (2.7) has a solution if (2.14) is not asymptot-
ically resonant. Again, the problem is to find conditions on g that
ensure (2.14) not to be asymptotically resonant. Sufficient conditions
are given in [7] and [9]. Under assumptions (g1) and (g2), if

[g∗, g∗] ∩ specT (−x′′) �= ∅,
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then (2.14) is not asymptotically resonant. In this situation, assump-
tions (g1) and (g2) cannot be dropped; without these restrictions on g,
in the last few years D. Qian [26] proved the nonasymptotical resonance
of (2.14), assuming

lim sup
|x|→+∞

G(x)
g(x)2

< +∞.

We observe that the last condition is satisfied for instance if g is
asymptotically linear, i.e.,

0 < lim inf
|x|→+∞

g(x)
x

≤ lim sup
|x|→+∞

g(x)
x

< +∞.

2.4. Bifurcation results. Another way of using the concept of time-
map has been developed by several authors; we quote, e.g., the lecture
note by R. Schaaf [28] and its references. This way consists of the
search of critical points of the time-map in order to get bifurcation
results for some differential equations.

More precisely, let us consider the following reaction-diffusion prob-
lem

(2.15)
{

ut = uxx + λ2f(u) λ > 0,
u(t, 0) = u(t, 1) = 0 ∀ t.

In combustion problems, for instance, it is useful to study an equation
of the form

(2.16)
{

u′′(x) + λ2f(u(x)) = 0 λ > 0,
u(0) = u(1) = 0

describing intermediate steady-states of (2.15) for the temperature
distribution u, where λ measures the amount of unburnt substance. In
this context turning points (with respect to the l-direction) of a branch
of solutions, i.e., of a connected component of nontrivial solutions,
correspond to ignition and extinction of the process, and it is important
to know whether they exist or not, see [12]. In order to treat this
situation, the time-map related to (2.16) can be used, see [28].
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First of all, we can make a scaling setting x = λt and obtaining, from
(2.16),

(2.17)
{

u′′(t) + f(u(t)) = 0
u(0) = u(λ) = 0.

Let us suppose that f(0) = 0 and f ′(0) > 0; assume also that

f(u) = uf+(u)

with
f+ : (a−, a+) −→ R+, a− < 0 < a+

locally Lipschitz. If F (u) =
∫ u

0
f(t) dt, b− = −√

2F (a−) and b+ =√
2F (a+), then, using the fact that the energy is conserved, as in

Section 2.1, we can introduce the time-map τ (α), defined for α ∈
(b−, b+), see [28].

Now, (λ, u) is a positive solution of (2.17) if and only if u is a solution
of {

u′′(t) + f(u(t)) = 0
u(0) = 0, u′(0) = α

and
λ = τ (α)

for some α > 0. This means that, in order to study bifurcations of
problem (2.17), we have to know the behavior of the map τ ; more
precisely, bifurcation points of (2.17) correspond to critical values of τ .
In this framework, R. Schaaf proved the following:

Theorem 2.11. Under the previous assumptions, (τ (0), 0) is a
bifurcation point of (2.17) from the trivial solution set u ≡ 0, λ ∈ R+.
Moreover,

τ (0) =
π√
f ′(0)

.

Remark 2.12. The second part of the statement of Theorem 2.11
agrees with Theorem 2.3(ii), in the case where f ′(0) exists.
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2. For the proof of Theorem 2.11 the following integral representation
of τ is used:

(2.18) τ (α) =
∫ π

0

C ′(α sin θ) dθ,

where, as usual, the map C is implicitly defined by

F (C(α)) =
1
2
α2, sgn C(α) = sgn (α).

Using Theorem 2.11, in [28] the author studied problem (2.17) with
f+(u) = e−(u−α)2 , α ≥ 0. It can be meaningful to view problem
(2.17) as the stationary equation for a population of size u diffusing
on [0, 1], which has a hostile environment forcing u(t, 0) = u(t, 1) = 0.
The quantity 1/λ2 can be thought of as the diffusion coefficient of the
population, whereas f+(u) models the reproduction rate, i.e., the birth
rate minus the death rate. The bifurcation diagram for this stationary
equation governs the behavior of the population also for problem (2.15).

From Theorem 2.11, we deduce that (π
√

eα2 , 0) is a bifurcation point
for (2.17). If we let λ∗ = minα≥0 τ (α) > 0, then no nontrivial steady-
state solutions exist for λ < λ∗. For the study of the stability of the
branches of solutions, we refer to [11] and [17].

We end this brief excursus on the use of the time-maps in the study
of bifurcations by illustrating a result of J. Smoller and A. Wasserman
[30] for problem (2.17) with

f(u) = −(u − a)(u − b)(u − c)

where a < b < c. First of all we notice that, in general, f(0) �= 0;
nevertheless, we can define the time-map τ (α) for 0 < α <

√
2F (c). In

[30] the authors proved the following:

Theorem 2.13. If f(u) = −(u− a)(u− b)(u− c) and 0 ≤ a < b < c
or a < 0 ≤ b < c, then the map τ has exactly one critical point (a
minimum). Then problem (2.17) undergoes exactly one bifurcation.

