ON THE HILBERT FUNCTION OF CERTAIN NON COHEN-MACAULAY ONE-DIMENSIONAL RINGS

SILVIA MOLINELLI AND GRAZIA TAMONE

ABSTRACT. Let k be a field, n_0,\ldots,n_r a sequence of positive integers, A the coordinate ring of the algebroid monomial curve in \mathbf{A}_k^{r+1} defined parametrically by $X_0=t^{n_0},\ldots,X_r=t^{n_r}$. Let $G=\operatorname{gr}_M(A)$, where $M=(t^{n_0},\ldots,t^{n_r})$ and $P_G(z)=(h_G(z)/(1-z))$, where $h_G(z)=\sum_{i=0,\ldots,s}h_iz^i\in Q[z]$, be the Poincaré series of G. In this paper we study some of the coefficients of the polynomial $\sum_{i=0,\ldots,s}h_iz^i$ when G is not Cohen-Macaulay. We show $h_s>0$ and $h_2\geq 0,\,h_3\geq 0$ under suitable assumptions.

Introduction. Let A be the coordinate ring of an algebroid monomial curve in the affine space \mathbf{A}_k^{r+1} defined parametrically by $X_0 = t^{n_0}, \ldots, X_r = t^{n_r}$ where $0 < n_0 < \cdots < n_r$, $\gcd(n_0, \ldots, n_r) = 1$ and n_0, \ldots, n_r minimally generate the semigroup $\Gamma = \langle n_0, \ldots, n_r \rangle$. Let $M = (t^{n_0}, \dots, t^{n_r})$ and $G = \operatorname{gr}_M(A) = \bigoplus_{i \geq 0} (M^i/M^{i+1})$. If $H_G(i) = \dim_k(M^i/M^{i+1})$ is the Hilbert function of G and $P_G(z) =$ $\sum_{i>0} H_G(i)z^i$ is the Poincaré series, it is known that $P_G(z)=$ $h_G(z)/(1-z)$ where $h_G(z) = \sum_{i=0,\dots,s} h_i z^i \in Q[z], h_s \neq 0$. When G is Cohen-Macaulay, it is known that $h_i > 0$ for each $i \in \{0,\dots,s\}$. When G is not Cohen-Macaulay, one may have $h_i < 0$ for some i. In this paper we study the coefficients h_i of $h_G(z)$ when G is not Cohen-Macaulay. To this purpose we use a characterization of the Cohen-Macaulayness of G we gave in [3]. In Section 1 we show h_s is always positive, see Corollary 1.11. In Section 2 we study h_2 . There are examples where G is not Cohen-Macaulay and $h_2 < 0$, e.g., in [1] and [2]. First, we show an example where $h_2 < 0$ and $A = k[[t^{n_0}, \ldots, t^{n_r}]]$ has both multiplicity and embedding dimension less than the ones considered in the examples of [1] and [2]. Then we prove $h_2 \geq 0$ when Γ is generated by m_0, \ldots, m_p, n where m_0, \ldots, m_p are an arithmetic sequence, i.e., $m_i = m_0 + id$ for $i \in \{1, ..., p\}$ and n is arbitrary, with

Received by the editors on October 8, 1996, and in revised form on July 21, 1997.

 $\gcd(m_0,d,n)=1$, see Proposition 2.11. In Section 3 we show that $h_3 \geq 0$ when Γ is generated by m_0,\ldots,m_p,n as above with p=2, see Corollaries 3.7, 3.11, 3.17, 3.23, 3.26; in Section 4 we exhibit various examples.

1. Let $A=k[[t^{n_0},\ldots,t^{n_r}]]=k[[\Gamma]]$ where k is a field, Γ is a numerical semigroup minimally generated by n_0,\ldots,n_r with $0< n_0<\cdots< n_r$ and $\gcd(n_0,\ldots,n_r)=1$. Let $\mathbf N$ be the set of nonnegative integers, $\xi=\mathbf N^{r+1},\ e_i=(\delta_{ij})_{0\leq j\leq r},\ 0\leq i\leq r,$ and, for each $\alpha=\sum_{i=0,\ldots,r}a_ie_i\in \xi,$ let $\partial(\alpha)=\sum a_in_i$ and $\deg(\alpha)=\sum a_i.$ Further, for each $g\in\Gamma$ we put $\xi(g)=\{\alpha\in\xi\mid\partial(\alpha)=g\}.$ In $\xi(g)$ we write $\alpha\leq_{\deg}\beta$ if $\deg(\alpha)\leq\deg(\beta).$ Then " \leq_{\deg} " is an order on $\xi(g)$ and, since $\xi(g)$ is a finite set, $\xi(g)$ has maximal elements with respect to " \leq_{\deg} ." All the maximal elements in $\xi(g)$ have the same degree, we shall note by max $\deg(g)$, see also $[\mathbf 3,$ Section 2].

Let $M = (t^{n_0}, \ldots, t^{n_r})$, $G = \operatorname{gr}_M(A) = \bigoplus_{i \geq 0} (M^i/M^{i+1}) = \bigoplus G_i$. It is known that $G \approx k[\tau_0, \ldots, \tau_r]$ where $\tau_i = t^{n_i} \mod (M^2)$. In [3] we gave the following characterization of the Cohen-Macaulayness of G.

Proposition 1.1. Let G, Γ , be as above. The following conditions are equivalent:

- (1) G is Cohen-Macaulay;
- (2) for each $g \in \Gamma$ the following fact holds:
- (1.1) $\max \deg (g + cn_0) = \max \deg (g) + c \quad \text{for each } c \ge 1.$

In this paper we show some properties of the Hilbert function $H_G(i) = \dim_k(M^i/M^{i+1})$ when G is not Cohen-Macaulay. We recall the Poincaré series $P_G(z) = \sum_{i \geq 0} H_G(i)z^i$ is equal to $h_G(z)/(1-z)$ where $h_G(z) = \sum_{i=0,\dots,s} h_i z^i \in Q[z]$ with $h_i = H_G(i) - H_G(i-1)$ for each $i \geq 1$. Let $i \geq 1$. The set G_i is generated over k by the elements of the set $M_i = \{N = \tau_0^{a_0} \cdots \tau_r^{a_r} \in M^i/M^{i+1} \mid N \neq O_G\}$. One has

Lemma 1.2. For $i \in \mathbb{N}$, put

$$Y_i = \{g \in \Gamma \mid \max \deg(g) = i\} \quad \text{if } i \ge 1, \quad Y_0 = \{0\}.$$

Then for $i \geq 1$, one has $H_G(i) = \operatorname{card}(Y_i)$ and $h_i = \operatorname{card}(Y_i) - \operatorname{card}(Y_{i-1})$.

Proof. Since there is a one-to-one correspondence between Y_i and M_i the result follows from the above definitions. \Box

From now on, we suppose G is not Cohen-Macaulay. Then, according to Proposition 1.1 and Lemma 1.2 there is some $g \in \Gamma$ that does not satisfy (1.1) and we can express h_i , $i \geq 2$, in terms of particular subsets of Y_i and Y_{i-1} . We give some definitions.

Definition 1.3. Let $g \in \Gamma$. Put

$$\sum = \{ g \in \Gamma \mid g \text{ does not satisfy } (1.1) \}$$

and if $g \in \sum$ we put $c_g = \min\{c \geq 1 \mid \max \deg(g + cn_0) > \max \deg(g) + c\}$. Further, let S be the standard basis of Γ with respect to n_0 , i.e.,

$$\begin{split} S &= \{g \in \Gamma \mid g - n_0 \notin \Gamma \} \text{ and put, for } i \geq 2: \\ S_i &= \{s \in S \mid \max \deg(s) = i\}, \\ A_{i-1} &= \{g \in Y_{i-1} \mid g \notin \Sigma \text{ or } g \in \Sigma \text{ and } c_g > 1\}, \\ B_{i-1} &= \{g \in Y_{i-1} \mid g \in \Sigma \text{ and } c_g = 1\}, \\ C_i &= \{g + n_0 \in Y_i \mid g \in B_j \text{ with } j < i - 1\}. \end{split}$$

One can immediately see that $Y_{i-1} = A_{i-1} \cup B_{i-1}$, $Y_i = \{g + n_0 \mid g \in A_{i-1}\} \cup C_i \cup S_i$, where there is one-to-one correspondence between A_{i-1} and $\{g + n_0 \mid g \in A_{i-1}\}$) and, according to Lemma 1.2, one has for $i \geq 2 : h_i = \operatorname{card}(C_i) + \operatorname{card}(S_i) - \operatorname{card}(B_{i-1})$. In particular, one can note

Remark 1.4. (1) One has
$$C_2 = \emptyset$$
, so that $h_2 = (\operatorname{card} S_2) - (\operatorname{card} B_1)$.
(2) If $Y_1 \cap \sum = \emptyset$, then $C_3 = \emptyset$ and $h_3 = (\operatorname{card} S_3) - (\operatorname{card} B_2)$.

In this section we shall prove that the leading coefficient h_s of the polynomial $h_G(z)$ is positive. We need some results. One can easily prove the following.

