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COINCIDENCE PRINCIPLES AND
FIXED POINT THEORY FOR

MAPPINGS IN LOCALLY CONVEX SPACES

DONAL O’REGAN

ABSTRACT. We present a coincidence principle for con-
centrative maps. This leads to new fixed point theory for
nonlinear operators.

1. Introduction. A general coincidence theory is presented for
concentrative mappings between locally convex Hausdorff linear topo-
logical spaces in this paper. These general results are used to obtain
a variety of new fixed point theorems for the sum of two operators,
for example, an m-accretive plus a condensing operator, between Ba-
nach spaces (one could also obtain results for operators between locally
convex Hausdorff linear topological spaces). The fixed point results
were motivated from a variety of sources, in particular we mention the
work of Browder [4], Danes̆ [7], Furi and Pera [14], Gatica and Kirk
[15], Granas [16], Petryshyn [25], Precup [26], Reinermann [27] and
Schöneberg [28]. Some applications of our results are also presented in
this paper.

For the remainder of this section we gather together some definitions
and some known facts. Let (E, d) be a pseudometric space [18] and
M a subset of E. For x ∈ M , let B(x, ε) denote the closed ε-ball
with center x, i.e., B(x, ε) = {y ∈ E : d(x, y) ≤ ε}. The measure of
noncompactness of the set M is defined by

α(M) = inf Q(M); inf(∅) = ∞,

where

Q(M) = {ε ∈ R : ε > 0 and there is a finite ε-net for M in E

i.e., M ⊆ B(A, ε) for some finite subset A of E}.

Note B(A, ε) = {x ∈ E : inf{d(x, y) : y ∈ A} ≤ ε}.
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Recall [7, 8] that if (E, d) is a pseudo metric space and M, N are
subsets of E, then

(i) M is bounded if and only if α(M) < ∞,

(ii) M is precompact (totally bounded) if and only if α(M) = 0,

(iii) if M ⊆ N , then α(M) ≤ α(N),

(iv) α(M ∪ N) = max{α(M), α(N)}.
In addition, if (E, ‖ · ‖) is a pseudo normed (semi-normed) space and

M is a subset of E, then α(co (M)) = α(M).

Now let E be a locally convex Hausdorff linear topological space, and
let P be a defining system [7, 8, 14, 29] of semi-norms on E. Let C
be a subset of E. A map f : C → E is said to be a P -concentrative
mapping if f is continuous and if p ∈ P and M is a bounded non-
p-precompact subset of C, i.e., if M is not precompact in the pseudo
normed space (E, p), then

αp(f(M)) < αp(M)

where αp(·) denotes the measure of noncompactness in the pseudo
normed space (E, p). A map f : C → E is called a 1-mcL mapping
[8] if f maps bounded sets into bounded sets and if p ∈ P , we have
αp(f(M)) ≤ αp(M) for any subset M of C.

We now state Danes̆ fixed point theorem [7, 8].

Theorem 1.1. Let E be a locally convex Hausdorff linear topological
space and C a nonempty complete convex subset of E. Let P be a
defining system of semi-norms and f : C → C a P -concentrative
mapping. In addition, assume f is bounded, i.e., f(C) is a subset
of a bounded set in C. Then f has a fixed point.

Let us now restrict the above discussion to the case when E is a
Banach space. Let ΩE be the bounded subsets of E. The Kuratowskii
measure of noncompactness is the map α : ΩE → [0,∞) defined by

α(X) = inf
{

ε > 0 : X ⊆
n⋃

i=1

Xi, diam (Xi) ≤ ε

}
;

here X ∈ ΩE . Of course, if S, T ∈ ΩE , then
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(i) α(S) = 0 if and only if S is compact.

(ii) α(S) = α(S).

(iii) If S ⊆ T , then α(S) ≤ α(T ).

(iv) α(co (S)) = α(S).

(v) α(T + S) ≤ α(T ) + α(S).

Let B1 and B2 be two Banach spaces, and let F : Y ⊆ B1 → B2

be continuous and map bounded sets into bounded sets. We call F an
α-Lipschitzian map if F is continuous, bounded and there is a constant
k ≥ 0 with α(F (X)) ≤ kα(X) for all bounded sets X ⊆ Y . We call F a
condensing map if F is α-Lipschitzian with k = 1 and α(F (X)) < α(X)
for all bounded sets X ⊆ Y with α(X) 	= 0.

We now state Sadovskii fixed point theorem [1, 2, 23, 30].

Theorem 1.2. Let C be a closed convex subset of a Banach space B
and F : C → C a condensing map. Then F has a fixed point.

Next we recall some results [21] about the measure of noncompactness
of subsets in C([0, 1], B) and C1([0, 1], B); here B is a Banach space.

Theorem 1.3. If H ⊆ C([0, 1], B) is a bounded and equicontinuous
set, then α(H) = α(H(I)) = supt∈I α(H(t)); here I = [0, 1].

Remark. Here H(t) = {φ(t) : φ ∈ H} and H(I) = ∪t∈I{φ(t) : φ ∈
H}.

Theorem 1.4. Let A be a bounded subset of C1([0, 1], B). Suppose
A′ = {φ′ : φ ∈ A} is an equicontinuous set. Then

α(A) = max
{

sup
t∈I

α(A(t)), sup
t∈I

α(A′(t))
}
.

Remark. Here A′(t) = {φ′(t) : φ ∈ A}.

Theorem 1.5. Let A ⊆ C1([0, 1], B) be bounded. Then α(A) ≥
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α(A(I)).

Let B be a real Banach space, and let B∗ denote the dual of B.
Notice from the Hahn-Banach theorem that

{x∗ ∈ B∗ : x∗(x) = ‖x‖2, ‖x∗‖ = ‖x‖} 	= ∅

for every x ∈ B. The mapping F : B → 2B∗
defined by

F (x) = {x∗ ∈ B∗ : x∗(x) = ‖x‖2 = ‖x∗‖2}

is called the duality map [4, 10, 21] of B. By means of F , the semi-
inner product (., .)+ : B × B → R, is defined by

(x, y)+ = sup{y∗(x) : y∗ ∈ F (y)}.

Let Ω ⊆ B. A mapping T : Ω → B is said to be

(i) strongly accretive if, for some c > 0,

(1.1) (T (x) − T (y), x − y)+ ≥ c‖x − y‖2 for all x, y ∈ Ω;

(ii) accretive if

(T (x) − T (y), x − y)+ ≥ 0 for all x, y ∈ Ω

(iii) m-accretive if T is accretive and I + µT is onto B for some
(equivalently for all) µ > 0.

Recall [1, 11] that, if T : Ω → b is m-accretive, then the mapping
(I + µT )−1 : B → Ω is nonexpansive for each µ > 0.

Theorem 1.6 [1, 21]. Let B be a real Banach space and T a
continuous, everywhere defined, accretive map. Then T is m-accretive.

Theorem 1.7 [10]. Let B be a real Banach space and T : B → B a
continuous and strongly accretive map, i.e., (1.1) holds for some c > 0.
Then T is a homeomorphism from B onto B. Also T−1 : B → B is a
Lipschitz map with Lipschitz constant 1/c.
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Finally we state three standard results in functional analysis which
will be used in Sections 2 and 3.

Theorem 1.8 [20]. Every topological Hausdorff linear space is
Tychonoff (T3 1

2
).

Theorem 1.9 [13]. If A is a compact subset of a Tychonoff space X,
then, for every closed set D disjoint from A, there exists a continuous
function µ : X → [0, 1] such that µ(x) = 1 for x ∈ A and µ(x) = 0 for
x ∈ D.

Theorem 1.10 [3]. Let B be a uniformly convex Banach space whose
dual B∗ is also uniformly convex and T : B → B. Suppose I − T is
a continuous accretive mapping defined on all of B. Then I − T is
demi-closed on X.

Remark. A mapping T : Ω ⊆ B → B is called demi-closed on Ω if,
for every sequence {xn} ∈ Ω with xn ⇀ x and T (xn) → y as n → ∞,
we have x ∈ Ω and T (x) = y; here ⇀ denotes weak convergence.

2. General coincidence theory. We formulate a coincidence
theorem when E is a locally convex Hausdorff linear topological space.
Let C be a complete convex subset of E, X ⊆ C and A ⊆ X with
A closed in X and X closed in C. As in Section 1, let P be the
defining system of semi-norms on E. Also L : X → C is a continuous
operator. In the literature coincidence theory of the type formulated
here, Granas, see [17], presented the case when E is a Banach space
and the operator F : X → C is compact.

K0(X, C) will denote the set of all continuous, compact mappings
F : X → C. Associated with K0(X, C) we will assume that L satisfies
the following condition:

(2.1) L−1(Ω) is precompact in E for every compact subset Ω of C.

Remark. Here L−1 denotes the inverse image.
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K1(X, C) will denote the set of all (continuous) P -concentrative
mappings F : X → C with F (X) a subset of a bounded set in C.
Associated with K1(X, C) we will assume that L satisfies the following
condition:

(2.2)

⎧⎨
⎩

L−1 takes bounded sets into bounded sets, and
if W is a bounded non-p-precompact subset of X,

then αp(L(W )) ≥ αp(W ).