The proof of Theorem 2.13 is based on some estimates on the
derivative of τ , obtained by the use of the integral representation (2.18).
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In order to emphasize the fact that the time-map techniques apply
to various problems, we quote the following result [30] for Neumann
boundary conditions:

Theorem 2.14. Let us consider f(u) = −(u − a)(u − b)(u − c) and
the problem

(2.19)
{

u′′(t) + f(u(t)) = 0
u′(0) = u′(λ) = 0.

Then the time-map associated to (2.19) is monotone, so that bifurcation
never occurs.

3. Time-maps and computation of the degree for Picard
problems. In this section we study the following Picard problem

(3.1)
{

u′′(t) + f(u(t)) = 0
u(0) = A, u(π) = B,

A, B being two real numbers and f : R → R being a continuous
function such that

(H1) f(x)x > 0 for all x �= 0.

As in Section 2.1, we introduce the “potential energy” F (x) =∫ x

0
f(u) du and the “global energy” H(x, y) = y2/2 + F (x). Let us

suppose

(F) lim
|x|→+∞

F (x) = +∞.

For α > 0 we define by Fα the sub-levels of energy α2/2, i.e.,

Fα =
{

(x, y) ∈ R2 : H(x, y) <
1
2
α2

}

and we denote by −C1(α) < 0 and C2(α) > 0 the two solutions of the
equation

F (x) =
1
2
α2,
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see Figure 1. Let Γα be the boundary of Fα. For α big enough we have

(3.2) min{C1(α), C2(α)} > max{|A|, |B|}.

From now on, we shall assume that α is large enough to satisfy condition
(3.2).

Now let us consider a fixed orbit Γα and let us assume, without loss
of generality, that B ≤ A. We define, for each energy level Γα, the
following three time-maps that will enable us to describe the solutions
of energy α2/2. Indeed, we set:

T1(α) =
∫ C2(α)

A

1√
α2 − 2F (s)

ds,

T2(α) =
∫ A

B

1√
α2 − 2F (s)

ds,

T3(α) =
∫ B

−C1(α)

1√
α2 − 2F (s)

ds.

If A < B, analogous definitions can be given by swapping A and B,
T1(α) and T3(α). As already noticed, T1(α) is the time needed by a
solution of energy α2/2 to rotate in the upper half-plane from the point
(A,

√
α2 − 2F (A)) to the point (C2(α), 0). The quantities T2(α) and

T3(α) have a similar meaning. We also remark that the symmetry of
the orbits with respect to the x−axis implies that each Ti(α), i = 1, 2, 3,
is also the time needed for a rotation between the corresponding points
in the half-plane y < 0.

Let P1(A,
√

α2 − 2F (A)) be one of the intersection points between
Γα and the straight line of equation x = A; let u(·; x, y) be the only
solution of the Cauchy problem

(3.3)

⎧⎨
⎩

u′′ + f(u) = 0
u(0) = x

u′(0) = y.

Then we observe that the solution u(·; A,
√

α2 − 2F (A)) of (3.3) is a
solution of (3.1) if and only if there exists an integer m ≥ 1 such that

2mT1(α) + (2m − 1)T2(α) + 2mT3(α) = π
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x B= x A=
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FIGURE 1. Time-maps for Picard problems.

or
2mT1(α) + (2m − 1)T2(α) + 2(m − 1)T3(α) = π.

Likewise, the solution u(·; A,−√
α2 − 2F (A)) of (3.3) is a solution of

(3.1) if and only if there exists an integer m ≥ 0 such that

2mT1(α) + (2m + 1)T2(α) + 2(m + 1)T3(α) = π

or
2mT1(α) + (2m + 1)T2(α) + 2mT3(α) = π.

In the case A < B it is easy to see that we end up to the first two
equations for solutions with u′(0) < 0, to the last two for solutions
with u′(0) > 0.

Now we consider the set S = S1 ∪ S2, where S1 = {(x, y, z) ∈
R3, x > 0, y ≥ 0, z > 0: there exists an m ∈ N such that
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2mx + (2m − 1)y + 2mz = π or 2mx + (2m − 1)y + 2(m − 1)z = π}
and S2 = {(x, y, z) ∈ R3, x > 0, y ≥ 0, z > 0: there exists m ∈ N such
that 2mx+(2m+1)y+2mz = π or 2mx+(2m+1)y+2(m+1)z = π}.
Then, problem (3.1) has a solution of energy α2/2 if and only if for the
triple T (α) = (T1(α), T2(α), T3(α)) we have T (α) ∈ S.

Remark 3.1. We note that in the case A = B, so that T2(α) = 0,
the set S reduces to the set F corresponding to homogeneous Dirichlet
boundary conditions, described in Section 2.2.