Lemma 1.5. Let $g \in \Gamma$. Then

(1) if $c \in \mathbf{N}$, $c \ge 1$ is such that $g + cn_0 \in \Sigma$, then $g + c'n_0 \in \Sigma$ for each c' such that $0 \le c' \le c - 1$;

(2) if $g \in \sum$ and c_g is as in Definition 1.3, then for each i such that $1 \leq i \leq c_g$, one has $g_i = g + (c_g - i)n_0 \in \sum$ and $c_{g_i} = i$.

Further, one has

Lemma 1.6. Let $s_1 \in S \cap \sum$. Then there exists $c \in N$, $c \ge 1$, such that $s_1 + cn_0$ does not belong to \sum .

Proof. Let $s_1 \in S \cap \sum$. Put $s_2 = s_1 + c_{s_1} n_0$. If $s_2 \notin \sum$, then $c = c_{s_1}$. Otherwise, we repeat the procedure, and we obtain a sequence of elements in $\sum : s_1, \ldots, s_i$ such that

$$(1.2) s_{i+1} = s_i + c_{s_i} n_0$$

and

$$\max \deg (s_{i+1}) \ge \max \deg (s_1) + c_{s_1} + \dots + c_{s_i} + i.$$

Now we show

$$i < \sum_{j=1\cdots r} (n_j - n_0).$$

Let $s_1 = \sum_{j=1\cdots r} a_j n_j$ be such that $\sum a_j = \max \deg(s_1)$. Further, let $s_{i+1} = \sum_{j=0\cdots r} b_j n_j$ be such that $\sum b_j = \max \deg(s_{i+1})$. Putting $\gamma = c_{s_1} + \cdots + c_{s_i}$, one has

$$b_0 n_0 + \sum_{j=1\cdots r} b_j n_j = s_1 + \gamma n_0 = \sum_{j=1\cdots r} a_j n_j + \gamma n_0,$$

where $b_0 \leq \gamma$ since $s_1 \in S$, so

$$\sum_{j=1\cdots r} b_j \ge \sum_{j=1\cdots r} a_j + i,$$

according to (1.2). Now, by adding $\sum_{j=1\cdots r} (n_0 - a_j) n_j$, one obtains

$$\sum_{j=1\cdots r} (b_j + n_0 - a_j) n_j + b_0 n_0 = \bigg(\sum_{j=1\cdots r} n_j + \gamma \bigg) n_0,$$

so

$$\left(\sum_{j=1\cdots r}n_j+\gamma\right)n_0>\left(\sum_{j=1\cdots r}(b_j+n_0-a_j)+b_0\right)n_0,$$

then

$$\begin{split} \sum_{j=1\cdots r} n_j + \gamma &> \sum_{j=1\cdots r} (b_j + n_0 - a_j) + b_0 \\ &= \sum_{j=0\cdots r} b_j + r n_0 - \sum_{j=1\cdots r} a_j \\ &= \max \deg \left(s_{i+1}\right) + r n_0 - \max \deg \left(s_1\right) \\ &\geq \gamma + i + r n_0, \end{split}$$

according to (1.2). Then $i < \sum_{j=1\cdots r} (n_j - n_0)$.

It follows that if $k \geq \sum_{j=1\cdots r} (n_j - n_0)$, one has $s_{k+1} \notin \sum$.

Remark 1.7. Let $g \in \sum$. According to the properties of S and Lemma 1.5, one has $g = s + kn_0$ with $s \in S \cap \sum$, $k \ge 0$. According to Lemma 1.6, \sum is a finite set and, putting $c_s' = \min\{c \mid s + cn_0 \notin \sum\}$ for each $s \in S \cap \sum$, one has $g = s + kn_0$ with $k < c_s'$. Further, $\sum = \{s, s + n_0, \dots, s + (c_s' - 1)n_0 \mid s \in S \cap \sum\}$.

Now one has

Lemma 1.8. Let

$$n = \max\{\max \deg (g + c_q n_0) \mid g \in \Sigma\}$$

and

$$m = \max\{\max\deg(s) \mid s \in S\}.$$

The following facts hold:

- (1) if $i \geq n-2$, then $\{g \in Y_i \cap \sum | c_g > 1\} = \emptyset$;
- (2) if $j \geq n-1$, then $Y_i \cap \sum = \emptyset$;
- (3) $\{g \in \sum \mid c_g = 1 \text{ and } g + n_0 \in Y_n\} \neq \emptyset;$
- (4) if p > n, then $C_p = \emptyset$ and $A_{p-1} = \{ g \in Y_{p-1} \mid g \notin \Sigma \}$.

Proof. (1) Let $i \geq n-2$. If there is a $g \in Y_i \cap \sum$ such that $c_g > 1$, then max deg $(g+c_gn_0) > i+c_g \geq i+2$, so that max deg $(g+c_gn_0) > n$. This is a contradiction.

- (2) Let $j \geq n-1$. If there is a $g \in Y_j \cap \sum$, then max deg $(g+c_g n_0) > j+c_g \geq j+1 \geq n$. This is a contradiction.
- (3) According to the definition of n, there exists $g' \in \sum$ such that $\max \deg (g' + c_{g'} n_0) = n$ (and $\max \deg (g' + c_{g'} n_0) > \max \deg (g') + c_{g'}$). Then, putting $g = g' + (c_{g'} 1)n_0$, one has (Lemma 1.5): $g \in \sum$ and $c_g = 1$. Further, $\max \deg (g + n_0) = \max \deg (g' + c_{g'} n_0) = n$, so that $g + n_0 \in Y_n$.
- (4) Let p > n; then $\{g \in \sum \mid c_g = 1 \text{ and } g + n_0 \in Y_p\} = \emptyset$, so that $C_p = \emptyset$.

Further, according to (1), one has $\{g \in Y_{p-1} \cap \sum \mid c_g > 1\} = \emptyset$, so $A_{p-1} = \{g \in Y_{p-1} \mid g \notin \sum\}$.

Proposition 1.9. Let n be as in Lemma 1.8. Then $H_G(n-1) < H_G(n)$.

Proof. According to Lemma 1.8, one has $Y_{n-1} \cap \sum = \emptyset$. Then one can define $\varphi: Y_{n-1} \to Y_n$ by $\varphi(g) = g + n_0$ (that is injective). Such φ is not surjective by Lemma 1.8. So card $(Y_{n-1}) < \operatorname{card}(Y_n)$.

Proposition 1.10. Let n, m be as in Lemma 1.8. Then

(a) if $m \ge n+1$, one has

$$H_G(q-1) = H_G(q)$$

for each $q \geq m+1$ and $H_G(m-1) < H_G(m)$;

(b) if $m \leq n$, one has

$$H_G(q-1) = H_G(q)$$

for each $q \ge n + 1$.

Proof. Let $q \ge \max(m+1, n+1)$. Then $Y_{q-1} \cap \sum = \emptyset$ (Lemma 1.8) and $Y_q = \{g + n_0 \mid g \in A_{q-1}\}$, since $C_q = \emptyset$ according to Lemma 1.8

and $S_q=\varnothing$ since q>m, so one can define $\varphi:Y_{q-1}\to Y_q$ as $\varphi(g)=g+n_0$ that is one-to-one and onto. Then, according to Lemma 1.2, one has (b) if $m\leq n$, and the first statement of (a) for $q\geq m+1$ when $m\geq n+1$. Further, when $m\geq n+1$, one has $Y_{m-1}\cap\sum=\varnothing$, $A_{m-1}=\{g\in Y_{m-1}\mid g\notin\sum\}$ (Lemma 1.8) so $A_{m-1}=Y_{m-1}$; besides $Y_m=\{g+n_0\mid g\in A_{m-1}\}\cup S_m$ (Lemma 1.8) where $S_m\neq\varnothing$ according to the definition of m. Then card $(Y_m)>$ card (Y_{m-1}) , so $H_G(m)>H_G(m-1)$, see Lemma 1.2. \square

From Propositions 1.9 and 1.10, one has

Corollary 1.11. Let m, n be as in Lemma 1.8. The polynomial $\sum_{i=0,\ldots,s} h_i z^i$ has degree $s = \max(m,n)$ and $h_s > 0$.

2. In this section we consider the coefficient h_2 of the polynomial $\sum_{i=0,\ldots,s} h_i z^i$, and we show $h_2 \geq 0$ when Γ is minimally generated by an "almost arithmetic sequence." First we recall some known examples where $h_2 < 0$, e.g.,

$$A = [[t^{30}, t^{35}, t^{42}, t^{47}, t^{148}, t^{153}, t^{157}, t^{169}, t^{181}, t^{193}]] \\$$

defined by Herzog and Waldi in [2] and

$$A = [[t^{15}, t^{21}, t^{23}, t^{47}, t^{48}, t^{49}, t^{50}, t^{52}, t^{54}, t^{56}, t^{58}]]$$

defined by Eakin and Sathaye in [1]. By Remark 1.4, the following Lemma 2.1 and technical calculations, we have seen that the minimum value of n_0 such that $h_2 = H_G(2) - H_G(1)$ may be negative is $n_0 = 13$. We have found the following example with $h_2 < 0$, where embedding dimension or multiplicity are less than the ones in the previous examples:

$$A = [[t^{13}, t^{19}, t^{24}, t^{44}, t^{49}, t^{54}, t^{55}, t^{59}, t^{60}, t^{66}]]$$

where

$$S_2 = \{2n_1 = 38, n_1 + n_2 = 43, 2n_2 = 48\},\$$

 $B_1 = \{n_3, n_4, n_5, n_7\} = \{44, 49, 54, 59\},\$

so one has $h_2 = -1$ according to Remark 1.4. Further, one can see that

$$n_3 + n_0 = 3n_1$$
, $n_4 + n_0 = 2n_1 + n_2$,
 $n_5 + n_0 = n_1 + 2n_2$, $n_7 + n_0 = 3n_2$.