Remark. If L is one-to-one and L−1 is a 1-mcL mapping, then (2.2)
is satisfied since αp(W ) = αp(L−1(L(W ))) ≤ αp(L(W )).

Definition 2.1. We let K0
A(X, C; L), respectively K1

A(X, C; L),
denote the set of all mappings F ∈ K0(X, C), respectively F ∈
K1(X, C), such that L − F is zero free on A.

We call N : X× [0, 1] → C a compact mapping if N is continuous and
N(X × [0, 1]) is relatively compact. We call N : X × [0, 1] → C a P -
concentrative mapping if N is continuous, N(X× [0, 1]) is a subset of a
bounded set in C, and if p ∈ P and W is a bounded non-p-precompact
subset of X × [0, 1], i.e., αp(πW ) 	= 0, then

αp(N(W )) < αp(πW )

where π : X × [0, 1] → X is the natural projection.

Remark. If W is a non-p-precompact subset (product topology
(E, p) × real) of X × [0, 1], then πW is a non-p-precompact subset
of X so αp(πW ) 	= 0.

Definition 2.2. A map F ∈ K0
A(X, C; L), respectively F ∈

K1
A(X, C; L), is L-essential if, for every G ∈ K0

A(X, C; L), respectively
G ∈ K1

A(X, C; L), which agrees with F on A, we have that L − G
has a zero in X. Otherwise, F is L-inessential, i.e., there exists a
G ∈ K0

A(X, C; L), respectively G ∈ K1
A(X, C; L), which agrees with F

on A and L − G is zero free on X.
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Definition 2.3. Two mappings F, G ∈ K0
A(X, C; L), respec-

tively F, G ∈ K1
A(X, C; L), are homotopic in K0

A(X, C; L), respectively
K1

A(X, C; L), written F ∼= G in K0
A(X, C; L), respectively K1

A(X, C; L)
if there is a continuous, compact mapping, respectively a bounded P -
concentrative mapping, N : X × [0, 1] → C with Nt(u) = N(u, t) :
X → C belonging to K0

A(X, C; L), respectively K1
A(X, C; L), for each

t ∈ [0, 1] and N0 = F , N1 = G.

Remark. Notice ∼= is an equivalence relation in K0
A(X, C; L), respec-

tively K1
A(X, C; L).

Theorem 2.1. Let C, X, A and E be as above.

(a) Assume L : X → C is continuous and satisfies (2.1) and that
F ∈ K0

A(X, C; L). Then the following are equivalent:

(i) F is L-inessential.

(ii) There is a G ∈ K0
A(X, C; L) with F ∼= G in K0

A(X, C; L) and
with L − G zero free on X.

(b) Assume L : X → C is continuous and satisfies (2.2) and that
F ∈ K1

A(X, C; L). Then the following are equivalent:

(i) F is L-inessential.

(ii) There is a G ∈ K1
A(X, C; L) with F ∼= G in K1

A(X, C; L) and
with L − G zero free on X.

Proof. We first show (i) implies (ii), in both case (a) and (b). Let
G ∈ K0

A(X, C; L), respectively G ∈ K1
A(X, C; L), with G = F on A

and L − G zero free on X. Define N : X × [0, 1] → C by

N(x, t) = tG(x) + (1 − t)F (x).

Clearly N is continuous.

Case (a). Suppose F, G ∈ K0
A(X, C; L).

Then clearly N : X× [0, 1] → C is a compact map. Also, since F = G
on A and L − G is zero free on X, we have for x ∈ A that

L(x) − Nt(x) = Lx − (tG(x) + (1 − t)F (x)) = L(x) − G(x) 	= 0,
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so L − Nt is zero free on A for each t ∈ [0, 1]. Also, clearly, Nt ∈
K0

A(X, C; L) for each t ∈ [0, 1]. Finally, N0 = F and N1 = G so F ∼= G
in K0

A(X, C; L).

Case (b). Suppose F, G ∈ K1
A(X, C; L).

We claim that N : X × [0, 1] → C is a bounded P -concentrative
mapping. To see this, let p ∈ P and let W be a bounded non-p-
precompact subset of X × [0, 1]. Notice if (x, t) ∈ W , then N(x, t) =
tG(x) + (1 − t)F (x) ⊆ co (G(πW ) ∪ F (πW )). Consequently,

N(W ) ⊆ co (G(πW ) ∪ F (πW ))

and so
αp(N(W )) ≤ αp(co (G(πW ) ∪ F (πW )))

= αp(G(πW ) ∪ F (πW ))
= max{αp(G(πW )), αp(F (πW ))}
< max{αp(πW ), αp(πW )}
= αp(πW ).

Thus, N is a P -concentrative mapping. Essentially the same reasoning
as in case (a) implies L − Nt is zero free on A for each t ∈ [0, 1]. It
remains to show Nt ∈ K1

A(X, C; L) for each t ∈ [0, 1]. Fix t ∈ [0, 1]
and let Ω be a bounded non-p-precompact subset, i.e., αp(Ω) 	= 0, of
X. Then

αp(Nt(Ω)) = αp(N(Ω × {t})) < αp(π(Ω × {t})) = αp(Ω)

since π(Ω × {t}) = Ω.

Thus for each t ∈ [0, 1], we have Nt ∈ K1
A(X, C; L) and so F ∼= G in

K1
A(X, C; L).

We now show (ii) implies (i), in both case (a) and (b). Let
N : X × [0, 1] → C be a continuous, compact map, respectively
bounded P -concentrative map, from G ∈ K0

A(X, C; L), respectively
G ∈ K1

A(X, C; L), to F with N0 = G and N1 = F . In particular,
L − Nt is zero free on A for each t ∈ [0, 1]. Let

B = {x ∈ X : L(x) = N(x, t) for some t ∈ [0, 1]}.
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If B = ∅ then, in particular, L − N1 = L − F is zero free and so F is
L-inessential. So it remains to consider the case when B 	= ∅. First
note B ∩ A = ∅. Also B is closed. To see this, let (xα) ∈ B be a net
of points of B, i.e., L(xα) = N(xα, tα)) converging to x. Without loss
of generality, assume tα converges to t ∈ [0, 1]. By the continuity of
N and L, we have L(x) = N(x, t) so x ∈ B and B is closed. Next we
claim that B is compact.

Case (a). Suppose F, G ∈ K0
A(X, C; L).

Then, since
L(B) ⊆ N(B × [0, 1])

we have that L(B) is relatively compact. In addition

B ⊆ L−1(L(B)) ⊆ L−1(L(B))

together with (2.1) implies that B is precompact in E. Now since B
is a closed precompact subset of X ⊆ C and C is complete, then B is
compact [18].

Case (b). Suppose F, G ∈ K1
A(X, C; L).

If B is a non-p-precompact subset, i.e., αp(B) 	= 0, of X, then

(2.3) αp(L(B)) ≤ αp(N(B × [0, 1])) < αp(π(B × [0, 1])) = αp(B)

since π(B × [0, 1]) = B.

Now (2.3) together with (2.2) yields a contradiction and so, for each
p ∈ P , we have that B is precompact in the semi-normed space (E, p).
Hence, B is precompact in E. Now, since B is a closed precompact
subset of X ⊆ C and C is complete, then B is compact [18].

So in both cases B is compact. Now Theorem 1.8 implies that E,
and hence X, with subspace topology, is Tychonoff. In addition, since
A ∩ B = ∅, then Theorem 1.9 implies that there is a continuous
(Urysohn) function µ : X → [0, 1] with µ(A) = 1 and µ(B) = 0.
Define

J : X → C by J(x) = N(x, µ(x)).

Clearly J is continuous. We claim that J : X → C is a compact,
respectively bounded P -concentrative, map with J = F on A and
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L−J zero free on X. If this is true, then J ∈ K0
A(X, C; L), respectively

K1
A(X, C; L), with L−J zero free on X and J = F on A. Consequently,

F is L-inessential and we are finished.

It remains to prove the claim. L−J is zero free since L(x)−J(x) = 0
means L(x) = N(x, µ(x)) which means x ∈ B and so µ(x) = 0, i.e.,
L(x) = N(x, 0), a contradiction since L(x) − N(x, 0) = L(x) − G(x) is
zero free. To see that J = F on A, notice if x ∈ A, then µ(x) = 1 and so
J(x) = N(x, µ(x)) = N(x, 1) = F (x). It remains to show J : X → C
is a compact, respectively bounded P -concentrative, map.

Case (a). Suppose F, G ∈ K0
A(X, C; L).

Clearly J is a compact map.

Case (b). Suppose F, G ∈ K1
A(X, C; L).

Let Ω be a bounded non-p-precompact subset of X, and let Ω∗ =
{(x, µ(x)) : x ∈ Ω} ⊆ X × [0, 1]. Then, since J(Ω) = N(Ω∗) and
π(Ω∗) = Ω, we have

αp(J(Ω)) = αp(N(Ω∗)) < αp(π(Ω∗)) = αp(Ω).