For future discussion it is useful to distinguish among the regions of
the space defined by the planes constituting S, the following: S2m+1 =
{(x, y, z) ∈ R3, x > 0, y ≥ 0, z > 0: 2mx + (2m − 1)y + 2mz > π,
2mx + (2m − 1)y + 2(m − 1)z < π, 2mx + (2m + 1)y + 2mz > π,
2(m− 1)x + (2m− 1)y + 2mz < π, m ∈ N} and S2m = {(x, y, z) ∈ R3,
x > 0, y ≥ 0, z > 0 : 2mx+(2m−1)y+2mz < π, 2(m+1)x+(2m+1)y+
2mz > π, 2mx+(2m+1)y+2mz < π, 2mx+(2m+1)y+2(m+1)z > π,
m ∈ N}. The careful reader is invited to draw some of the regions S2m

and S2m+1. In Figure 2, we represent the projection S∗ of the set S
and the projections S∗

n of the regions Sn in the plane x = z (cf. also
Remark 5.5): they correspond to the case f odd and B = −A.

We shall show that in the regions described above some degree
associated to (3.1) is always ±1 (see Theorem 3.7).

Using Theorem 2.3 we can prove the following:

Lemma 3.2. Let f be a continuous function satisfying (H1) and

(H2) lim
|x|→+∞

f(x)
x

= +∞.

Then
lim

α→+∞ T1(α) = lim
α→+∞T2(α) = lim

α→+∞ T3(α) = 0.

Proof. Let us suppose for simplicity 0 ≤ B ≤ A; the other cases are
similar. We start with T2(α), since

T2(α) ≤ A − B√
α2 − 2F (A)

, ∀α � 0,
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FIGURE 2. The set S∗.

the result immediately follows.

Now, for T1(α), let us write

T1(α) =
∫ C2(α)

0

1√
α2 − 2F (s)

ds −
∫ A

0

1√
α2 − 2F (s)

ds

= τ+
f (α) − r1(α).

From Theorem 2.3 we deduce that

lim
α→+∞ τ+

f (α) = 0;

as before, being

r1(α) ≤ A√
α2 − 2F (A)

,
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we have
lim

α→+∞ r1(α) = 0.

Analogously, if we write

T3(α) =
∫ 0

−C1(α)

1√
α2 − 2F (s)

ds +
∫ B

0

1√
α2 − 2F (s)

ds

= τ−
f (α) + r3(α),

the result is immediate.

Using Lemma 3.2, we can prove the following.

Theorem 3.3. Let f : R → R be a continuous function satisfying
(H1) and (H2). Then, for every (A, B) ∈ R2, problem (3.1) has
infinitely many solutions such that

lim
|(u,u′)|→+∞

H(u, u′) = +∞.

Proof. By Lemma 3.2

lim
α→+∞ T (α) = (0, 0, 0).

As in the previous section, if we denote with xi
m, yi

m, zi
m, i = 1, . . . , 4,

the intersections of the four planes belonging to S, for each fixed integer
m, with the coordinate axes, we have:

lim
m→+∞xi

m = lim
m→+∞ yi

m = lim
m→+∞ zi

m = 0, ∀ i.

This means that the distance between these planes and the origin tends
to zero as m goes to infinity.

Then the curve T (α) in the space R3 intersects infinitely many
times the planes constituting S as α goes to infinity; each of these
intersections corresponds to a solution of (3.1).



908 W. DAMBROSIO

Our next step consists of writing problem (3.1) as an abstract equa-
tion of the form

Lx = Nx.

We use the following notations:

M1 =
(

1 0
0 0

)

and

M2 =
(

0 0
1 0

)
.

Let us consider x(t) = (u(t), u′(t)), g : R2 × R2 → R2 defined by
g(z1, z2) = (A, B) and f1(x, y) = (f(x),−y). Now problem (3.1) can
be written as

(3.4)
{

x′(t) + f1(x(t)) = 0
M1x(0) + M2x(π) = g(x(0), x(π))

that reduces to the equation

(3.5) Lx = Nx

where

L : X = C1([0, π],R2) −→ Z = C0([0, π],R2) × R2

x �−→ (x′, M1x(0) + M2x(π))

and Nx = (Fx, g(x(0), x(π))), F being the Nemytskii operator associ-
ated to −f1.

It is well-known, see [20], that L is a Fredholm operator of index zero
and that N is L-completely continuous.

Now we consider the open bounded set of C1([0, π]) defined by

Ωα = {u ∈ C1([0, π]) : (u(t), u′(t)) ∈ Fα, ∀ t ∈ [0, π]}.

If we consider α > 0 such that T (α) /∈ S, then equation (3.5) has no
solution in ∂Ωa, so the degree DL(L − N, Ωα) is well defined.
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In order to compute this degree, let us introduce the following map:

U : R2 −→ R2

U(z1, z2) = (2z1 − A, z2 + u(π; z1, z2) − B)

whose fixed points coincide with the initial values of solutions of the
equation u′′ + f(u) = 0. By a standard procedure, let us define
M = P + J−1QN + KPQN , where P and Q are continuous projectors
on X and Z, J is an isomorphism of ImQ on kerL and KPQ is the
generalized inverse of L, see [20].

We are now in a position to recall the following:

Definition 3.4. Let Ω ⊂ C1 and G ⊂ R2 be bounded open sets; we
say that Ω and G have a common core with respect to (3.1) if there are
neither fixed points of M on ∂Ω nor of U on ∂G, and each solution u
of (3.1) belongs to Ω if and only if (u(0), u′(0)) ∈ G.