The following Lemma 2.1 and Corollary 2.2 show that certain elements of Γ are in S under suitable assumptions.

Lemma 2.1. Let $i \geq 1$. Let $g = \sum a_k n_k$ be such that $g \in B_i$ with $i = \sum a_k$, and $g + n_0 = \sum b_k n_k$ with $j = \sum b_k > i + 1$. Then the elements of the type $g' = \sum b'_k n_k$ with $b'_k \leq b_k$ for each k and $i + 1 \leq \sum b'_k \leq j$ belong to $S_a \cup C_a$ where $a = \max deg(g')$.

Proof. Let g' be as above. If $\sum b'_k = j$, i.e., if $b'_k = b_k$ for each k, then obviously $g' \in C_a$ where $a = \max \deg(g')$. Now we suppose $\sum b'_k \leq j-1$. If $g' \not\in S_a$, then $g' = n_0 + h$ with $h \in \Gamma$, then $g + n_0 = g' + \sum (b_k - b'_k) n_k = h + n_0 + \sum (b_k - b'_k) n_k$, so $g = h + \sum (b_k - b'_k) n_k$.

It follows that $i = \max \deg(g) \ge \max \deg(h) + \sum (b_k - b_k') = \max \deg(h) + j - \sum b_k'$, then $\max \deg(h) \le i - 1$. On the other hand, $h + n_0 = g' = \sum b_k' n_k$ so that $\max \deg(h + n_0) \ge \sum b_k' \ge i + 1$. Putting $a = \max \deg(g')$, it follows that $h \in \sum \cap Y_q$ with q < a - 1. Then $g' \in C_a$. \square

Corollary 2.2. Let $i \geq 1$, and let g, g', a be as in Lemma 2.1. If $\sum \bigcap Y_q = \emptyset$ for q < a - 1, then $g' \in S_a$.

Proof. If $\sum \cap Y_q = \emptyset$ for q < a - 1, then $C_a = \emptyset$, so the result follows from Lemma 2.1. \square

When, in particular, Γ is minimally generated by an "almost arithmetic sequence," one can prove other properties of the elements of Σ and S. So, let $\Gamma = \langle m_0, \ldots, m_p, n \rangle$ where m_0, \ldots, m_p are an arithmetic sequence, i.e., $m_i = m_0 + id$ for each $i \in \{1, \ldots, p\}$ and n is arbitrary; suppose $\gcd(m_0, d, n) = 1$. First we show some properties

of the elements of \sum and S. We consider the two cases $n > m_0$ and $n < m_0$.

Case $n > m_0$. We need the following lemma.

Lemma 2.3. Let $\Gamma = \langle m_0, \dots, m_p, n \rangle$ where $m_i = m_0 + id$ for $1 \leq i \leq p$ and $n > m_0$.

Let $g = \sum_{k=0,\dots,p} a_k m_k \in \sum$ with $\sum a_k = \max \deg(g)$, and suppose $g + c_g m_0 = \sum_{k=0,\dots,p} b_k m_k + bn$, where $\sum b_k + b \ge \sum a_k + c_g + 1$. If $\sum b_k - \sum a_k - c_g \ge 0$, one has $\sum k b_k \ge p(\sum a_k - 1)$.

Proof. Put $a' = \sum a_k$, $b' = \sum b_k$. According to the assumptions, one has

$$(a'+c_g)m_0+igg(\Sigma k a_kigg)d=b'm_0+igg(\Sigma k b_kigg)d+bn.$$

We want to prove $\sum kb_k \ge p(a'-1)$. Otherwise, $\sum kb_k = cp + r$ with $c \le a'-2, \ 0 \le r < p$, so

$$igg(\Sigma k a_kigg)d=(b'-a'-c_g)m_0+cpd+rd+bn,$$

where c, r are as above and $b' - a' - c_g \ge 0$ by the assumption. By adding $a'm_0$, one gets

$$g = (b' - a' - c_g - c - 1 + a')m_0 + cm_p + m_r + bn,$$

then $\max \deg(g) \ge b' - a' - c_g + a' + b$. So, if $b' - a' - c_g \ge 1$, one has $\max \deg(g) \ge 1 + a' + b' \ge a' + 1$; if $b' - a' - c_g = 0$, one has $b \ge 1$, so $\max \deg(g) \ge a' + 1$. In any case, there is a contradiction. \square

Through Lemma 2.3, one can prove

Corollary 2.4. Let Γ be as in Lemma 2.3. Let $g = \sum a_k m_k \in \sum$ with $\sum a_k = \max \deg(g)$, and let $g + c_g m_0 = \sum b_k m_k + bn$ with $\sum b_k + b \ge \sum a_k + c_g + 1$. Then $\sum b_k \le \sum a_k + c_g - 1$ and $b \ge 2$.

Proof. Put $a = \sum a_k$ and $b' = \sum b_k$. According to the assumption (2.1) $b' + b \ge a + c_q + 1$

it is enough to show that $b' \leq a + c_g - 1$.

If $b' \geq a + c_q$, one has

(2.2)
$$\left(\Sigma k a_k \right) d = (b' - a - c_g) m_0 + \left(\Sigma k b_k \right) d + b n.$$

Now, if $b'-a-c_g=0$, one has $b\geq 1$ according to (2.1), otherwise $b'-a-c_g\geq 1$. In both cases, one has $\sum ka_k>\sum kb_k$ by (2.2). This inequality and Lemma 2.3 imply $p(a-1)\leq \sum kb_k<\sum ka_k\leq pa$, so $0<\sum ka_k-\sum kb_k\leq p$. Putting $q=\sum ka_k-\sum kb_k$ one has, according to the assumption, $m_q=(b'-a-c_g+1)m_0+bn$, a contradiction.

Corollary 2.5. Let Γ be as above, and let $g = \sum a_k m_k \in B_a$ with $a = \sum a_k$, $g + m_0 = \sum b_k m_k + bn$ with $\sum b_k + b \geq a + 2$. Then $\sum b_k \leq a - 1$ and $b \geq 3$.

Proof. Let $b' = \sum b_k$. According to Corollary 2.4, one has $b' \leq a$, $b \geq 2$. So it is enough to show that $b' \neq a$. Suppose b' = a. Then, by the assumption, one has

(2.3)
$$m_0 + \left(\Sigma k a_k\right) d = \left(\Sigma k b_k\right) d + bn,$$

where $n > m_0$, $b \ge 2$, so that $\sum ka_k - \sum kb_k > 0$.

Further, we note that if b'=a, one has $\sum kb_k\neq 0$, otherwise $\sum b_k m_k=b'm_0=am_0$, then $g=(a-1)m_0+bn$, that implies $g\notin Y_a$ since $b\geq 2$. So

$$0 < \Sigma k a_k - \Sigma k b_k < \Sigma k a_k \le ap$$

then

$$\sum ka_k - \sum kb_k = cp + r$$
 with $c \le a - 1$, $0 \le r < p$.

If c=0, one has $0 < \sum ka_k - \sum kb_k < p$; putting $q=\sum ka_k - \sum kb_k$, according to (2.3), one has $m_q=bn$, a contradiction. Now we have a contradiction also when $c \geq 1$. By the previous facts, one has

$$ap \ge \Sigma k a_k = \Sigma k b_k + cp + r \ge \Sigma k b_k + cp,$$

then

$$\sum kb_k \leq (a-c)p,$$

so

$$\sum kb_k = \delta p + r'$$
 with $\delta < a - c$, $1 \le r' \le p$.

Then $g = (a-c-\delta-1)m_0 + \delta m_p + m_{r'} + (c-1)m_0 + bn$ with $b \ge 2$, so max deg $(g) \ge a+1$, a contradiction. \Box

Corollary 2.6. Let Γ be as in Lemma 2.3. If $\{m_1, \ldots, m_p\} \cap B_1 \neq \emptyset$, then there is only one $i' \in \{1, \ldots, p\}$ such that $m_{i'} \in B_1$ and one has $m_{i'} + m_0 = bn$ with $b = \max \deg(bn) \geq 3$.

Proof. If $m_i \in B_1$, according to Corollary 2.5 with a=1, one has necessarily $m_i + m_0 = bn$ with $b \geq 3$ and there is only one i, say i', satisfying the previous equation since Γ is minimally generated; further, according to the above uniqueness, one has $b = \max \deg(bn)$.

Now we show some properties of S.

Lemma 2.7. Let Γ be as in Lemma 2.3. Let $g = \sum a_k m_k \in B_a$ with $a = \sum a_k$. Then $g + m_0 = \sum b_k m_k + bn$ with $\sum b_k + b \geq a + 2$, $b \geq 3$, and, further, if

- (i) $b \geq a$ and
- (ii) $\{h \in \sum \mid \max \deg (h) \leq a 2\} = \emptyset$, one has

$$\sum b_k m_k + (b-1)n \in S$$
.