Remark. In the above inequality we used the fact that, if Ω is a
non-p-precompact subset of X, then Ω∗ is a non-p-precompact subset
of X × [0, 1].

Thus J is a bounded P -concentrative mapping.

Theorem 2.2. Let C, X, A and E be as above.

(a) Assume L : X → C is continuous and satisfies (2.1). Suppose F
and G are two maps in K0

A(X, C; L) such that F ∼= G in K0
A(X, C; L).

Then F is L-essential if and only if G is L-essential.

(b) Assume L : X → C is continuous and satisfies (2.2). Suppose F
and G are two maps in K1

A(X, C; L) such that F ∼= G in K1
A(X, C; L).

Then F is L-essential if and only if G is L-essential.

Proof. If F is L-inessential, then Theorem 2.1 guarantees a map
T ∈ K0

A(X, C; L), respectively K1
A(X, C; L), with L − T zero free on
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X and F ∼= T in K0
A(X, C; L), respectively K1

A(X, C; L). Thus G ∼= T
in K0

A(X, C; L), respectively K1
A(X, C; L), and so G is L-inessential by

Theorem 2.1. Symmetry will now imply that F is L-inessential if and
only if G is L-inessential.

Remark. If E is metrizable, then we can remove assumption (2.1)
and (2.2) in Theorems 2.1 and 2.2. This is due to the fact that metric
spaces are normal spaces so as to guarantee the existence of the Urysohn
function in Theorem 2.1 we need only B to be closed.

The remainder of the paper concerns the case where E is a Banach
space. For convenience, we will restate Theorem 2.2 in this setting. Let
E be a Banach space and C a closed convex subset of E, X ⊆ C and
A ⊆ X with A closed in X and X closed in C. Also, let L : X → C
be a continuous operator. K(X, C; L) denotes the set of all (bounded,
continuous) condensing maps F : X → C, and KA(X, C; L) denotes
the set of all mappings F ∈ K(X, C; L) such that L − F is zero
free on A. We call N : X × [0, 1] → C a condensing map if N is
continuous, bounded, α(N(W )) ≤ α(πW ) for all bounded sets W of
X×[0, 1] and α(N(Ω)) < α(πΩ) for all bounded nonprecompact subsets
Ω of X × [0, 1]. A map F ∈ KA(X, C; L) is L-essential if, for every
G ∈ KA(X, C; L) which agrees with F on A we have that L − G has
a zero in X. Two mappings F, G ∈ KA(X, C; L) are homotopic in
KA(X, C; L), written F ∼= G in KA(X, C; L) if there is a condensing
map N : X × [0, 1] → C with Nt(u) = N(u, t) : X → C belonging to
KA(X, C; L) for each t ∈ [0, 1] and N0 = F , N1 = G.

Theorem 2.3. Let E be a Banach space with C, X and A as above.
Also assume L : X → C is continuous. Suppose F and G are two
maps in KA(X, C; L) such that F ∼= G in KA(X, C; L). Then F is
L-essential if and only if G is L-essential.

Theorem 2.3 immediately yields the following nonlinear alternative
of Leray-Schauder type.

Theorem 2.4. Let U be an open subset of a closed convex set C in a
Banach space E and L : U → C a continuous map. In addition, assume
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the mapping G ∈ K∂U (U, C; L) is L-essential. Then every condensing
map F : U → C has at least one of the following properties:

(A1) L(x) = F (x) for some x ∈ U or

(A2) there exists an x ∈ ∂U and λ ∈ (0, 1) with

L(x) = λF (x) + (1 − λ)G(x).

Remark. U and ∂U denote the closure of U and the boundary of U
in C.

Proof. We can assume L − F |∂U is zero free for otherwise (A1) is
satisfied. Consider the homotopy N : U × [0, 1] → C joining G and F
given by

N(u, t) = tF (u) + (1 − t)G(u).

Now N is a condensing map since, if W is a nonprecompact subset of
U × [0, 1], then

α(N(W )) ≤ α(co (F (πW ) ∪ G(πW )))
≤ max{α(F (πW )), α(G(πW ))}
< α(πW ).

Now either L − Nt is zero free on ∂U for each t ∈ [0, 1] or it is not. If
L − Nt is zero free on ∂U for each t ∈ [0, 1], then Theorem 2.3 implies
that L − F has a zero in U so (A1) occurs. If L − Nt is not zero
free on ∂U for each t ∈ [0, 1], then there exists x ∈ ∂U and λ ∈ [0, 1]
with L(x) − [λF (x) + (1 − λ)G(x)] = 0. Now λ 	= 1 since L − F |∂U

was assumed to be zero free and λ 	= 0 since G ∈ K∂U (U, C; L), in
particular, L − G is zero free on ∂U . Hence (A2) occurs.

Remark. There is an analogue of Theorem 2.4 for the case when E is
a locally convex Hausdorff linear topological space.

3. Fixed point theorems. In this section a variety of fixed point
results are established. The fixed point results, Theorems 3.7 3.10,
are all new. Also nonlinear alternatives of Leray-Schauder type are
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established in this section; our main results are Theorems 3.4 3.6 (plus
remarks). Applications of these results will be given in Section 4. Our
first results were motivated by work of Browder [4] and Precup [26].

Theorem 3.1. Let U be an open set in a closed convex set C of
a real Banach space E and Ω ⊇ U a subset of E. Assume p ∈ U ,
F2(U) bounded and F : U → E is given by F = F1 + F2 where
−F1 : Ω → E (single valued) is m-accretive and F2 : U → E
is a (bounded, continuous) condensing map. In addition, suppose
(I − λF1)−1(λF2(·) + (1 − λ)p) : U → C for each λ ∈ [0, 1]. Then,
either

(A1) F has a fixed point in U , or

(A2) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λF (u) + (1 − λ)p.

Proof. Let N − 1 = (I − F1)−1F2. Recall [2, 11], since −F1 is m-
accretive, then (I − µF1)−1 : E → Ω is nonexpansive for each µ > 0.
We can assume that I − N1|∂U is zero free for otherwise (A1) occurs.
Let G(x) = p for x ∈ U . Consider the homotopy N : U × [0, 1] → C
joining G and N1 = (I − F1)−1F2 given by

N(u, λ) = (I − λF1)−1(λF2(u) + (1 − λ)p).

We claim

(3.1) N : U × [0, 1] −→ C is a condensing map.

To see this, we first show N(·, λ) : U → C is a condensing map for each
λ ∈ [0, 1]. Fix λ ∈ [0, 1] and let W be a bounded subset of U . Then

Nλ(W ) ⊆ (I − λF1)−1co (F2(W ) ∪ {p})
and since (I−µF1)−1 : E → Ω is nonexpansive for each µ > 0, we have
that Nλ : U → C is a condensing map for each λ ∈ [0, 1].

Next we claim that

(3.2) {N(u, ·); u ∈ U} is equicontinuous for each t ∈ [0, 1].

Suppose for the moment that (3.2) is true. We will now show that (3.1)
is true. Let W be a bounded nonprecompact subset of U × [0, 1]. Let
ε(t) > 0 be such that

(3.3) α(Nt(πW )) < α(πW ) − 2ε(t),
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and let V (t) be a neighborhood of t such that

(3.4) ‖Nt(u) − Ns(u)‖ ≤ ε(t) for all s ∈ V (t) and u ∈ πW.

Remark. In (3.3) we used the fact that, if W is a nonprecompact
subset of U × [0, 1], then πW is a nonprecompact subset of U .

Also,if s, s1 ∈ V (t) and u, u1 ∈ πW , we have

N(u, s) − N(u1, s1) = [N(u, s) − N(u, t)] + [N(u1, t) − N(u1, s1)]
+ [Nt(u) − Nt(u1)]

and so (3.3) and (3.4) imply

(3.5) α(N(πW × V (t))) < α(πW ).

Now {V (t), t ∈ [0, 1]} is an open cover of [0, 1] and, since [0, 1] is
compact, we suppose

{V (ti), i = 1, . . . , n} is a finite covering of [0, 1].

Now (3.5) together with the properties of α imply

α(N(W )) ≤ α(N(πW × [0, 1]))
≤ max{α(N(πW × V (ti))), i = 1, . . . , n}
< α(πW )

so (3.1) is true. It remains to prove (3.2). Let t = 0 to begin with.
Since (I − µF1)−1 : E → Ω is nonexpansive, we have for λ ∈ [0, 1] and
u ∈ U that

‖N(u, λ) − p‖ ≤ ‖(I − λF1)−1(λF2(u) + (1 − λ)p) − (I − λF1)−1(p)‖
+ ‖(I − λF1)−1(p) − p‖

≤ λ‖F2(u) − p‖ + ‖(I − λF1)−1(p) − p‖.