Then, using a classical lemma due to Krasnosel’skii, see [18], we have

Lemma 3.5 [3]. If T (α) /∈ S, the following property holds:

DL(L − N, Ωα) = degB(I − U , Fα, 0).

Following the ideas of [3] for Sturm-Liouville homogeneous boundary
conditions, we now have to compute

degB(I − U , Fα) = (−1)2 degB(U − I, Fα)
= degB(U − I, Fα).

Let us denote by D the straight line x = A, and consider the sets

BD = {z2 ∈ R : (A, z2) ∈ Fα}
and

R = {(z1, z2) ∈ R2 : |z1 − A| < R, z2 ∈ BD}
for some R > 0. We set

V(z1, z2) = (U − I)(z1, z2) = (z1 − A, u(π; z1, z2) − B);
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from the condition

V(z1, z2) = 0 =⇒ z1 = A =⇒ (z1, z2) ∈ D

by excision we obtain that

degB(V , Fα, 0) = degB(V ,R, 0).

We consider the following homotopy

h(z, λ) = (z1 − A, Ũ1(λz1, z2)),

where Ũ1(λz1, z2) = u(π; (1−λ)A+λz1, z2)−B, so that h(z, 1) = V(z).
With our choice of R and using the hypothesis T (α) /∈ S, it is easy to
check that the homotopy is admissible, i.e.

h(z, l) �= 0, ∀λ ∈ [0, 1], ∀ z ∈ ∂R.

Now from the homotopy invariance and the multiplicative property of
the degree we have

degB(V ,R, 0) = degB(h(·, 0),R, 0)
= degB((id − A) × φ, (A − R, A + R) × BD, 0)
= degB(id − A, (A − R, A + R), 0) degB(φ, BD, 0)
= degB(φ, BD, 0),

where
φ : R −→ R

ξ �−→ u(π; A, ξ)− B

is the “shooting map.”

From the definition of Fα we have that BD = (−l, l), where l > 0 is
such that

F (A) +
1
2
l2 =

1
2
α2.

In this way we have proved the following:

Theorem 3.6. If α > 0 is such that T (α) /∈ S, then

DL(L − N, Ωα) = degB(φ, (−l, l), 0)
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where
φ : R −→ R

ξ �−→ u(π; A, ξ)− B

and l > 0 is given by
l =

√
α2 − 2F (A).

Let us define σ = sgn (A − B) if A �= B, σ = 1 otherwise.
Then we have (cf. the result in [16] corresponding to Sturm-Liouville
homogeneous boundary conditions):

Theorem 3.7. If T (α) ∈ Sk for some k > 0, then

DL(L − N, Ωα) = σ(−1)k

whereas if T (α) /∈ S ∪ (∪kSk)

DL(L − N, Ωα) = 0.

Proof. It is sufficient to show that degB(φ, (−l, l), 0) = σ(−1)k.
Observe that the degree of φ is given by

degB(φ, (−l, l), 0) =
sgnφ(l) − sgnφ(−l)

2
.

Let k be even and A ≥ B. When T (α) ∈ Sk the function u(·; A, ξ)
meets at least k − 1 times and at most k + 1 times the line x = B;
consequently, the points (u(π; A,±l), u′(π; A,±l)) will be at opposite
sides of x = B and u(π; A,−l) < 0 < u(π; A, l). In other words,
φ(−l) < 0 and φ(l) > 0. Hence, deg(φ) = +1. A completely analogous
argument can be repeated for k odd or A < B.

When T (α) /∈ ∪kSk, the points (u(π; A,±l), u′(π; A,±l)) will be on
the same side of x = B, so degB(φ, (−l, l), 0) = 0.

4. An existence result for an autonomous superlinear prob-
lem. Let us first consider f(u) = u3 and A = B = 0: for the problem

(4.1)
{

u′′ + u3 = 0
u(0) = u(π) = 0
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we have

T1(α) = T3(α) =
√

2
∫ 4√

2α2

0

1√
2α2 − s4

ds = τ±
f (α)

and
T2(α) ≡ 0.

We observe that the numbers τ±
f (α) are defined for each α > 0. By

Lemma 3.2 and Theorem 2.3 (ii),

lim
α→+∞ T1(α) = lim

α→+∞T3(α) = 0

and

lim
α→0+

T1(α) = lim
α→0+

T3(α) = +∞ :

hence there exists ᾱ > 0 such that

T1(ᾱ) = T3(ᾱ) =
π

2
.

Then, for such ᾱ, we have a solution ū of (4.1), with

1
2
(ū′)2 + F (ū) =

1
2
ᾱ2,

and with no zeros in (0, π), i.e., a positive solution of (4.1).

Starting from this observation, the aim of this section is to prove that
if we consider a more general problem as

(4.2)
{

u′′ + f(u) = 0
u(0) = A, u(π) = B

with a suitable choice of f , then, depending on the values of A and B,
a solution with no zeros in (0, π) can either exist or not exist.