Proof. Let g be as above. Since $c_q = 1$, one has

(2.4)
$$g + m_0 = \sum b_k m_k + bn$$
 with $\sum b_k + b \ge a + 2$ and $b \ge 3$

according to Corollary 2.5. Now put $a = \sum a_k$ and suppose that (i) and (ii) hold.

If $\sum b_k m_k + (b-1)n \notin S$, then $\sum b_k m_k + (b-1)n = m_0 + h$ with $h \in \Gamma$, so that g = h + n, that implies $\max \deg(h) \leq a - 1$. Now let

 $h = \sum c_k m_k + c'n$ be such that $\sum c_k + c' = \max \deg(h)$; then putting $c = \sum c_k$, one has $c + c' \le a - 1$.

Step 1. First we show that c' = 0. One has, according to (2.4):

$$\sum c_k m_k + (c'+1)n + m_0 = \sum b_k m_k + bn$$

where $\sum b_k + b \ge a + 2$. Now, if $c' + 1 \le b$, one has $\sum c_k m_k + m_0 = \sum b_k m_k + (b - c' - 1)n$ where $c = \max \deg (\sum c_k m_k)$ (since $c + c' = \max \deg (h)$) and

$$\sum b_k + b - c' - 1 \ge a + 2 - c' - 1 = a - c' + 1 \ge c + 2$$

so $\sum c_k m_k \in \sum \cap Y_c$ where $c \leq a - c' - 1$; this implies c' = 0 according to assumption (ii).

On the other hand, c'+1 cannot be greater than b; otherwise, $\sum c_k m_k + (c'+1-b)n + m_0 = \sum b_k m_k$, where $b \geq 2$, $c+c'+1-b = \max \deg (\sum c_k m_k + (c'+1-b)n)$, since $\max \deg (h) = c+c'$, and

$$\sum b_k \ge a+2-b \ge c+c'+1+2-b = (c+c'+1-b)+2$$
,

then

$$\sum c_k m_k + (c'+1-b)n \in \Sigma \cap Y_{c+c'+1-b},$$

where $c + c' + 1 - b \le a - b \le a - 3$, since $b \ge 3$, that contradicts (ii).

According to Step 1, let $h = \sum c_k m_k$ with $c = \sum c_k = \max \deg(h)$. Then $c \le a - 1$ and $\sum a_k m_k = g = h + n = \sum c_k m_k + n$, so

$$(2.5) \quad (a-c)m_0 + \left(\Sigma k a_k\right) d = \left(\Sigma k c_k\right) d + n, \quad \text{where } a-c \ge 1.$$

Step 2. In (2.5) one has necessarily that $\sum ka_k < \sum kc_k$. In fact, if $\sum ka_k \ge \sum kc_k$, putting $r = \sum ka_k - \sum kc_k \ge 0$, one has, by (2.5),

$$(a-c)m_0 + rd = n.$$

So, if $r \leq (a-c)p$, one has $n \in \langle m_0, \ldots, m_p \rangle$, a contradiction.

If r > (a-c)p, then $n > (a-c)m_0 + (a-c)pd = (a-c)m_p \ge m_p$ so that $n > m_p$. So, if $\sum b_k = 0$, one has $g + m_0 = bn \ge (a+2)n > am_p + m_0 \ge g + m_0$; if $\sum b_k \ge 1$, one has $g + m_0 = \sum b_k m_k + bn \ge m_0 + an > m_0 + am_p \ge m_0 + g$, contradictions.

Step 3. Finally, we get a contradiction.

In (2.5), one has $(a-c)m_0 = (\sum kc_k - \sum ka_k)d + n$, where $a-c \ge 1$, according to Step 2. Now, if $a-c \ge 2$, one has $c = \max \deg(h) \le a-2$, then $h \in \sum \cap Y_c$ with $c \le a-2$ (in fact, as we have supposed, $h+m_0 = \sum b_k m_k + (b-1)n$ with $\sum b_k + b - 1 \ge a + 2 - 1 = a + 1 \ge 2 + c + 1 = c + 3$ that contradicts (ii); finally, if a-c = 1, one has $m_0 > n$, a contradiction.

From Lemma (2.7), one has immediately

Corollary 2.8. Let Γ be as in Lemma (2.3). If $g = \sum a_k m_k \in B_2$ and $g + m_0 = \sum b_k m_k + bn$ with $\sum b_k + b \geq 4$, then $b \geq 3$ and $\sum b_k m_k + (b-1)n \in S$.

Case $n < m_0$.

Lemma 2.9. Let $\Gamma = \langle m_0, \dots, m_p, n \rangle$ where $m_i = m_0 + id$ for $1 \leq i \leq p$, and let $n < m_0$. Let $g = \sum a_k m_k \in \sum$ with $\sum a_k = \max deg(g)$. Then there exist $b, c, r \in \mathbf{N}$ such that

$$g + c_n n = (b - c - 1)m_0 + cm_n + m_r$$

with b - c - 1 > 0, $b \ge \sum a_k + c_q + 1$,

$$c \leq \min \left\{ \Sigma a_k - 1, \left[rac{\Sigma k a_k}{p}
ight]
ight\}$$

and $0 \le r < p$.

Proof. Let g be as above. Then $g+c_gn=\sum b_km_k$ with $\sum b_k\geq \sum a_k+c_g+1$, and one can choose $\sum b_km_k$ such that $\sum b_k=\max \deg (g+c_gn)$. Put $a=\sum a_k,\ b=\sum b_k$. Then

(2.6)
$$am_0 + \left(\Sigma k a_k\right) d + c_g n = bm_0 + \left(\Sigma k b_k\right) d$$

where $b-a-c_g \geq 1$ so, since $n < m_0$, $(b-a-c_g)m_0 + (\sum kb_k)d < (\sum ka_k)d$, which implies $\sum ka_k > \sum kb_k$. So, if $\sum kb_k = cp+r$, $\sum ka_k = c'p+r'$ (where $0 \leq r < p$, $0 \leq r' < p$), one has

$$c \le c' = \left\lceil \frac{\sum k a_k}{p} \right\rceil$$

and $c \leq a - 1$, since $cp \leq \sum kb_k < \sum ka_k \leq pa$. Then, according to (2.6),

$$g + c_q n = b m_0 + c p d + r d = (b - c - 1) m_0 + c m_p + m_r$$

where

$$b \geq a + c_g + 1 > a + 1 > c + 1,$$
 $c \leq \min\left\{a - 1, \left\lceil rac{\Sigma k a_k}{p}
ight
ceil
ight\}, \quad 0 \leq r < p.$

Corollary 2.10. Let Γ be as in Lemma 2.9. If $B_1 \neq \emptyset$, let $g = m_i \in B_1$, $i \in \{1, \dots, p\}$. Then

- (a) if $i = \min\{j \in \{1, ..., p\} \mid m_j \in B_1\}$, one has $m_i + n = bm_0$ with $b \geq 3$ and $b = \max \deg(bm_0)$;
- (b) if $i > \min\{j \in \{1, \dots, p\} \mid m_j \in B_1\}$, then $m_i + n = m_r + b'm_0$ with 0 < r < p, $r \neq i$, $b' \geq 2$, $1 + b' = \max \deg(m_r + b'm_0)$.

Proof. Let $m_i \in B_1$. Then, according to Lemma 2.9,

$$(2.7) m_i + n = (b-1)m_0 + m_r with b > 3, 0 < r < p,$$

and one can show that $b = \max \deg ((b-1)m_0 + m_r)$. Then $m_0 + id + n = bm_0 + rd$, i.e.,

$$(2.8) id + n = (b-1)m_0 + rd,$$

so
$$(b-1)m_0 + rd < id + m_0$$
, since $n < m_0$, where $b-1 \ge 2$.

Then $(b-2)m_0 + rd < id$ that implies r < i, so, according to (2.8), $(i-r)d + n = (b-1)m_0$ where $0 < i-r \le p$. Then $m_{i-r} + n = bm_0$ with $b \ge 3$, so $m_{i-r} \in B_1$.

Now, if $i = \min\{j \in \{1, \dots, p\} \mid m_j \in B_1\}$ necessarily one has r = 0, so, according to (2.7), $m_i + n = bm_0$ with $b \ge 3$. On the other hand, if $i > \min\{j \in \{1, \dots, p\} \mid m_j \in B_1\}$, one has in (2.7): r > 0 and $r \ne i$. Then $m_i + n = b'm_0 + m_r$ with $b' \ge 2$, 0 < r < p, $r \ne i$.

Now one can show

Proposition 2.11. Let $\Gamma = \langle m_0, \dots, m_p, n \rangle$ where $m_i = m_0 + id$, $1 \leq i \leq p$. Then $h_2 \geq 0$.

Proof. According to Remark 1.4, it is enough to show that card $(S_2) \ge \operatorname{card}(B_1)$, where

$$S_2 = \{ s \in S \mid \max \deg(s) = 2 \},$$

 $B_1 = \{ g \in Y_1 \cap \Sigma \mid c_q = 1 \}.$

We consider the two cases $n > m_0$ and $n < m_0$.