Now, since F2(U) is bounded and (I − λF1)−1(p) → p as λ → 0
(note since (I − λF1)−1 is nonexpansive ‖(I − λF1)−1(p) − p‖ ≤
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‖p − (I − λF1)p‖ = λ‖F1(p)‖), then (3.2) holds when t = 0. Next
fix t ∈ (0, 1]. For λ ∈ (0, 1] and u ∈ U , we have

‖N(u, λ) − N(u, t)‖ ≤ ‖(I − λF1)−1(λF2(u) + (1 − λ)p)
− (I − tF1)−1(λF2(u) + (1 − λ)p)‖

+ ‖(I − tF1)−1(λF2(u) + (1 − λ)p)
− (I − tF1)−1(tF2(u) + (1 − t)p)‖

≤ ‖(I − λF1)−1(λF2(u) + (1 − λ)p)
− (I − tF1)−1(λF2(u) + (1 − λ)p)‖

+ |λ − t|‖F2(u) − p‖.

Let y ∈ co (F2(U)∪{p}). We claim that, if λ ∈ (0, 1] and t is as above,
then

(3.6) ‖(I−λF1)−1(y)−(I−tF1)−1(y)‖ ≤ |λ − t|
t

‖y−(I−tF1)−1(y)‖.

If this is true, then (3.6), together with the second last inequality,
implies, since F2(U) and (I − tF1)−1(co (F2(U) ∪ {p})) are bounded,
that {N(u, ·) : u ∈ U} is equicontinuous at t, and we are finished. It
remains to prove (3.6). To see this, notice

1
λ

(I − (I − λF1)−1) =
1
λ

((I − λF1) − I)(I − λF1)−1)

= −F1(I − λF1)−1.

Now, since −F1 is accretive, we have for y ∈ co (F2(U) ∪ {p}) that

0 ≤
(

1
λ

(y − (I − λF1)−1(y)) − 1
t
(y − (I − tF1)−1(y)),

(I − λF1)−1(y) − (I − tF1)−1(y)
)

+

=
((

1
λ
− 1

t

)
(y − (I − tF1)−1(y))

− 1
λ

((I − λF1)−1(y) − (I − tF1)−1(y)),

(I − λF1)−1(y) − (I − tF1)−1(y)
)

+
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=
((

1
λ
− 1

t

)
(y − (I − tF1)−1(y)),

(I − λF1)−1(y) − (I − tF1)−1(y)
)

+

− 1
λ
‖(I − λF1)−1(y) − (I − tF1)−1(y)‖2

since (z1 + αz2, z2)+ = (z1, z2)+ + α‖z2‖2 for all α ∈ R. Now (3.6)
follows immediately. Thus (3.1) is true. Also, N : U × [0, 1] → C is
continuous. To see this, suppose (un, λn) → (u, λ). Then

‖N(un, λn)−N(u, λ)‖ = ‖(I − λnF1)−1(λnF2(un) + (I − λn)p)
− (I − λF1)−1(λF2(u) + (1 − λ)p)‖

≤ ‖(I − λnF1)−1(λnF2(un) + (1 − λn)p)
− (I − λnF1)−1(λnF2(u) + (1 − λn)p)‖

+ ‖(I − λnF1)−1(λnF2(u) + (1 − λn)p)
− (I − λF1)−1(λF2(u) + (1 − λ)p)‖

≤ |λn|‖F2(un)−F2(u)‖+‖N(u, λn)− N(u, λ)‖.

Next G ∈ K∂U (U, C; I) since p ∈ U and we claim G is I-essential. To
see this, take any H ∈ K∂U (U, C; I) with H(x) = p for x ∈ ∂U . We
must show I − H has a zero in U . Consider

J(x) =
{

H(x) x ∈ U ,
p x ∈ C/U .

It is easy to see that J : C → C is continuous and J is a (bounded,
continuous) condensing map. Sadovskii’s fixed point theorem, Theorem
1.2, implies that J has a fixed point u ∈ C. In addition, since
J(x) = p ∈ U for x ∈ C/U we have u ∈ U . Thus u = J(u) = H(u) and
since H(x) = p for x ∈ ∂U we have u ∈ U . Hence H has a fixed point
in U , i.e., I − H has a zero in U so G is I-essential.

Now either I −Nt is zero free on ∂U for each t ∈ [0, 1] or it is not. If
I − Nt is zero free on ∂U for each t ∈ [0, 1], then Theorem 2.3 implies
that I − N1 has a zero in U so (A1) follows. If I − Nt is not zero free
on ∂U for each t ∈ [0, 1], then there exist x ∈ ∂U and λ ∈ [0, 1] with
x = (I − λF1)−1(λF2(x) + (1 − λ)p). Now λ 	= 1 since I − N1|∂U was
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assumed to be zero free and λ 	= 0 since p ∈ U . Hence, (A2) occurs.

Remark. There is an analogue of Theorem 3.1 if E is a locally convex
Hausdorff linear topological space. In this situation let F1 = 0 and F2 :
U → E be a bounded P -concentrative map. The reasoning is essentially
the same (since N : U×[0, 1] → C, given by N(u, λ) = λF2(u)+(1−λ)p,
is easily seen to be a bounded P -concentrative mapping, the only
difference is that Danes̆’s fixed point theorem replaces Sadovskii’s fixed
point theorem.

Theorem 3.2. Let U be an open set in a closed convex set C of a
real Banach space E. Assume p ∈ U , F2(U) bounded and F : U → E is
given by F = F1 +F2 where −F1 : E → E (single valued) is continuous
and accretive and F2 : U → E is a (bounded, continuous) condensing
map. In addition, suppose (I − λF1)−1(λF2(·) + (1− λ)p) : U → C for
each λ ∈ [0, 1]. Then either

(A1) F has a fixed point in U or

(A2) There exists u ∈ ∂U and λ ∈ (0, 1) with u = λF (u) + (1 − λ)p.

Proof. The result follows immediately from Theorem 3.1 since −F1

is m-accretive [2, p. 159], [21, p. 124].

Remark. See [4, p. 139] for other examples of m-accretive maps.

Theorem 3.3. Let U be an open set in a real Banach space E and
Ω ⊇ U a subset of E. Assume 0 ∈ U with F2(U) and F (U) bounded
and F : U → E is given by F = F1 + F2 where −F1 := Ω → E is
m-accretive and F2 : U → E is a bounded α-Lipschitzian map with
k = 1. Also suppose (I − F )(U) is closed. Then either

(A1) F has a fixed point in U or

(A2) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λF (u).

Proof. Assume that (A2) does not hold. Consider, for each n ∈
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{2, 3, . . . } the mapping

(3.7) Sn =
(

1 − 1
n

)
F : U → E.

Notice (1 − 1/n)F2 : U → E is condensing and −(1 − 1/n)F1 : Ω → E
is accretive since, for x, y ∈ Ω, we have(

−
(

1 − 1
n

)
F1(x) +

(
1 − 1

n

)
F1(y), x − y

)
+

=
((

1 − 1
n

)
[−F1(x) + F1(y))], x − y

)
+

=
(

1 − 1
n

)
(−F1(x) + F1(y), x − y)+ ≥ 0

since (αz1, βz2)+ = αβ(z1, z2)+ for z1, z2 ∈ E and α, β ∈ R with
αβ ≥ 0. Also, since I − µF1 is onto E for all µ > 0, we have in
particular that I − (I−1/n)F1 is onto E. Thus, −(I−1/n)F1 : Ω → E
is m-accretive. Apply Theorem 3.1 to Sn. If there exists λ ∈ (0, 1) and
u ∈ ∂U with u = λSn(u), then

u = λ

(
1 − 1

n

)
F (u) = ηF (u) where 0 < η = λ

(
1 − 1

n

)
< 1,

which is a contradiction since (A2) was assumed not to hold. Conse-
quently, for each n ∈ {2, 3, . . . } we have that Sn has a fixed point
un ∈ U . Notice also, since un = (1 − 1/n)F (un), we have that
un − F (un) = −(1/n)F (un) and so un − F (un) → 0 as n → ∞ (since
F (U) is bounded). Consequently 0 ∈ (I − F )(U) since (I − F )(U) is
closed. Thus there exists u ∈ U with 0 = (I − F )(u).

Theorem 3.4. Let U be an open set in a closed convex set C of a
real Banach space E. Assume p ∈ U , F2(U) bounded and F : U → E is
given by F = F1+F2 where I−F1 : E → E (single valued) is continuous
and strongly accretive and F2 : U → E is a continuous, completely
continuous, i.e., α-Lipschitzian with k = 0, map. In addition, suppose
(I −λF1)−1(λF2(·)+(1−λ)p) : U → C for each λ ∈ [0, 1]. Then either

(A1) F has a fixed point in U or



MAPPINGS IN LOCALLY CONVEX SPACES 1425

(A2) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λF (u) + (1 − λ)p.

Proof. Now there exists c > 0 with

(3.8) ((I−F1)(x)−(I−F1)(y), x−y)+ ≥ c‖x−y‖2 for all x, y ∈ E.

Also, from Theorem 1.7, I − F1 is a homeomorphism from E onto E
with (I − F1)−1 : E → E a Lipschitz map with Lipschitz constant 1/c.