We prove our result in the case where A ≥ B ≥ 0, the case B ≥ A ≥ 0
being similar. Let us fix a pair (A, B) with A ≥ B ≥ 0; let us take
t > 0 as a parameter and consider the problem

{
u′′ + f(u) = 0
u(0) = tA, u(π) = tB.
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Then, we have the following:

Theorem 4.1. Let us consider f : R → R odd, continuous,
satisfying hypothesis (H1) and such that

lim
|x|→+∞

f(x)
x

= +∞, lim
x→0

f(x)
x

= 0

and
d

dx

(
f(x)

x

)
> 0, ∀x > 0.

Then there exist t̃ > t̄ > 0 such that if t < t̄ then one of the solutions
of problem (4.3) is decreasing in (0, π) and one has no zeros in (0, π)
and has exactly one global maximum. If t ≥ t̃, then all the solutions of
(4.3) have at least one zero in (0, π).

Remark 4.2. We recall that for every t problem (4.3) always has
infinitely many solutions, see Theorem 3.3.

Proof. We give the proof in the case of f(u) = u3; we leave to the
reader the details of the general case.

For problem (4.3), we have the three time-maps

T1(α) =
√

2
∫ 4√

2α2

tA

1√
2α2 − s4

ds,

T2(α) =
√

2
∫ tA

tB

1√
2α2 − s4

ds

and

T3(α) =
√

2
∫ tB

− 4√
2α2

1√
2α2 − s4

ds,

that are defined if 4
√

2α2 > tA, i.e., α > α0 = t2A2/
√

2, see condition
(3.2). Problem (4.3) has a solution without zeros in (0, π) if and only
if

(4.4) 2T1(α) + T2(α) = π
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or

(4.5) T2(α) = π

for some α > 0. Let us start with the study of the function T2. By
Lemma 3.2 we have

lim
α→+∞T2(α) = 0;

moreover, T2 is a decreasing function and

lim
α→α0

T2(α) =
√

2
∫ tA

tB

1√
2α2

0 − s4
ds

=
√

2
∫ tA

tB

1√
t4A4 − s4

ds

= τ+

(
t2A2

√
2

)
−
√

2
∫ tB

0

1√
t4A4 − s4

ds

= σ(t).

Then, in order to solve equation (4.5), we have to know the value σ(t).

If σ(t) ≤ π, then (4.5) has no solutions; if σ(t) > π it has exactly one
solution.

We have

σ(t) ≤ τ+

(
t2A2

√
2

)
−→ 0 if t → +∞;

moreover,

σ(t) =
√

2
∫ tA

tB

1√
t4A4 − s4

ds

≥
√

2
t(A − B)

t2
√

A4 − B4
−→ +∞ if t → 0+.

Then there exists a finite number of points ti > 0 such that σ(ti) = π;
if t̄ = min ti and t̃ = max ti, the result is proved.

Now, let us denote by

T̃ (α) = 2T1(α) + T2(α).
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We have
lim

α→+∞ T̃ (α) = 0

and

lim
α→α0

T̃ (α) = lim
α→α0

2
√

2
∫ 4√

2α2

tA

1√
2α2 − s4

ds + σ(t)

= 2
√

2
∫ 4

√
2α2

0

tA

1√
2α2

0 − s4
ds + σ(t)

= σ(t),

because 4
√

2α2
0 = tA. Again, we can conclude that (4.4) has a solution

if 0 < t < t̄ and has no solution if t > t̃.

5. An application to nonautonomous superlinear problems.
Now we will use the computation of the degree developed at the end of
Section 3 to prove the existence of solutions to the problem

(5.1)
{

u′′(t) + f(u(t)) = p(t, u(t), u′(t))
u(0) = A, u(π) = B

when (A, B) ∈ R2, f : R → R is continuous and satisfies (H1) and
(H2), and p : [0, π]×R2 → R is continuous and satisfies a linear growth
condition in the last two arguments, i.e., there exists K > 0 such that

(5.2) |p(t, x, y)| ≤ K(1 + |x| + |y|) ∀ (t, x, y) ∈ [0, π] × R2.

We will deal with problem (5.1) using the homotopy

(5.3)
{

u′′(t) + h(u(t), λ) = λp(t, u(t), u′(t))
u(0) = A, u(π) = λB − (1 − λ)A, λ ∈ [0, 1],

where we set

h(u, λ) = λf(u) + (1 − λ)g(u), λ ∈ [0, 1]

with g : R → R odd, continuous and satisfying (H1), (H2) and

(H3)
d

dx

(
g(x)
x

)
> 0, ∀x > 0.
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Then for λ = 1, (5.3) gives the original problem, and for λ = 0 we are
led to study the autonomous problem

(5.4)
{

u′′(t) + g(u(t)) = 0
u(0) = A, u(π) = −A.

As in Section 3, problem (5.3) can easily be written as an abstract
equation of the form

Lu = N(u, λ)

with respect to the spaces X = C1([0, π],R2) and Z = C0([0, π],R2)×
R2, setting

Lu = (u′, M1u(0) + M2u(π)),
N(u, λ) = (l(·, u, u′, λ), A, λB − (1 − λ)A)

where
l(t, x, y, λ) = h(x, λ) − λp(t, x, y).