Case 1. $n > m_0$. In view of Corollary 2.6, B_1 can be one of the following sets: $\{m_{i'}\}$ or $\{m_{i'},n\}$ or $\{n\}$ or \varnothing where $m_{i'}$ is as in Corollary 2.6. If $m_{i'} \in B_1$, then $m_{i'} + m_0 = bn$ with $b \geq 3$, $b = \max \deg(bn)$, see Corollary 2.6. So the element $2n \in Y_2$ and further 2n belongs to S_2 according to Corollary 2.2. If $n \in B_1$, one has $n + m_0 = \sum b_k m_k$ with $\sum b_k \geq 3$. So, by Corollary 2.2, each element of the type $\sum b_k' m_k$ with $b_k' \leq b_k$ and $\sum b_k' = 2$ belongs to S_2 . So, in any case one has card $(S_2) \geq \operatorname{card}(B_1)$.

Case 2. $n < m_0$. In this case n, m_0 cannot be in B_1 , so $B_1 \subset \{m_1, \ldots, m_p\}$. Let $B_1 = \{m_{i_0}, \ldots, m_{i_k}\}$ with $i_0 < i_1 < \cdots < i_k$. Then, according to Corollary 2.10,

$$\begin{split} m_{i_0} + n &= b_0 m_0, \\ m_{i_1} + n &= m_{j_1} + b_1 m_0, \\ \vdots \\ m_{i_k} + n &= m_{j_k} + b_k m_0 \end{split}$$

with

$$b_0 = \max \deg (b_0 m_0) \ge 3$$

and for each $q \in \{1, \ldots, k\}$, one has

$$1 \leq j_q < p, \quad j_q \neq i_q, \quad 1 + b_q = \max \deg \ (m_{j_q} + b_q m_0) \geq 3.$$

So, $2m_0, m_{j_1} + m_0, \ldots, m_{j_k} + m_0$ belong to Y_2 . Further, one can easily note that $m_{j_q} \neq m_{j_{q'}}$ when $m_{i_q} < m_{i_{q'}}$; otherwise, $b_q < b_{q'}$ and $m_{i_{q'}} = m_{i_q} + (b_{q'} - b_q)m_0$). So the elements m_{i_1}, \ldots, m_{j_k} are all distinct. Then, according to Corollary (2.2), the set S_2 contains $2m_0, m_{j_1} + m_0, \ldots, m_{j_k} + m_0$. Then card $(S_2) \geq \operatorname{card}(B_1)$.

3. In this section we show $h_3 \geq 0$ when $\Gamma = \langle m_0, m_1, m_2, n \rangle$ where m_0, m_1, m_2 are an arithmetic sequence. We recall that, according to Section 1, one has

$$h_3 = \operatorname{card}(S_3) + \operatorname{card}(C_3) - \operatorname{card}(B_2)$$

and, in particular,

$$h_3 = \operatorname{card}(S_3) - \operatorname{card}(B_2)$$

when $B_1 = \emptyset$, see Remark 1.4. Throughout this section Γ will be minimally generated by m_0, m_1, m_2, n , with $m_i = m_0 + id$ for $i \in \{1, 2\}$.

We start with the case $m_0 < n$. In this situation $m_0 \notin \sum$; further, we can show

Lemma 3.1. Let $m_0 < n$. Only one of the following situations can happen:

(3.1)
$$m_1 + m_0 = bn$$
 with $b = \max \deg(bn) > 3$

or

$$(3.2) m_2 + m_0 = cn with c = \max \deg(cn) \ge 3$$

or

(3.3)

 $n + m_0 = m_1 + a_2 m_2$ where $a_2 \ge 2, 1 + a_2 = \max \deg (m_1 + a_2 m_2)$

or

$$(3.4)$$
 $n + m_0 = a_2 m_2$ where $a_2 = \max \deg (a_2 m_2) \ge 3$

or

$$(3.5) B_1 = \varnothing.$$

Further, when (3.1) or (3.2) holds, one has $n < m_1$; when (3.3) or (3.4) holds, then $n > m_2$.

Proof. When $B_1 \neq \emptyset$ and $\{m_1, m_2\} \cap B_1 \neq \emptyset$, then (3.1) or (3.2) holds, according to Corollary 2.6. In each of these cases, one can see that $n < m_1$. Further, when $n \in B_1$, one has $n + m_0 = a_1 m_1 + a_2 m_2$ with $a_1 + a_2 \geq 3$. This implies that $a_1 \leq 1$, since $2m_1 = m_0 + m_2$, so $a_2 \geq 2$ and one has (3.3) or (3.4). In these cases it is clear that $n > m_2$. So, if (3.1) or (3.2) holds, one has $n < m_1$, while $n > m_2$ if (3.3) or (3.4) holds. Then the result follows.

Lemma 3.2. Let $m_0 < n$. If (3.1) or (3.2) holds, then $2m_0, m_0 + n$, 2n belong to $Y_2 - B_2$.

Proof. Suppose (3.1) or (3.2) holds. Since $m_0 < n < m_1 < m_2$, according to the assumption and Lemma 3.1, one obviously has $2m_0, m_0 + n \in Y_2 - B_2$. Further, $2n \in Y_2$, since $b = \max \deg(bn)$ (respectively, $c = \max \deg(cn)$). Finally it is clear that $2n \notin B_2$.

Lemma 3.3. Let $m_0 < n$. If (3.1) holds, then

- (1) if $n + m_2$, respectively $2m_2$, $\in Y_2$, then $n + m_2$, respectively $2m_2$, $\notin B_2$;
 - (2) $B_2 \subset \{m_0 + m_2 = 2m_1, n + m_1, m_1 + m_2\}.$

Proof. (1) Suppose (3.1) holds. If $n+m_2 \in Y_2$, then $n+m_2 \notin B_2$; otherwise $n+m_2+m_0=am_1$ with $a\geq 4$, since (3.1) implies m_2 , $n\notin B_1$ by Lemma 3.1. It follows that $n\in \langle m_1\rangle$. If $2m_2\in Y_2$, then $2m_2\notin B_2$; otherwise, $2m_2+m_0=a_0n+a_1m_1$ with $a_0+a_1\geq 4$, since (3.1) implies $m_2\notin B_1$ by Lemma 3.1, i.e., $m_2+2m_1=a_0n+a_1m_1$, so

that $a_1 \leq 1$. According to (3.1), if $a_1 = 1$, one obtains $m_2 \in \langle m_0, n \rangle$; if $a_1 = 0$, then $2m_2 = m_1 + (a_0 - b)n$ with $(a_0 - b) \geq 2$, since $n < m_i$ for i = 1, 2, so $2m_2 \notin Y_2$.

(2) follows immediately from Lemmas 3.2, 3.3 and the fact that $m_1 + m_0 \in Y_b$ for $b \geq 3$ according to (3.1).

Lemma 3.4. Let $m_0 < n$. If (3.1) holds, one has

- (i) if $n + m_1 \in Y_2$, then $3n \in S_3 \cup C_3$;
- (ii) if $2m_1 \in Y_2$, then $m_1 + 2n \in S_3 \cup C_3$;
- (iii) if $m_1 + m_2 \in Y_2$, one has $m_2 + 2n \in S_3 \cup C_3$.

Proof. By (3.1), one has $m_1+n+m_0=(b+1)n$, $2m_1+m_0=m_1+bn$, $m_1+m_2+m_0=m_2+bn$, where $b\geq 3$. So, according to Lemma 2.1, in order to obtain (i), respectively (ii), (iii), it is enough to show that 3n, respectively m_1+2n , m_2+2n , $\in Y_3$. One can easily prove it, according to the assumptions.

Lemma 3.5. Let $m_0 < n$. If (3.2) holds, then

- (1) $m_0 + m_1 \notin B_2$;
- (2) if $n + m_1 \in Y_2$, then $n + m_1 \notin B_2$;
- (3) $B_2 \subset \{n+m_2, m_1+m_2, 2m_2\}.$
- Proof. (1) If $m_0 + m_1 \in B_2$, one has $m_1 + 2m_0 = a_1n + a_2m_2$ with $a_1 + a_2 \geq 4$, since $2m_0 \in Y_2$ and (3.2) implies $m_1 \notin B_1$, see Lemma 3.1. First we note that $a_2 \leq 1$; otherwise, $m_0 = a_1n + 3d + \cdots$, so a_1 must be zero, since $m_0 < n$, then $a_2 \geq 4$, that implies $0 \geq m_0 + 7d$, a contradiction. Then $m_1 + 2m_0 = a_1n$ or $m_1 + 2m_0 = a_1n + m_2$, with $a_1 \geq 4$, respectively, $a_1 \geq 3$. In any case we have contradictions, according to (3.2), respectively, since $m_0 < n$, $m_1 < m_2$.
- (2) Suppose $n + m_1 \in Y_2$. One has $n + m_1 \notin B_2$; otherwise, $n + m_1 + m_0 = a_2 m_2$ with $a_2 \geq 4$ (since (3.2) implies $m_1, n \notin B_1$, see Lemma 3.1) a contradiction.
- (3) follows immediately from Lemmas 3.2, 3.5 (1), (2) and the fact that $m_2 + m_0 = 2m_1 \in Y_c$ with $c \geq 3$, according to (3.2).