Let N1 = (I − F1)−1F2. We can assume I − N1|∂U is zero free for
otherwise (A1) occurs. Let G(x) = p for x ∈ U . As in Theorem 3.1,
we have that G ∈ K∂U (U, C; I) and G is I-essential. We first claim
that I − λF1 : E → E is strongly accretive; here 0 ≤ λ ≤ 1. This is
immediate since, for x, y ∈ E, we have

((I − λF1)(x) − (I − λF1)(y), x − y)+
= (λ[(I − F1)(x) − (I − F1)(y)] + (1 − λ)(x − y), x − y)+
= λ((I − F1)x − (I − F1)y, x − y)+ + (1 − λ)‖x − y‖2

≥ (λc + (1 − λ))‖x − y‖2

since (z1 + αz2, z2)+ = (z1, z2)+ + α|z2|2 for z1, z2 ∈ E and α a scalar.
Thus, Theorem 1.7 implies that (I − λF1)−1 : E → E a Lipschitz map
with Lipschitz constant 1/cλ; here, cλ = [λc + (1 − λ)].

Remark. Notice 1/cλ ≤ 1/ min{1, c}.

Consider the homotopy N : U × [0, 1] → C joining G and N1 given
by

N(u, λ) = (I − λF1)−1(λF2(u) + (1 − λ)p).

We now check that N : U × [0, 1] → C is a completely continuous map.
Fix λ ∈ [0, 1] and let W be a bounded subset of U . As in Theorem 3.1,

α(Nλ(W )) ≤ α((I − λF1)−1co (F2(W ) ∪ {p})) ≤ 1
cλ

α(F2(W )) = 0

so Nλ : U → C is a completely continuous map for each λ ∈ [0, 1]. Next
we claim that {N(u, ·); u ∈ U} is equicontinuous for each t ∈ [0, 1]. Fix
t = 0. For λ ∈ [0, 1] and u ∈ U , we have

‖N(u, λ) − p‖ ≤ λ

min{1, c}‖F2(u) − p‖ + ‖(I − λF1)−1(p) − p‖.
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Notice (I − λF1)−1(p) → p as λ → 0 since ‖(I − λF1)−1(p) − p‖ ≤
(λ/ min{1, c})‖F1(p)‖. Next fix t ∈ (0, 1]. Also, for λ ∈ (0, 1] and
u ∈ U , we have, as in Theorem 3.1, that

‖N(u, λ) − N(u, t)‖ ≤ ‖(I − λF1)−1(λF2(u) + (1 − λ)p)
− (I − tF1)−1(λF2(u) + (1 − λ)p)‖

+
|λ − t|

min{1, c}‖F2(u) − p‖,

and so {N(u, ·); u ∈ U} is equicontinuous for each t ∈ (0, 1] if we show
that, for λ ∈ (0, 1] and y ∈ co (F2(U) ∪ {p}) we have

‖(I − λF1)−1(y) − (I − tF1)−1(y)‖ ≤ 2|λ − t|
ct2

‖y − (I − tF1)−1(y)‖

for λ >
t

2
.

To see this, notice

1
λ

I +
(

1 − 1
λ

)
(I − λF1)−1 = (I − λF1)−1 +

1
λ

(I − (I − λF1)−1)

= (I − F1)(I − λF1)−1.

Now since I−F1 is strongly accretive we have, for y ∈ co (F2(U)∪{p}),
that

c‖(I − λF1)−1(y) − (I − tF1)−1(y)‖2

≤
(

1
λ

y +
(

1 − 1
λ

)
(I − λF1)−1(y)

− 1
t
y −

(
1 − 1

t

)
(I − tF1)−1(y),

(I − λF1)−1(y) − (I − tF1)−1(y)
)

+

=
((

1
λ
− 1

t

)
(y − (I − tF1)−1(y)),

(I − λF1)−1(y) − (I − tF1)−1(y)
)

+
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−
(

1
λ
− 1

)
‖(I − λF1)−1(y) − (I − tF1)−1(y)‖2

≤
((

1
λ
− 1

t

)
(y − (I − tF1)−1(y)),

(I − λF1)−1(y) − (I − tF1)−1(y)
)

+

so the above inequality holds. Let W be a bounded subset of U × [0, 1].
Let ε > 0 be given and let V (t) be a neighborhood of t such that

‖Nt(u) − Ns(u)‖ ≤ ε for all s ∈ V (t) and u ∈ πW.

Also
α(Nt(πW )) = 0,

and, as in Theorem 3.1,

α(N(πW × V (t))) ≤ 2ε and α(N(W )) ≤ 2ε.

Consequently, N : U × [0, 1] → C is completely continuous. Essentially
the same reasoning as in the last paragraph of Theorem 3.1 establishes
the result.

Remark. If, for example, c > 1 in (3.8), then we could take F2 : U →
E to be a condensing map in the statement of Theorem 3.4. More
generally, there is an analogue of Theorem 3.4 if I−F1 : E → E satisfies
(3.8) and F2 : U → E is an α-Lipschitzian map with k = min{1, c} and
α(F2(W )) < min{1, c}α(W ) for all bounded nonprecompact subsets W
of U .

Theorem 3.5. Let U be an open set in a real Banach space, E.
Assume 0 ∈ U with F2(U) and F (U) bounded and F : U → E is given
by F = F1 + F2 where I − F1 : E → E is continuous and (3.8) holds
with c > 1 and F2 : U → E is a bounded α-Lipschitzian map with
k = 1. Also, suppose (I − F )(U) is closed. Then either

(A1) F has a fixed point in U or

(A2) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λF (u).
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Proof. Assume (A2) does not hold. Consider, for each n ∈ {2, 3, . . . }
the mapping Sn given by (3.7). Now (1−1/n)F2 : U → E is condensing
and I − (1 − 1/n)F1 : E → E is strongly accretive since, for x, y ∈ E
we have((

I −
(

1 − 1
n

)
F1

)
(x) −

(
I −

(
1 − 1

n

)
F1

)
(y), x − y

)
+

=
((

1 − 1
n

)
[(I − F1)(x) − (I − F1)(y)]

+
(

1
n

)
(x − y), x − y

)
+

≥
(

c

(
1 − 1

n

)
+

1
n

)
‖x − y‖2

≡ cn‖x − y‖2.

Remark. Notice cn = c(1 − 1/n) + 1/n > 1.

Essentially the same reasoning as in Theorem 3.3 (except we use
Theorem 3.4 and its remark) implies that Sn has a fixed point un ∈ U .
Also, as in Theorem 3.3, we have 0 ∈ (I − F )(U) so there exists u ∈ U
with 0 = (I − F )(u).

Remarks. (i) There is an analogue of Theorem 3.5 if I − F1 : E → E
satisfies (3.8) and F2 : U → E is an α-Lipschitzian map with k =
min{1, c}.

(ii) There is also an analogue of Theorem 3.5 if I − F1 : E → E is
accretive and F2 : U → E is completely continuous.

Theorem 3.6. Let U be a bounded open convex set in a uniformly
convex Banach space E. Also assume E∗ is a uniformly convex Banach
space, 0 ∈ U , F (U) bounded and F : U → E is given by F = F1 + F2

where I −F1 : E → E is continuous and accretive and F2 : U → E is a
continuous compact map. In addition, suppose F2 : U → E is strongly
continuous. Then either

(A1) F has a fixed point in U or
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(A2) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λF (u).

Remark. F2 : U → E is said to be strongly continuous [27, 30] if
xn ⇀ x implies F2(xn) → F2(x); here xn, x ∈ U .

Proof. Assume (A2) does not hold. Consider for each n ∈ {2, 3, . . . },
the mapping Sn given by (3.7). Now (1 − 1/n)F2 : U → E is compact
and I − (1 − 1/n)F1 : E → E is strongly accretive since, for x, y ∈ E,
we have((

I −
(

1 − 1
n

)
F1

)
(x) −

(
I −

(
1 − 1

n

)
F1

)
(y),x − y

)
+

≥ 1
n
‖x − y‖2.

Essentially the same reasoning as in Theorem 3.3, except we use
Theorem 3.4, implies that Sn has a fixed point un ∈ U .

A standard result in functional analysis (if E is a reflexive Banach
space, then any norm bounded sequence in E has a weakly convergent
subsequence) implies, since U is bounded, that there exists a subse-
quence S of integers and a u ∈ U (notice U is strongly closed and
convex so weakly closed) with

un ⇀ u as n −→ ∞ in S.

Notice, since un = (1 − 1/n)F1(un) + (1 − 1/n)F2(un), then

‖(I − F1)(un) − F2(u)‖ =
∥∥∥∥ − 1

n
F1(un) +

(
1 − 1

n

)
F2(un) − F2(u)

∥∥∥∥
≤ 1

n
‖F (un)‖ + ‖F2(un) − F2(u)‖

so since F2 is strongly continuous and F (U) is bounded, we have
(I − F1)(un) → F2(u). Theorem 1.10, i.e., I − F1 is demi-closed on
E, now implies that (I − F1)(u) → F2(u).