In order to find solutions of problem (5.3), we need to apply a contin-
uation theorem that we are now going to introduce.

Let X and Z be real Banach spaces, L : D(L) ⊂ X → Z a linear
Fredholm mapping of index zero, I = [0, 1] and N : X × I → Z an
L-completely continuous operator. We consider the equation

(5.5) Lu = N(u, λ), u ∈ D(L), λ ∈ I.

Let
Σ∗ = {(u, λ) ∈ D(L) × I : Lu = N(u, λ)}.

For any set B ∈ X × I and any λ ∈ I, we denote by Bλ the section
{u ∈ X : (u, λ) ∈ B}. Let us consider a continuous functional
ϕ : X × I → R+; let Ω be an open set in X × I and (ck)k∈N be an
unbounded increasing sequence that satisfies the following conditions:

(i4) There exists R > 0 such that ϕ(u, λ) �= ck for all k ∈ N and
(u, λ) ∈ Σ∗ with ||u|| ≥ R.

(i5) ϕ−1([0, cn)) ∩ Σ∗ is bounded for each n ∈ N.

Let k0 be an integer such that

(5.6) ck0 > sup{ϕ(u, λ) : (u, λ) ∈ Σ∗, ||u|| ≤ R}.
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For k ≥ k0, let Ok = ϕ−1((ck, ck+1)) ∩ Ω and Σk = Ōk ∩ Σ∗.

Let us assume that

(i6) DL(L − N(·, 0), Ok
0 ) �= 0.

Thus, we have [16] the following result:

Theorem 5.1. Assume that conditions (i4) and (i5) hold and
that (i6) is satisfied for each integer k > k0. Then, for each of
those integers, equation (5.5) has at least one solution uk such that
ϕ(uk, 1) ∈ (ck, ck+1). Moreover, limj→+∞ ||uj || = +∞.

Consistently with the notation introduced, we denote by Σ∗ ⊂ X × I
the set of the solutions of the boundary value problem (5.3). In view
of applying Theorem 5.1, we shall introduce a functional ϕ as follows.

Let

δ : R2 −→ R, (x, y) �−→ min
{

1,
1

x2 + y2

}
.

Then we define the continuous functional ϕ on X × I by

ϕ(u, λ)

=
1
π

∣∣∣∣
∫ π

0

[u′(t)2 + u(t)l(t, u(t), u′(t), λ)]δ(u(t), u′(t)) dt

∣∣∣∣.
Using the computations in [5], we can prove the following:

Lemma 5.2. There exists R0 > 1 such that for every (u, λ) ∈ Σ∗

there exists n ∈ N satisfying

u(t)2 + u′(t)2 ≥ R2
0 =⇒ |ϕ(u, λ) − (n + 1)| <

1
4
.

Remark 5.3. As far as solutions of (5.3) with sufficiently large norm
are concerned, we first observe that all the zeros of such solutions are
simple.

Secondly, we note that the argument in [5] leading to Lemma 5.2
shows that if we consider the zeros of u starting from the first zero a1
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such that u′(0)u′(a1) < 0 up to the last zero b1 such that u′(b1)u′(π) <
0, then their cardinality is exactly n.

Now, in order to prove the main result of this section, let us consider
the following:

Lemma 5.4. Let u be a solution of (5.4) with u(t)2 + u′(t)2 ≥ R2
0

for each t ∈ [0, π]; then

|ϕ(u, 0) − k| <
1
4

if and only if u = uk or u = ũk, where uk and ũk are the solutions of
the Cauchy problems

(5.7)

⎧⎨
⎩

u′′ + g(u) = 0
u(0) = A

u′(0) =
√

(α1,k)2 − 2F (A)

and ⎧⎨
⎩

u′′ + g(u) = 0
u(0) = A

u′(0) = −√
(α2,k)2 − 2F (A)

(respectively) with, for k even (k = 2m):

4mT1(α1,k) + (2m − 1)T2(α1,k) = π,

2mT1(α2,k) + (2m − 1)T2(α2,k) = π

and for k odd (k = 2m − 1):

α1,k = α2,k,

2(2m − 1)T1(α1,k) + (2m − 1)T2(α2,k) = π.

Proof. We prove the result only for A ≥ 0 and u′(0) > 0, problem
(5.7). The other cases are similar.

Let uk be the solution of (5.7). This means that uk is a solution of
u′′ + g(u) = 0 with energy (α1,k)2/2. By the definition of α1,k, the
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solution uk has exactly k zeros in (0, π) if k is odd, k− 1 zeros in (0, π)
if k is even. Lemma 5.2 and Remark 5.3 show that in both cases

|ϕ(uk, 0) − k| <
1
4
.

Now, conversely, let us consider a solution of (5.4) with

|ϕ(u, 0) − k| <
1
4

and u′(0) > 0.

An easy argument proves that u must be the solution uk of (5.7); in
fact, let us distinguish two cases.

Case 1. k odd. u must have at least k − 1 zeros in (0, π). The
conditions u′(0)u′(a1) < 0 and u′(b1)u′(π) < 0 imply that u′(a1) < 0,
u′(b1) > 0 and u′(π) < 0. So there must be another zero of u in (b1, π).