Lemma 3.6. Let $m_0 < n$. If (3.2) holds, one has

- (i) if $n + m_2 \in Y_2$, then $3n \in S_3 \cup C_3$;
- (ii) if $m_1 + m_2 \in Y_2$, then $m_1 + 2n \in S_3 \cup C_3$;
- (iii) if $2m_2 \in Y_2$, one has $m_2 + 2n \in S_3 \cup C_3$.

Proof. It is completely similar to the proof of Lemma 3.4.

Corollary 3.7. *Let* $m_0 < n$. *If* (3.1) *or* (3.2) *holds, then* $h_3 \ge 0$.

Lemma 3.8. Let $m_0 < n$. If (3.3) or (3.4) holds, then

- (1) $2m_0$, $m_0 + m_1$, $2m_2$ belong to $Y_2 B_2$;
- (2) if $2m_1$, respectively $m_1 + m_2$, belongs to Y_2 , then $2m_1$, respectively $m_1 + m_2$, does not belong to B_2 .
- *Proof.* (1) Suppose (3.3) or (3.4). Since $n > m_2$, see Lemma 3.1, one has $2m_0$, $m_0 + m_1 \in Y_2 B_2$. Further, $2m_2 \in Y_2$, since $1 + a_2 = \max \deg (m_1 + a_2 m_2)$, respectively, $a_2 = \max \deg (a_2 m_2)$. Finally, $2m_2 \notin B_2$, otherwise $2m_2 + m_0 = b_1 m_1 + b_2 n$ with $b_1 + b_2 \ge 4$ (since $m_2 \notin B_1$ when (3.3) or (3.4) holds, see Lemma 3.1), then $b_2 \le 1$, $b_1 \ge 3$ (since $n > m_2$) with $2m_1 = m_0 + m_2$, a contradiction.
- (2) Let $2m_1 \in Y_2$. If $2m_1 \in B_2$, then $2m_1 + m_0 = b_2m_2 + b_3n$ with $b_2 + b_3 \geq 4$ (since $m_0 + m_1 \in Y_2$, see (1)), a contradiction. Let $m_1 + m_2 \in Y_2$. Then $m_1 + m_2 \notin B_2$; otherwise, $m_1 + m_2 + m_0 = bn$ with $b \geq 4$ (since m_1 and m_2 do not belong to B_1 when (3.3) or (3.4) holds, see Lemma 3.1), a contradiction, since $n > m_2$.

Corollary 3.9. Let $m_0 < n$.

- (1) If (3.3) holds, one has $B_2 \subset \{m_2 + n, 2n\}$;
- (2) If (3.4) holds, then $B_2 \subset \{m_1 + n, m_2 + n, 2n\}$.

Proof. First we note that $m_0 + n \in Y_q$ with $q \ge 3$ when (3.3) or (3.4) holds. Further, one can show that max deg $(m_1 + n) \ge 3$ when (3.3) holds. So the result follows from Lemma 3.8. \square

Lemma 3.10. Let $m_0 < n$, and suppose that (3.3) or (3.4) holds.

- (i) if $2n \in Y_2$, then $n + 2m_2 \in S_3 \cup C_3$;
- (ii) if $m_1 + n \in Y_2$, then $m_1 + 2m_2 \in S_3 \cup C_3$;
- (iii) if $m_2 + n \in Y_2$, then $3m_2 \in S_3 \cup C_3$.

Proof. It is similar to the proof of Lemma 3.4. As regards (ii), it is useful to note that when (3.4) holds, if $m_1 + n \in Y_2$, then also $m_1 + m_2 \in Y_2$. \square

Corollary 3.11. *Let* $m_0 < n$. *If* (3.3) *or* (3.4) *holds, one has* $h_3 \ge 0$.

Lemma 3.12. Let $m_0 < n$. Suppose (3.5) holds. If B_2 contains some elements of the type $m_i + m_j$, $i, j \in \{0, 1, 2\}$, then only one of the following facts holds:

(3.6)
$$2m_2 + m_0 = m_1 + bn \quad \text{with } 2m_2 \in Y_2, \\ 1 + b = \max \deg (m_1 + bn) \ge 4$$

or

or

or

or

(3.10)
$$2m_2 + m_0 = c_{22}n \quad \text{with } 2m_2 \in Y_2,$$

$$c_{22} = \max \deg (c_{22}n) \ge 4.$$

Proof. Let $m_i + m_j \in B_2$. Then, by Corollary 2.5, one has

$$(\alpha_{ij})$$
 $m_i + m_j + m_0 = m_a + b_0 n$ with $b_0 \ge 3$

or

$$(\beta_{ij}) m_i + m_j + m_0 = c_{ij}n \text{with } c_{ij} \ge 4$$

where one can see that $1 + b_0 = \max \deg (m_a + b_0 n)$ and $c_{ij} = \max \deg (c_{ij} n)$.

Now, according to the assumptions, it is easy to verify that one cannot have (α_{ij}) when i = j = 0, (i, j) = (0, 1), (i, j) = (0, 2), (i, j) = (1, 1), (i, j) = (1, 2). So, one can have only the following situation of "type (α_{ij}) ":

$$(\alpha_{22})$$
 $2m_2 + m_0 = m_1 + bn \text{ with } b \ge 3,$ $1 + b = \max \deg (m_1 + bn).$

Further, one cannot have (β_{ij}) for (i,j) = (0,0) and, if each of the situations (β_{ij}) with $(i,j) \neq (0,0)$ holds, then (α_{22}) cannot hold. Besides, each (β_{ij}) with $(i,j) \neq (0,0)$ excludes the other ones; we show the proof only for (β_{01}) and (β_{22}) since the other proofs are very simple.

If one has (β_{01}) and (β_{22}) , then $3d = (c_{22} - c_{01})n$ where $c_{22} - c_{01} \notin 3\mathbf{Z}$ since $m_i \notin \langle m_0, n \rangle$ for $i \in \{1, 2\}$, then $c_{22} - c_{01} = 3q + r$ with $r \in \{1, 2\}$ and n = 3n' with $n' \in \mathbf{N} - \{0\}$. Then d = (3q + r)n', so $3c_{01}n' = 3m_0 + 3qn' + rn'$, that implies n' = 3n'', since $r \in \{1, 2\}$, and further $n''(3c_{01} - 3q - r) = m_0$. It follows that n'' = 1, since $\gcd(n, d, m_0) = 1$, n = 9, $m_0 = 4c_{01} - c_{22}$, $m_1 = c_{01} + 2c_{22}$, $m_2 = 5c_{22} - 2c_{01}$. This implies $m_2 = 4m_0 + (c_{22} - 2c_{01})n$, where $c_{22} - 2c_{01} \ge 0$, otherwise $d < (3/2)m_0$; so, according to (β_{01}) , one has $2c_{01} < m_0$, so $m_0 \ge 9$ (= n), a contradiction. \square

Corollary 3.13. Let $m_0 < n$. Suppose (3.5) holds. If $2m_2$, respectively $m_0 + m_1$ or $m_0 + m_2$ or $m_1 + m_2$, $\in B_2$ and (3.6) or (3.10), respectively, (3.7) or (3.8) or (3.9), holds, then $3n \in S_3$.

Proof. According to (3.6) or (3.10), respectively (3.7) or (3.8) or (3.9), one has $3n \in Y_3$; the result then follows from assumption (3.5) and Corollary 2.2.

Lemma 3.14. Let $m_0 < n$, and suppose (3.5). Then $m_0 + n \in Y_2$. Further, if B_2 contains elements of the type $m_i + n$, then $i \in \{0,1\}$ and

the following facts can happen:

$$(3.11) (m_0 + n) + m_0 = a_0 m_2 with a_0 = \max \deg (a_0 m_2) \ge 4$$

or

(3.12)
$$m_1 + n \notin Y_1, \quad (m_0 + n) + m_0 = m_1 + c_2 m_2$$
 with $1 + c_2 = \max \deg (m_1 + c_2 m_2) \ge 4$

or

(3.13)

$$m_1+n\in Y_2,\quad (m_0+n)+m_0=m_1+c_2m_2\quad and$$
 $(m_1+n)+m_0=a_1m_2\quad with\ 1+c_2=\max\deg\ (m_1+c_2m_2)\geq 4$ $and\ a_1=\max\deg\ (a_1m_2)\geq 4.$

Proof. Since $B_1=\varnothing$, it is clear that $m_0+n\in Y_2$. Suppose $m_i+n\in B_2$. Then one has $m_i+n+m_0=c_1m_1+c_2m_2$ (since $m_i+n\in Y_2,\ m_i\notin B_1$) with $c_1+c_2\geq 4$ and $i\neq 2$, otherwise, $c_2=0$, since $n\notin B_1$, which implies that $c_1\geq 4$ and $n\in \langle m_1\rangle$. Further, since $n\notin B_1$, one has $c_1\leq 1$ if $i=0,\ c_1=0$ if i=1. So we have to consider only the following cases:

- (i) $(m_0 + n) + m_0 = a_0 m_2$ with $a_0 \ge 4$,
- (ii) $(m_0 + n) + m_0 = m_1 + c_2 m_2$ with $1 + c_2 \ge 4$,
- (iii) $(m_1 + n) + m_0 = a_1 m_2$ with $a_1 \ge 4$,

where $a_0 = \max \deg (a_0 m_2)$, $1 + c_2 = \max \deg (m_1 + c_2 m_2)$ when $m_0 + n \in Y_2$, $a_1 = \max \deg (a_1 m_2)$ when $m_1 + n \in Y_2$.