Theorem 3.7. Let Q be a closed, convex subset of a Banach
space E with 0 ∈ int (Q). Also let Ω ⊇ Q be a subset of E with
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Ui = {x ∈ E : d(x, Q) < 1/i} ⊆ Ω for i sufficiently large; here d
denotes the metric induced by the norm. Assume F2(Q) is bounded,
and F : Q → E is given by F = F1 + F2 where −F1 : E → E is m-
accretive and F2 : Q → E is a bounded condensing map. In addition,
suppose

(3.9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if {(xj , λj)}∞j=1 is a sequence in ∂Q × [0, 1]
converging to (x, λ) with x = λF (x) and 0 < λ < 1, and
if {zj} is a sequence in Um, m sufficiently large,
with zj ∈ ∂Uj for j = m + 1, m + 2, . . . and zj → x, then
λj [F1(zj) + F2(xj)] ∈ Q for j sufficiently large,

holds. Then F has a fixed point.

Remark. Theorem 3.7 was proved by Furi and Pera [14] by a different
method when F1 = 0 and F2 is a compact map. We also remark that
0 ∈ int (Q) may be replaced by 0 ∈ Q if E is a Hilbert space (in the
Proof take r to be the nearest point projection on Q).

Proof. Let r : E → Q be the continuous retraction given by

r(x) =
x

max{1, µ(x)} for x ∈ E

where µ is the Minkowski functional [9] on Q, i.e., µ(x) = inf{α >
0; x ∈ αQ}. Consider

B = {x ∈ E : x = (I − F1)−1F2r(x)}.

We claim B 	= ∅. To see this, we look at r(I − F1)−1F2. Notice
r(I − F1)−1F2 : Q → Q. Also r(I − F1)−1F2 is a bounded condensing
map. To see this, let W be a bounded nonprecompact subset of E.
First notice that

(3.10) r(W ) ⊆ co (W ∪ {0}).

To show (3.10), fix x ∈ A. If x ∈ Q, then r(x) = x so (3.10) is true
whereas if x /∈ Q then r(x) = λx + (1 − λ)0 where λ = 1/µ(x) < 1
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so (3.10) is again true. Consequently, since (I − F1)−1 : E → Ω is
nonexpansive, we have

α(r(I − F1)−1F2(W )) ≤ α(co ((I − F1)−1F2(W ) ∪ {0}))
≤ α(F2(W )) < α(W ).

Thus r(I − F1)−1F2 : Q → Q is a condensing map. Sadovskii’s
fixed point theorem, Theorem 1.2, implies that there exists a y ∈ Q
with y = r(I − F1)−1F2(y). Hence z = (I − F1)−1F2r(z) with
z = (I − F1)−1F2(y) so B 	= ∅. In addition, the continuity of
(I − F1)−1F2r implies that B is closed. We next claim that B is
compact. To see this, first notice

(3.11) B ⊆ (I − F1)−1F2r(B).

Remark. Notice that B is bounded since F2(Q) is bounded and
(I − F1)−1 : E → Ω is nonexpansive.

If r(B) is a nonprecompact subset of E, then

α(B) ≤ α((I − F1)−1F2r(B)) ≤ α(F2r(B))
< α(r(B)) ≤ α(co (B ∪ {0})) ≤ α(B),

a contradiction. Thus, α(r(B)) = 0 and so

α(B) ≤ α((I − F1)−1F2r(B)) ≤ α(F2r(B)) ≤ α(r(B)) = 0.

Hence B is compact.

We now show B ∩ Q 	= ∅. To do this, we argue by contradiction.
Suppose B ∩ Q = ∅. Then, since B is compact and Q is closed, there
exists δ > 0 with dist (B, Q) > δ. Define

Ui =
{

x ∈ E : d(x, Q) <
1
i

}
for i ∈ {N, N + 1, . . . }.

Here N ∈ {1, 2, . . . } is chosen so that 1 < δN and U i ⊆ Ω for i ≥ N .
Fix i ∈ {N, N + 1, . . . }. Notice Ui is open, and since dist (B, Q) > δ,
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then B ∩ U i = ∅. Also F2r : U i → E is a bounded condensing map
since, if W is a bounded nonprecompact of U i, then if α(r(W )) > 0,
we have

α(F2(r(W ))) < α(r(W )) ≤ α(co (W ∪ {0})) = α(W )

whereas if α(r(W )) = 0, then

α(F2(r(W ))) ≤ α(r(W )) = 0 < α(W ).

Also Ω ⊇ U i and −F1 : Ω → E is m-accretive. Now Theorem 3.1 (with
F1 + F2r) implies (since B ∩U i = ∅) that there exists (yi, λi) ∈ ∂Ui ×
(0, 1) with yi = λi[F1(yi) + F2r(yi)], i.e., y = (I − λiF1)−1(λiF2r(yi)).

Consequently, for each j ∈ {N, N + 1, . . . }, there exists (yj , λj) ∈
∂Uj × (0, 1) with yj = λj [F1(yj)+F2r(yj)]. Notice, in particular, since
yj ∈ ∂Uj , that

(3.12) λj [F1(yj) + F2r(yj)] /∈ Q for j ∈ {N, N + 1, . . . }.

We now claim that

D = {x ∈ E : x = (I − λF1)−1(λF2r(x)) for some λ ∈ [0, 1]}

is compact, so sequentially compact. Clearly D is closed. Now
D ⊆ N(r(D) × [0, 1]) where N is defined in Theorem 3.1, with p = 0.

Remark. Notice D is bounded since F2(Q) is bounded, (I − λF1)−1 :
E → Ω is nonexpansive and ‖(I−λF1)−1(0)‖ = ‖(I−λF1)−1(0)− (I−
λF1)−1(I − λF1)(0)‖ ≤ ‖λF1(0)‖ ≤ ‖F1(0)‖.

Suppose α(D) > 0. If α(r(D)) > 0, then

α(D) ≤ α(N(r(D) × [0, 1])) < α(r(D)) ≤ α(co (D ∪ {0})) = α(D),

a contradiction. Thus, α(r(D)) = 0 and

α(D) ≤ α(N(r(D) × [0, 1])) ≤ α(r(D)) = 0,

a contradiction. Thus α(D) = 0 so D is compact.
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This together with d(yj , Q) = 1/j, |λj | ≤ 1, for j ∈ {N, N + 1, . . . },
implies that we may assume without loss of generality that λj → λ∗

and yj → y∗ ∈ ∂Q; also

yj = (I − λjF1)−1(λjF2r(yj)) −→ (I − λ∗F1)−1(λ∗F2r(y∗))

so y∗ = (I − λ∗F1)−1(λ∗F2r(y∗)), i.e., y∗ = λ∗[F1(y∗) + F2r(y∗)] =
λ∗[F1(y∗) + F2(y∗)] = λ∗F (y∗). If λ∗ = 1, then y∗ = (I −
F1)−1(F2r(y∗)) which contradicts B ∩ Q = ∅. If λ∗ = 0, then y∗ = 0
which contradicts y∗ ∈ ∂Q. Hence we may assume 0 < λ∗ < 1.
But in this case (3.9) with xj = r(yj) ∈ ∂Q, x = y∗ = r(y∗) and
zj = yj , implies λj [F1(yj) + F2r(yj)] ∈ Q for j sufficiently large. This
contradicts (3.12). Thus B ∩ Q 	= ∅, so there exists x ∈ Q with
x = (I − F1)−1F2r(x), i.e., x = F (x).

Theorem 3.8. Let Q be a closed, convex subset of a Banach
space E with 0 ∈ int (Q). Also let Ω ⊇ Q be a subset of E with
Ui = {x ∈ E : d(x, Q) < 1/i} ⊆ Ω for i sufficiently large. Assume
F2(Q) and F (Q) are bounded and F : Q → E is given by F = F1 + F2

where −F1 : Ω → E is m-accretive and F2 : Q → E is a bounded
α-Lipschitzian map with k = 1. Also suppose (I − F )(Q) is closed and
(3.9) holds. Then F has a fixed point.

Remark. 0 ∈ int (Q) may be replaced by 0 ∈ Q if E is a Hilbert space.

Proof. Consider, for each n ∈ {2, 3, . . . }, the mapping

(3.13) Sn =
(

1 − 1
n

)
F : Q → E.

As in Theorem 3.3, (1 − 1/n)F2 : Q → E is condensing and −(1 −
1/n)F1 : Ω → E is m-accretive. We will apply Theorem 3.7. Let
{(xj , λj)}∞j=1 be a sequence in ∂Q × [0, 1] converging to (x, λ) with
x = λSn(x) and 0 < λ < 1. Also let {zj} be a sequence in Um, m
sufficiently large, with zj ∈ ∂Uj for j = m + 1, m + 2, . . . and zj → x.
Then

λj

(
1 − 1

n

)
F1(zj) + λj

(
1 − 1

n

)
F2(xj)

= µjF1(zj) + µjF2(xj) ∈ Q for j sufficiently large
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since (3.9) is satisfied (note µj = λj(1−1/n) is a sequence in [0, 1] with
µj → λ(1 − 1/n) = µ, 0 < µ < 1 and x = λSn(x) = λ(1 − 1/n)F (x) =
µF (x)). Apply Theorem 3.7 to Sn to deduce that Sn has a fixed point
un ∈ Q. Now since un−F (un) = −(1/n)F (un), we have 0 ∈ (I−F )(Q)
since (I−F )(Q) is closed. Thus there exists u ∈ Q with 0 = (I−F )(u).