Then u has k zeros in (0, π) and it is u′(π) < 0. But the only solution
of (5.4) with these properties is uk.

Case 2. k even. u has exactly k − 1 zeros in (0, π) and u′(π) > 0.
Again, we can conclude that u = uk.

Remark 5.5. We resume the nodal properties of uk and ũk:

number of zeros of uk in (0, π) number of zeros of ũk in (0, π)
k even k − 1 k + 1
k odd k k

We also observe that for k even we have

(T1(α1,k), T2(α1,k)) ∈ bk,

(T1(α2,k), T2(α2,k)) ∈ ck

and for k odd

(T1(αi,k), T2(αi,k)) ∈ ak, i = 1, 2,
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where ak, bk, ck are the straight lines in the plane (x, y) of equation:

ak : 2kx + ky = π;
bk : 2kx + (k − 1)y = π;
ck : kx + (k − 1)y = π

(these lines constitute the projection S∗ of the set S in the plane x = z).
For each integer m, let us consider the projections S∗

2m+1 and S∗
2m of

the regions S2m+1 and S2m+1 in the plane x = z, cf. Section 3:

S∗
2m+1 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0,

2(2m − 1)x + (2m − 1)y < π < 4mx + (2m − 1)y},
S∗

2m = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0,

4mx + (2m + 1)y < π < 2(2m + 1)x + (2m + 1)y};
finally, let us set

S∗
0,m = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0,

4mx + (2m − 1)y < π < 4mx + (2m + 1)y};
these regions of the plane (see Figure 2) will be useful for the compu-
tation of the degree, cf. Lemma 5.9.

The functional ϕ defined above satisfies some classical properties
already proved in [4] for homogeneous boundary conditions. For
brevity, we omit the proof of the following two lemmas, which are the
straightforward variants of such results.

Lemma 5.6 (The “elastic property”). For each R1 > 0 there is and
R2 ≥ R1 such that, for each (u, λ) ∈ Σ∗, we have

‖u‖1,∞ ≥ R2 =⇒ |u(t)|2 + |u′(t)|2 ≥ R2
1,

∀ t ∈ [0, π].

Lemma 5.7 (Fast oscillations of large solutions). For each N > 0
there is an R1(N) > 0 such that for all (u, λ) ∈ Σ∗

min
t∈[0,π]

|u(t)|2 + |u′(t)|2 ≥ R2
1(N) =⇒ |ϕ(u, l)| ≥ N.
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From the previous lemmas we obtain the following:

Proposition 5.8. The functional ϕ satisfies (i4) and (i5) of Theo-
rem 5.1 with respect to the sequence (ck)k∈N, with ck = k − 1/2.

Let k0 be as in the proof of Proposition 5.8, see [5]. As an application
of Lemma 5.7 with N = k0, we know that there is a constant d > 0
such that, for all (u, λ) ∈ Σ∗

u′(0) > d =⇒ ϕ(u, λ) > k0.

Now we consider

Ω+ = {(u, λ) ∈ X × I | u′(0) > d},
Ω− = {(u, λ) ∈ X × I | u′(0) < −d},

and we define
Ok = ϕ−1((ck, ck+1)),
Ok

+ = ϕ−1((ck, ck+1)) ∩ Ω+,

Ok
− = ϕ−1((ck, ck+1)) ∩ Ω−.

With these assumptions we can prove the following:

Lemma 5.9. For any k ∈ N with k > k0,

|DL(L − N(·, 0), (Ok
+)0)| �= 0

and

|DL(L − N(·, 0), (Ok
−)0)| �= 0.

Proof. First of all we observe that the constant k0 satisfies condition
(5.6) of Theorem 5.1, cf. [5].

Now let k > k0 and consider the set Σk = Ōk ∩ Σ∗ = Ok ∩ Σ∗, by
(i4). Then (Σk)0 is the set of the solutions of (5.4) such that

(5.8) k − 1/2 < ϕ(u, 0) < k + 1/2.
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By Lemma 5.4 we see that

(Σk)0 = {uk, ũk}, for each k ∈ N, k > k0.

Now we distinguish two cases:

Case 1. k even (k = 2m). We consider the open sets

Ωγ+
k

β+
k

= {u ∈ X | β+
k

2
< u′(t)2 + 2F (u(t)) < γ+

k

2
, ∀ t ∈ [0, π]}

and

Ωγ−
k

β−
k

= {u ∈ X | β−
k

2
< u′(t)2 + 2F (u(t)) < γ−

k

2
, ∀ t ∈ [0, π]}

with
γ+

k = α1,k + εk, β+
k = α1,k − εk,

γ−
k = α2,k + εk, β−

k = α2,k − εk

where εk is small enough to satisfy the following conditions:

(Σk)0 ⊂ (Ωγ+
k

β+
k

∪ Ωγ−
k

β−
k

) ⊂ Ωγ+
k

β+
k

∪ Ωγ−
k

β−
k

⊂ (Ok)0 (we observe that it is

ensured by the continuity of the functional ϕ);

T (γ+
k ) ∈ S∗

0,m, T (β+
k ) ∈ S∗

2m+1, T (γ−
k ) ∈ S∗

2m and T (β−
k ) ∈ S∗

0,m−1,
see Remark 5.5, (we observe that these conditions are valid by the
continuity of T (·)).