Now if (ii) holds, one has (by adding d):

$$(m_1 + n) + m_0 = (1 + c_2)m_2$$
 with $1 + c_2 \ge 4$;

on the other hand, if (iii) holds, one has (by subtracting d)):

$$(m_0 + n) + m_0 = m_1 + (a_1 - 1)m_2$$
 with $a_1 \ge 4$.

So each of the facts (ii) and (iii) implies the other one.

Further, (i)
$$\cap$$
 (ii) = \emptyset .

Corollary 3.15. Let $m_0 < n$ and suppose (3.5). If (3.11) holds, then $3m_2 \in S_3$. If (3.12) holds, one has $m_1 + 2m_2 \in S_3$. If (3.13) holds, then $3m_2, m_1 + 2m_2 \in S_3$.

Proof. According to (3.11), respectively, (3.12) or (3.13), one has $3m_2$, respectively $m_1 + 2m_2$ or $3m_2$ and $m_1 + 2m_2$, $\in Y_3$. Then the result follows from the assumption (3.5) and from Corollary 2.2.

Lemma 3.16. Let $m_0 < n$, and suppose (3.5). If $2n \in B_2$, then

(3.14)
$$2n + m_0 = b_1 m_1 + b_2 m_2 \quad \text{with } 2n \in Y_2,$$

$$b_1 + b_2 = \max \deg (b_1 m_1 + b_2 m_2) \ge 4 \quad \text{and } b_1 \in \{0, 1\}.$$

Further,

- (1) if $b_i \neq 0$ for i = 1, 2, one has $m_1 + 2m_2 \in S_3$;
- (2) if $b_1 = 0$, then $3m_2 \in S_3$;
- (3) if $b_1 = 1$, then $m_1 + 2m_2$, $3m_2 \in S_3$.

Proof. Follows from the assumptions and Corollary 2.2.

Corollary 3.17. Let $m_0 < n$ and suppose (3.5). Then $h_3 \ge 0$.

Proof. First we remark

$$(3.14) \cap (3.11) = (3.14) \cap (3.13) = \emptyset$$

if $b_1 = 0$;

$$(3.14) \cap (3.12) = (3.14) \cap (3.13) = \emptyset$$

if $b_1 = 1$. Moreover, when $2n \notin B_2$, one easily sees that card $(S_3) \ge \operatorname{card}(B_2)$ according to Corollaries 3.13 and 3.15.

Now we consider the case $\Gamma = \langle m_0, m_1, m_2, n \rangle$ with $n < m_0$. As regards B_1 , one can prove

Lemma 3.18. Let Γ be as above, $n < m_0$. Only one of the following situations can happen:

(3.15)
$$m_1 + n = cm_0, \quad m_2 + n = (c-1)m_0 + m_1$$
 with $c = \max \deg(cm_0) = \max \deg((c-1)m_0 + m_1) \ge 3$

or

(3.16)
$$m_2 + n = c'm_0$$
 with $c' = \max \deg(c'm_0) \ge 3$ and $m_1 \notin B_1$

or

$$(3.17) B_1 = \varnothing.$$

Proof. Since $n < m_0$, one obviously has $n, m_0 \notin B_1$. So, when $B_1 \neq \emptyset$, one has $m_1 \in B_1$ or $m_1 \notin B_1$. Then, according to Corollary 2.10, if $m_1 \in B_1$, respectively if $m_1 \notin B_1$, then (3.15), respectively (3.16), holds. \square

Lemma 3.19. Let $n < m_0$. If (3.15) or (3.16) holds, then

- (i) $2n, n + m_0$ belong to $Y_2 B_2$;
- (ii) $2m_0 \in Y_2 B_2$;
- (iii) $n + m_1$, $n + m_2$ do not belong to B_2 .

Proof. (i) Since $n < m_i$, $m_0 < m_i$ for i = 1, 2, one immediately has $2n \in Y_2 - B_2$, $n + m_0 \in Y_2 - B_2$.

- (ii) Suppose (3.15) or (3.16) holds. Then $2m_0 \in Y_2$, since $c = \max \deg ((c-1)m_0 + m_1)$, respectively $c' = \max \deg (c'm_0)$. Further, $2m_0 \notin B_2$; otherwise, (since $2m_0 \in Y_2$, $n \notin B_1$) $2m_0 + n = a_1m_1 + a_2m_2$ with $a_1 + a_2 \geq 4$, a contradiction.
- (iii) We have only to show that $n+m_1 \notin B_2$ if (3.16) holds. In this case $n+m_1 \in Y_2$, since $m_1 \notin B_1$; further, if $n+m_1 \in B_2$, one has $2n+m_1=a_0m_0+a_2m_2$ with $a_0+a_2\geq 4$, that implies $a_2=0$, so $n+c'm_0=(a_0-1)m_0+m_1$ with $c'\geq 3$, $a_0-1\geq 3$, a contradiction.

Corollary 3.20. Let $n < m_0$. If (3.15) or (3.16) holds, then

$$B_2 \subset \{m_0 + m_1, m_0 + m_2 = 2m_1, m_1 + m_2, 2m_2\}.$$

Remark. When (3.15) holds, one has that if $2m_2 \in Y_2$ then $m_1 + m_2 \in Y_2$.

Suppose $2m_2 \in Y_2$. If $m_1 + m_2 \notin Y_2$, one has $m_1 + m_2 = an + bm_0$ with $a + b \ge 3$; if $b \ge 1$, then $2m_2 = an + (b - 1)m_0 + m_1$; if b = 0, then $a \ge 3$ and $2m_2 = (a - 1)n + (c - 1)m_0$, so that max deg $(2m_2) \ge 3$.

Lemma 3.21. Let $n < m_0$. If (3.15) holds, then

- (i) if $m_1 + m_0 \in Y_2$, then $3m_0 \in S_3 \cup C_3$;
- (ii) if $2m_1 \in Y_2$, then $2m_0 + m_1 \in S_3 \cup C_3$;
- (iii) if $m_1 + m_2 \in Y_2$, then $2m_0 + m_2 \in S_3 \cup C_3$;
- (iv) if $2m_2 \in Y_2$, then $3m_1 \in S_3 \cup C_3$.

Proof. If (3.15) holds, one has that $m_1 + m_0 + n = (c+1)m_0$, $2m_1+n = m_1+cm_0$, $m_1+m_2+n = m_2+cm_0$, $2m_2+n = (c-2)m_0+3m_1$, where $c \geq 3$. So, according to Lemma 2.1, in order to have the result it is enough to show that $3m_0$, respectively $2m_0+m_1$, $2m_0+m_2$, $3m_1$, belongs to Y_3 . One can prove it, according to the assumptions. \square

Lemma 3.22. Let $n < m_0$. If (3.16) holds, one has

- (i) if $m_0 + m_2 \in Y_2$, then $3m_0 \in S_3 \cup C_3$;
- (ii) if $m_1 + m_2 \in Y_2$, then $2m_0 + m_1 \in S_3 \cup C_3$;
- (iii) if $2m_2 \in Y_2$, then $2m_0 + m_2 \in S_3 \cup C_3$;
- (iv) $m_0 + m_1 \notin B_2$.

Proof. The proof of (i), (ii) and (iii) is similar to the proof of Lemma 3.21. Let us show (iv). Suppose (3.16) and $m_0+m_1\in Y_2$. Then, if $m_0+m_1\in B_2$, one has, by Lemma 2.9, $m_0+m_1+n=(b-1)m_0+m_r$ with $b\geq 4,\ 0\leq r<2$, then $m_1+n=(b-2)m_0+m_r$, which contradicts (3.16). \square

From Corollary 3.20, Lemma 3.21 and Lemma 3.22, one has

Corollary 3.23. Let Γ be as above, $n < m_0$. If $B_1 \neq \emptyset$, then $h_3 \geq 0$.

Lemma 3.24. Let $n < m_0$ and suppose (3.17) holds. If $m_i + m_j \in B_2$, $i, j \in \{0, 1, 2\}$, then (i, j) = (1, 2) or i = j = 2 and only one of the following facts holds:

(3.18)
$$m_1 + m_2 \in B_2, \quad 2m_2 \notin Y_2, \quad m_1 + m_2 + n = b_1 m_0$$
 with $b_1 = \max \deg(b_1 m_0) > 4$

or

$$(3.19) \quad m_1 + m_2 \in B_2, \quad 2m_2 \in Y_2, \quad m_1 + m_2 + n = b_1 m_0$$

$$(3.19) \quad and \quad 2m_2 + n = (b_1 - 1)m_0 + m_1 \quad with \ b_1 = \max \deg (b_1 m_0)$$

$$= \max \deg ((b_1 - 1)m_0 + m_1) \ge 4$$

or

$$(3.20) \ 2m_2 \in B_2, \quad 2m_2 + n = b_2 m_0 \quad \text{with } b_2 = \max \deg (b_2 m_0) \ge 4.$$

Further, if (3.19) holds, then $3m_0$, $2m_0 + m_1 \in S_3 \cup C_3$; if (3.18) or (3.20) holds, one has $3m_0 \in S_3 \cup C_3$.