Theorem 3.9. Let Q be a closed, convex subset of a real Banach
space E with 0 ∈ int (Q). Assume F2(Q) is bounded and F : Q → E
is given by F = F1 + F2 where I − F1 : E → E is continuous
and strongly accretive, i.e., (3.8) is satisfied, and F2 : Q → E is a
continuous and completely continuous map. In addition, suppose (3.9)
(here Ui = {x ∈ E : d(x, Q) < 1/i}) holds. Then F has a fixed point.

Remark. 0 ∈ int (Q) may be replaced by 0 ∈ Q if E is a Hilbert space.

Proof. Essentially the same reasoning as in Theorem 3.7, except we
use Theorem 3.4, establishes the result.

Remark. There is an analogue of Theorem 3.9 if I−F1 : E → E satis-
fies (3.8) and F2 : Q → E is an α-Lipschitzian map with k = min{1, c}
and α(F2(W )) < min{1, c}α(W ) for all bounded nonprecompact sub-
sets W of Q.

Theorem 3.10. Let Q be a closed, convex subset of a real Banach
space E with 0 ∈ int (Q). Assume F2(Q) and F (Q) are bounded and
F : Q → E is given by F = F1+F2 where I−F1 : E → E is continuous
and (3.8) holds with c > 1 and F2 : Q → E is a bounded α-Lipschitzian
map with k = 1. Also suppose (I − F )(Q) is closed and (3.9) holds.
Then F has a fixed point.

Remark. 0 ∈ int (Q) may be replaced by 0 ∈ Q if E is a Hilbert space.

Proof. Consider for each n ∈ {2, 3, . . . } the mapping Sn given in
(3.13). As in Theorem 3.5, I − (1 − 1/n)F1 : E → E is strongly
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accretive with((
I −

(
1 − 1

n

))
F1(x) −

(
I −

(
1 − 1

n

))
F1(y), x − y

)
+

≥
(

c

(
1 − 1

n

)
+

1
n

)
‖x − y‖2

for x, y ∈ E and (1−1/n)F2 : Q → E is a condensing map. Essentially
the same reasoning as in Theorem 3.8, except we use Theorem 3.9
and its remark, implies that Sn has a fixed point un ∈ Q. Also
0 ∈ (I − F )(Q) since un − F (un) = −(1/n)F (un).

Remarks. (i) There is an analogue of Theorem 3.10 if I−F1 : E → E
satisfies (3.8) and F2 : Q → E is an α-Lipschitzian map with k =
min{1, c}.

(ii) There is an analogue of Theorem 3.10 if I − F1 : E → E is
accretive and F2 : Q → E is a continuous and completely continuous
map.

4. Application. The fixed point theory in this paper can be used
to establish existence principles for the second order boundary value
problems in abstract spaces. In particular, we examine

(4.1)
{

y′′ + f(t, y, y′) = 0, 0 ≤ t ≤ 1
y(0) = y(1) = 0

where f : [0, 1] × H × H → H is continuous; here H = (H, | · |) is a
real Hilbert space. Problems of the above form have been discussed
extensively in the literature. By a solution to (4.1) we mean a function
y ∈ C2([0, 1], H) with y satisfying the differential equation on [0, 1] and
the stated boundary conditions.

Consider the problem

(4.2)

{
w′(t) + f(t,

∫ t

0
w(x) dx, w(t)) = 0, 0 ≤ t ≤ 1∫ 1

0
w(x) dx = 0.

By a solution to (4.2) we mean a function w ∈ C1([0, 1], H) with
w′ = −f(t,

∫ t

0
w dx, w) on [0, 1] and

∫ 1

0
w(x) dx = 0. Notice y is a
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solution of (4.1) if and only if w = y′ is a solution of (4.2). For
notational purposes, let

L2
0([0, 1], H) =

{
u ∈ L2([0, 1], H) :

∫ 1

0

u(x) dx = 0
}

.

Notice L2
0([0, 1], H) is a closed subspace of L2([0, 1], H) and, conse-

quently, L2
0([0, 1], H) is a Hilbert space.

Before we prove our two existence results, we gather together some
information on the Sturm Liouville problem

(4.3)
{

y′′ + λq(t)y = 0, 0 ≤ t ≤ 1
y(0) = y(1) = 0,

where y : [0, 1] → R and q ∈ C[0, 1] with q > 0 on (0, 1). Let λ1 be the
first eigenvalue of (4.3). It is well known, Rayleigh-Riez minimization
theorem, that

λ1

∫ 1

0

qu2 dt ≤
∫ 1

0

[u′]2 dt

for all functions u : [0, 1] → R with u′ absolutely continuous and
u(0) = u(1) = 0. This result together with the ideas used to prove
Theorem 1.4 in [22] immediately yields

Theorem 4.1. Let H be a real Hilbert space, q ∈ C[0, 1], with
q > 0 on (0, 1) and u : [0, 1] → H with u′ absolutely continuous and
u(0) = u(1) = 0. Then

(4.4) λ1

∫ 1

0

qu2 dt ≤
∫ 1

0

[u′]2 dt.

Remark. If q = 1, then λ1 = π2 and (4.4) is Wirtinger’s inequality.

Theorem 4.2. Suppose f : [0, 1] × H × H → H is continuous. Also
assume the following conditions are satisfied:

(4.5)

⎧⎨
⎩

for each r > 0 there exists hr ∈ L1[0, 1]
with |f(t, u, v)| ≤ hr(t) for all
t ∈ [0, 1], |u| ≤ r and v ∈ R
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and

(4.6)

⎧⎪⎪⎨
⎪⎪⎩

there exists a0 ≥ 0 with a0 < λ1 such that
〈f(x, u0, v0) − f(x, u1, v1), u0 − u1〉 ≤ a0q(x)|u0 − u1|2
for all t ∈ [0, 1] and (u0, v0), (u1, v1) ∈ R2;
here q ∈ C[0, 1] with q > 0 on (0, 1).

Then (4.2) has a solution.

Proof. Let E = C = L2
0([0, 1], H). Define F1 : E → E by

(4.7)
F1w(t) =

∫ 1

0

∫ z

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds dz

−
∫ t

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds.

Notice that F1 is well defined because of assumption (4.5). Also F1 :
E → E is continuous. This follows from (4.5), the Lebesgue dominated
convergence theorem (version where convergence almost everywhere is
replaced by convergence in measure), and a result of Nemytskii, if a
sequence of functions wn(s), s ∈ [0, 1] converges in mean (so therefore
in measure), then the sequence of functions f(s,

∫ s

0
wn(x) dx, wn(s))

also converges in measure.

We will show I − F1 : E → E is strongly accretive if 0 ≤ a0 < λ1,
here a0 is as in (4.6), in fact, if a0 = 0, −F1 : E → E is accretive. Let
u, v ∈ E. Then
(4.8)

〈F1u − F1v, u − v〉 = −
∫ 1

0

〈∫ t

0

[
f

(
s,

∫ s

0

u dx, u(s)
)

− f

(
s,

∫ s

0

fv dx, v(s)
)]

ds, u(t) − v(t)
〉

dt

since
∫ 1

0
[u(t) − v(t)] dt = 0 implies

∫ 1

0

〈∫ 1

0

∫ x

0

[
f

(
s,

∫ s

0

u(z)dz, u(s)
)
−f

(
s,

∫ s

0

v(z) dz, v(s)
)]

ds dx,

u(t) − v(t)
〉

dt = 0.
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Interchange the order of integration in (4.8) to obtain

〈F1u − F1v, u − v〉

= −
∫ 1

0

〈[
f

(
s,

∫ s

0

u dx, u(s)
)
− f

(
s,

∫ s

0

v dx, v(s)
)]

,

∫ 1

s

[u(t) − v(t)] dt

〉
ds

=
∫ 1

0

〈[
f

(
s,

∫ s

0

u dx, u(s)
)
− f

(
s,

∫ s

0

v dx, v(s)
)]

,∫ s

0

u(t) dt −
∫ s

0

v(t) dt

〉
ds,

since
∫ 1

0
[u(t) − v(t)] dt = 0. This, together with condition (4.7) and

Theorem 4.1 will give

〈F1u − F1v, u − v〉 ≤ a0

∫ 1

0

q(s)
∣∣∣∣
∫ s

0

u(t) dt −
∫ s

0

v(t) dt

∣∣∣∣
2

ds

≤ a0

λ1
‖u − v‖2

L2 .

Consequently, for u, v ∈ U , we have

(4.9) 〈(I − F1)u − (I − F1)v, u − v〉 ≥
(

1 − a0

λ1

)
‖u − v‖2

L2 ,

so I − F1 : E → E is strongly accretive.