By Theorem 3.7 and by the excision property of the degree we can
conclude that

DL(L − N(·, 0), (Ok)0) = DL(L − N(·, 0), Ωγ+
k

β+
k

∪ Ωγ−
k

β−
k

) = 2σ,

where σ is defined in Section 3.

Now, by the additivity/excision property of the degree again, we have

DL(L − N(·, 0), (Ok
+)0) = DL(L − N(·, 0), (Ok

−)0) = σ.

Case 2. k odd (k = 2m + 1). We consider the open set

Ωγk

βk
= {u ∈ X | βk

2 < u′(t)2 + 2F (u(t)) < γk
2, ∀ t ∈ [0, π]}
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with γk = α1,k + εk and βk = α1,k − εk where εk is small enough to
satisfy the following conditions:

(Σk)0 ⊂ Ωγk

βk
⊂ Ω̄γk

βk
⊂ (Ok)0;

T (γk) ∈ S∗
2m+3 and T (βk) ∈ S∗

2m, see Remark 5.5.

Then we can conclude that

(5.9) DL(L − N(·, 0), (Ok)0) = DL(L − N(·, 0), Ωγk

βk
) = −2σ.

Now, using the fact that the degree in (5.9) reduces to the Brouwer
degree of a one-dimensional map, see Section 3, and the fact that the
solutions uk and ũk belong to Ok

+ and Ok
−, respectively, we see that

DL(L − N(·, 0), (Ok
+)0) = −σ

and

DL(L − N(·, 0), (Ok
−)0) = −σ.

Remark 5.10. In the article [4], A. Capietto, J. Mawhin and F.
Zanolin obtained that DL(L − N0, O

k) = 2(−1)k. Then, in the paper
[5] they obtained the final computation of the degree by means of a
slight modification of the functional ϕ. Here we follow the idea already
exploited by A. Capietto in [1] of considering the original functional
and of breaking the set Ok using the sign of the derivative of u in 0.

Now we are in a position to apply Theorem 5.1 to Ok
+ and Ok

−
separately. We will find two sequences of solutions of (5.1) that belong
to Ω+ and to Ω−. This is exactly the result proved in [5]; however, it
is obtained with a different homotopy and by using a refinement of the
continuation theorem in [3].

Theorem 5.11. Let f and p satisfy (H2) and (5.2), respectively.
Then there is a k0 ∈ N such that, for each n > k0, the boundary value
problem (5.1) has at least two solutions vn and wn with v′n(0) > 0 and
w′

n(0) < 0 such that

(5.10) lim
n→+∞( min

t∈[0,π]
|vn(t)| + |v′n(t)|)

= lim
n→+∞( min

t∈[0,π]
|wn(t)| + |w′

n(t)|) = +∞.
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These solutions have the following nodal properties:

For n odd, v′n(π) < 0 and, moreover, vn has exactly n + 1 zeros in
[0, π] if A ≤ 0 and B ≤ 0; vn has exactly n zeros in [0, π] if A ≤ 0 and
B > 0 or if A > 0 and B ≤ 0; vn has exactly n − 1 zeros in [0, π] if
A > 0 and B > 0.

For n even, v′n(π) > 0 and, moreover, vn has exactly n + 1 zeros in
[0, π] if A ≤ 0 and B ≥ 0; vn has exactly n zeros in [0, π] if A ≤ 0 and
B < 0 or if A > 0 and B ≥ 0; vn has exactly n − 1 zeros in [0, π] if
A > 0 and B < 0.

For n odd, w′
n(π) < 0 and, moreover, wn has exactly n + 1 zeros in

[0, π] if A ≥ 0 and B ≥ 0; wn has exactly n zeros in [0, π] if A ≥ 0 and
B < 0 or if A < 0 and B ≥ 0; wn has exactly n − 1 zeros in [0, π] if
A < 0 and B < 0.

For n odd, w′
n(π) < 0 and, moreover, wn has exactly n + 1 zeros in

[0, π] if A ≥ 0 and B ≤ 0; wn has exactly n zeros in [0, π] if A ≥ 0 and
B > 0 or if A < 0 and B ≤ 0; wn has exactly n − 1 zeros in [0, π] if
A < 0 and B > 0.

All the zeros of vn and wnare simple and all the local maxima or
minima of vn and wn are strict. Between any two consecutive zeros of
a solution, as well as between 0 and the first zero or between the last
zero and π, there is only one critical point of the solution.

Proof. The existence of the sequences of solutions to (5.1) with

(5.11) lim
n→+∞ ||vn|| = lim

n→+∞ ||wn|| = +∞
follows directly from Theorem 5.1.

The elastic property yields (5.10) from (5.11).

For the discussion of the nodal properties, see [5].
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10 - 10123 Torino, Italy
E-mail address: dambrosio@unito.it