Let F2 = 0 so F = F1 + F2 and notice (I − λF1)−1(λF2(·)) =
(I − λF1)−1(0) : E → E for any λ ∈ [0, 1]. To apply Theorem 3.4
we construct an open set U such that (A2) does not occur. Let w be a
solution to

(4.10)λ

{
w′(t) + λf(t,

∫ t

0
w(x) dx, w(t)) = 0, 0 ≤ t ≤ 1∫ 1

0
w(x) dx = 0,

for any λ ∈ (0, 1). Then

(4.11) −w′(t) = λt

(
t,

∫ t

0

w(x) dx, w(t)
)

, 0 ≤ t ≤ 1.
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Take the inner product of (4.11) with
∫ t

0
w ds and integrate from 0 to 1

using integration by parts, (4.6), Theorem 4.1 and Hölder’s inequality,
to obtain

‖w‖2
L2 = λ

∫ 1

0

〈
f

(
t,

∫ t

0

w(x) dx, w(t)
)

,

∫ t

0

w(x) dx

〉
dt

= λ

∫ 1

0

〈[
f

(
t,

∫ t

0

w(x) dx, w(t)
)
− f(t, 0, 0)

]

+ f(t, 0, 0),
∫ t

0

w(x) dx

〉
dt

≤ a0

∫ 1

0

q(t)
∣∣∣∣
∫ t

0

w(x) dx

∣∣∣∣
2

dt

+
∫ 1

0

q(t)
∣∣∣∣
∫ t

0

w(x) dx

∣∣∣∣|f(t, 0, 0)| dt

≤ a0

λ1
‖w‖2

L2 + ‖w‖L2

(
1
λ1

∫ 1

0

q(t) dt

)1/2

(max
[0,1]

|f(t, 0, 0)|).

Thus, since a0 < λ1, there exists a constant M0, independent of λ, with
‖w‖L2 < M0, for any solution w to (4.10)λ. Let

U = {u ∈ L2
0([0, 1], H) : ‖u‖L2 < M0}.

Now all the conditions of Theorem 3.4 are satisfied. Finally notice that
condition (A2) cannot occur since, if there exist λ0 ∈ (0, 1) and u ∈ ∂U
with u = λ0F1(u), then ‖u‖L2 = M0 and u is a solution of (4.10)λ0 ,
which is a contradiction. Thus, F1 has a fixed point in U .

Theorem 4.3. Suppose that f : [0, 1] × H × H → H is continuous.
Also assume the following conditions are satisfied:

(4.12)

⎧⎨
⎩

for each r > 0 there exists hr ∈ L1[0, 1] with
|f(t, u, v)| ≤ hr(t) for all t ∈ [0, 1], |u| ≤ r

and |v| ≤ r,

and

(4.13)

⎧⎨
⎩

α(f(I × A × B)) ≤ k max{α(A), α(B)}
for all bounded subsets A, B of H;
here I = [0, 1] and 0 ≤ k < 1.
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In addition, suppose there is a constant M0, independent of λ, with

|w|1 = max{sup
[0,1]

|w(t)|, sup
[0,1]

|w′(t)|} 	= M0

for any solution w to (4.10)λ. Then (4.2) has a solution.

Proof. Let E = C = C1([0, 1], H) and

U = {u ∈ C1([0, 1], H) : |u|1 < M0}.

Define F2 : U → E by

F2w(t) =
∫ 1

0

∫ z

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds dz

−
∫ t

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds.

Let F1 = 0. We claim that F = F1 + F2 = F2 has a fixed point w ∈ U .
If the claim is true, then w is a solution of (4.2) and we are finished.

To show F = F2 has a fixed point in U we will apply Theorem 3.2.
Notice first (I − λF1)−1(λF2(·)) = λF2(·) : U → C = E for any
λ ∈ [0, 1]. We next show that F2 : U → C1([0, 1], H) is a condensing
map. Let G : U → E and H : U → E be defined by

Gw(t) =
∫ t

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds

and

Hw(t) =
∫ 1

0

∫ z

0

(
s,

∫ s

0

w(x) dx, w(s)
)

ds dz

so F2 = H − G. Now let Ω ⊆ C1([0, 1], H) be bounded. Then G(Ω)
is clearly bounded and equicontinuous because of assumption (4.12).
Notice as well that, for w ∈ Ω, we have

1
s

∫ s

0

w(x) dx ⊆ co (rangew(x)) ⊆ co (Ω(I))
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so ∫ s

0

w(x) dx ⊆ sco (Ω(I)) ⊆ co (co (Ω(I)) ∪ {0}).

Remark. Here I = [0, 1] and Ω(I) = ∪t∈I{φ(t) : φ ∈ Ω}.

Also, for w ∈ Ω and t ∈ [0, 1], we have

1
t

∫ t

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds

⊆ co
(

range f

(
s,

∫ s

0

w(x) dx, w(s)
))

⊆ co (f(I × co (co (Ω(I)) ∪ {0}) × Ω(I)))

and so

∫ t

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds

⊆ co (co (f(I × co (co (Ω(I)) ∪ {0}) × Ω(I))) ∪ {0}).

This together with the properties of α and (4.13) implies for w ∈ Ω
and t ∈ [0, 1] that

α(G(w(t)) ≤ α(co (f(I × co (co (Ω(I)) ∪ {0}) × Ω(I))))
= α(f(I × co (co (Ω(I)) ∪ {0}) × Ω(I)))
≤ k max{α(co (Ω(I)) ∪ {0}), α(Ω(I))}
= kα(Ω(I)).

Thus for w ∈ Ω, we have

(4.14) α(G(w(t)) ≤ kα(Ω(I)).

Also since Ω is bounded in C1([0, 1], H) then Theorem 1.5 implies that
α(Ω) ≥ α(Ω(I)) and this, together with (4.14), implies for w ∈ Ω and
t ∈ [0, 1] that

α(G(w(t)) ≤ kα(Ω).
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Consequently,

(4.15) sup
t∈[0,1]

α(GΩ(t)) ≤ kα(Ω).

Remark. Recall GΩ(t) = {φ(t) : φ ∈ GΩ}.
Also notice if w ∈ Ω and t ∈ [0, 1], them

(4.16) (Gw)′(t) = f

(
t,

∫ t

0

w(x) dx, w(t)
)

so this, together with (4.12), implies that there exists h ∈ L1[0, 1] with

(4.17) |(Gw)′(t)| ≤ h(t) for a.e. t ∈ [0, 1] and all w ∈ Ω.

Consequently, since f : [0, 1]×H ×H → H is continuous, we have that
GΩ is a bounded subset of C1([0, 1], H) and, from (4.17), we have that
(GΩ)′ = {φ′ : φ ∈ GΩ} is an equicontinuous set. Now Theorem 1.4
implies that

(4.18) α(G(Ω)) = max{sup
t∈I

α(GΩ(t)), sup
t∈I

α((GΩ)′(t))}.

From above, for w ∈ Ω and t ∈ [0, 1], we have that

(Gw)′(t) ⊆ f(I × co (co (Ω(I)) ∪ {0}) × Ω(I))

and so

α((Gw)′(t)) ≤ α(f(I × co (co (Ω(I)) ∪ {0}) × Ω(I)))
≤ k max{α(co (Ω(I)) ∪ {0}), α(Ω(I))}
= kα(Ω(I)).

This, together with Theorem 1.5, implies for w ∈ Ω and t ∈ [0, 1] that

α((Gw)′(t)) ≤ kα(Ω)

and so

(4.19) sup
t∈[0,1]

α((GΩ)′(t)) ≤ kα(Ω).
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Now (4.15), (4.18) and (4.19) yields

(4.20) α(GΩ) ≤ kα(Ω).

Also HΩ is a bounded subset of C1([0, 1], H) and (HΩ)′ is an equicon-
tinuous set. Also, for w ∈ Ω and t ∈ [0, 1], we have

Hw(t) =
∫ 1

0

∫ z

0

f

(
s,

∫ s

0

w(x) dx, w(s)
)

ds dz

and so
α(H(w(t)) = 0.

Consequently, supt∈I α(HΩ(t)) = 0. Similarly supt∈I α((HΩ)′(t)) = 0
and so

(4.21) α(HΩ) = 0.

Now F2 = H − G so (4.20) and (4.21) imply

α(F2Ω) = α(GΩ) ≤ kα(Ω)

so F2 is a condensing map.

Hence, all the conditions of Theorem 3.2 are satisfied. Finally, notice
that condition (A2) cannot occur since if there exists a λ0 ∈ (0, 1) and
u ∈ ∂U with u = λ0F2(u), then |u|1 = M1 and u is a solution of
(4.10)λ0 , which is a contradiction. Thus, F = F2 has a fixed point in
U , i.e.,

u =
∫ 1

0

∫ z

0

f

(
s,

∫ s

0

u(x) dx, u(s)
)

ds dz

−
∫ t

0

f

(
s,

∫ s

0

u(x) dx, u(s)
)

ds

and so
∫ 1

0
u(x) dx = 0.
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