Proof. According to Lemma 2.9 and the assumption $B_1 = \emptyset$, it is easy to see that $m_0 + m_1$, $m_0 + m_2 = 2m_1$ do not belong to B_2 . Further, if $2m_0 \in Y_2$, one has $2m_0 \notin B_2$; otherwise, $2m_0 + n = a_1m_1 + a_2m_2$ with $a_1 + a_2 \ge 4$, a contradiction. So, if $m_i + m_j \in B_2$, one has necessarily (i,j) = (1,2) or i = j = 2. If $m_1 + m_2 \in B_2$, then (since $B_1 = \emptyset$) only the following

(i)
$$m_1 + m_2 + n = b_1 m_0$$
 (with $b_1 \ge 4$)

can happen, so $b_1 = \max \deg(b_1 m_0)$. From (i) it also follows that $2m_2 + n = (b_1 - 1)m_0 + m_1$ where $b_1 \ge 4$ and $\max \deg((b_1 - 1)m_0 + m_1)$ when $2m_2 \in Y_2$.

When $2m_2 \in B_2$, if (i) does not hold, according to Lemma 2.9 only the following situation can happen:

(ii) $2m_2 + n = b_2m_0$ (with $b_2 \ge 4$) and one can see $b_2 = \max \deg (b_2m_0)$.

It is immediate to see that (i) \cap (ii) = \emptyset .

If (3.19) holds, then $3m_0$, $2m_0 + m_1$ both belong to Y_3 , according to the properties of b_1 ; so $3m_0$ and $2m_0 + m_1$ belong to $S_3 \cup C_3$ according to Lemma 2.1. In a similar way, one can show that $3m_0 \in S_3 \cup C_3$ when (3.18) or (3.20) holds. \square

Lemma 3.25. Let $n < m_0$, and suppose (3.17) holds. If $n+m_j \in B_2$, then only one of the following facts holds:

(3.21)
$$n + m_1 + n = k_1 m_0 \quad and \quad n + m_2 + n = (k_1 - 1) m_0 + m_1$$
$$with \quad n + m_1, n + m_2 \in Y_2$$

or

$$(3.22) n + m_2 + n = k_2 m_0 with n + m_2 \in Y_2$$

where $k_j = \max \deg(k_j m_0) \ge 4$ for $j \in \{1, 2\}$, $k_1 = \max \deg((k_1 - 1)m_0 + m_1)$.

Further, if (3.21) holds, one has $3m_0$ and $2m_0+m_1$ belongs to $S_3 \cup C_3$; if (3.22) holds, then $3m_0 \in S_3 \cup C_3$.

Proof. Clearly $n + m_0 \notin B_2$. If $n + m_1 \in B_2$ one has $2n + m_1 = k_1 m_0 + k_1' m_2$ with $k_1 + k_1' \ge 4$; it implies necessarily $k_1' = 0$, so one has $k_1 = k_1 + k_1' = \max \deg (k_1 m_0 + k_1' m_2)$ and $n + m_1 + n = k_1 m_0$, then also $n + m_2 + n = (k_1 - 1)m_0 + m_1$. Moreover, one can prove $n + m_2 \in Y_2$, so $n + m_2 \in B_2$ and one has $k_1 = \max \deg ((k_1 - 1)m_0 + m_1) \ge 4$.

If $n + m_2 \in B_2$ and (3.21) does not hold, then necessarily one has $2n + m_2 = k_2 m_0$ where $k_2 \geq 4$ and one has $k_2 = \max \deg(k_2 m_0)$, so (3.22) holds.

Clearly, $(3.21) \cap (3.22) = \emptyset$. If (3.21) holds, then, according to the properties of k_1 and Lemma 2.1, one has $3m_0$, $2m_0 + m_1$ belong to $S_3 \cup C_3$; in a similar way, one can see that $3m_0 \in S_3 \cup C_3$ when (3.22) holds. \square

Corollary 3.26. Let $n < m_0$, and suppose $B_1 = \emptyset$. Then one of the following facts can hold:

(i)
$$B_2 = \emptyset$$
,

or

- (ii) $B_2=\{2m_2\}$ or $B_2=\{n+m_2\}$ or $B_2=\{m_1+m_2\}$ and $3m_0\in S_3\cup C_3$ or
- (iii) $B_2 = \{m_1 + m_2, 2m_2\}$ or $B_2 = \{n + m_1, n + m_2\}$ and $3m_0, 2m_0 + m_1$ belong to $S_3 \cup C_3$.

In any case, one has $h_3 \geq 0$.

Proof. If $B_2 \neq \emptyset$, according to Lemmas 3.24 and 3.25, one has

$$B_2 \subset \{m_1 + m_2, 2m_2, n + m_1, n + m_2\} \cap Y_2.$$

Further, each of the conditions in $\{(3.18), (3.19), (3.20)\} \cup \{(3.21), (3.22)\}$ excludes the other ones.

Then B_2 cannot contain more than two elements. Now, according to Lemmas 3.24 and 3.25, one has that (ii) or (iii) holds and, in any case, $h_3 \geq 0$.

4. In this section we show an example for each of the conditions considered in Lemmas 3.1, 3.12, 3.14, 3.16, 3.18, 3.24 and 3.25.

Examples 4.1. Suppose $m_0 < n$.

- (1) Let $m_0 = 7$, $m_1 = 20$, $m_2 = 33$, n = 9. Then $m_1 + m_0 = 3n$, so
- (3.1) holds.
- (2) If $m_0 = 7$, $m_1 = 18$, $m_2 = 29$, n = 12, one has $m_2 + m_0 = 3n$, so
- (3.2) holds.
- (3) When $m_0 = 7$, $m_1 = 10$, $m_2 = 13$, n = 29, one has $n + m_0 = m_1 + 2m_2$, so (3.3) holds.
- (4) If $m_0 = 7$, $m_1 = 10$, $m_2 = 13$, n = 32, one has $n + m_0 = 3m_2$, so
- (3.4) holds.
- (5) When $m_0=9,\ m_1=13,\ m_2=17,\ n=10,$ then $2m_2\in Y_2,$ $B_1=\varnothing,\ 2m_2+m_0=m_1+3n,$ so (3.6) holds.
- (6) Let $m_0 = 9$, $m_1 = 22$, $m_2 = 35$, n = 10; then $m_0 + m_1 \in Y_2$, $B_1 = \emptyset$, $(m_0 + m_1) + m_0 = 4n$, so (3.7) holds.
- (7) If $m_0 = 8$, $m_1 = 14$, $m_2 = 20$, n = 9, one has $m_0 + m_2 \in Y_2$, $B_1 = \emptyset$, $(m_0 + m_2) + m_0 = 4n$, so (3.8) holds.

- (8) When $m_0 = 7$, $m_1 = 16$, $m_2 = 25$, n = 12, one has $m_1 + m_2 \in Y_2$, $B_1 = \emptyset$, $(m_1 + m_2) + m_0 = 4n$, so (3.9) holds.
- (9) If $m_0 = 10$, $m_1 = 19$, $m_2 = 28$, n = 11, then $2m_2 \in Y_2$, $B_1 = \emptyset$, $2m_2 + m_0 = 6n$, so (3.10) holds.
- (10) Let $m_0 = 9$, $m_1 = 13$, $m_2 = 17$, n = 50; then $m_0 + n \in Y_2$, $B_1 = \emptyset$, $(m_0 + n) + m_0 = 4m_2$, so that (3.11) holds.
- (11) When $m_0=8$, $m_1=11$, $m_2=14$, n=37, one has $m_0+n\in Y_2$, $m_1+n=6m_0\notin Y_2$, $B_1=\varnothing$, $(m_0+n)+m_0=m_1+3m_2$, so (3.12) holds.
- (12) If $m_0=9$, $m_1=13$, $m_2=17$, n=46, one has $m_0+n\in Y_2$, $m_1+n\in Y_2$, $B_1=\varnothing$, $(m_0+n)+m_0=m_1+3m_2$, $(m_1+n)+m_0=4m_2$, so (3.13) holds.
- (13) Let $m_0 = 9$, $m_1 = 14$, $m_2 = 19$, n = 31; then $2n \in Y_2$, $B_1 = \emptyset$, $2n + m_0 = m_1 + 3m_2$, so (3.14) holds.

Examples 4.2. Suppose $n < m_0$.

- (1) Let n = 6, $m_0 = 7$, $m_1 = 15$, $m_2 = 23$; one has $m_1 + n = 3m_0$ and $m_2 + n = 2m_0 + m_1$, so (3.15) holds.
- (2) If n = 6, $m_0 = 7$, $m_1 = 11$, $m_2 = 15$, then $m_2 + n = 3m_0$, $m_1 \notin B_1$ and (3.16) holds.
- (3) When $n=9,\ m_0=10,\ m_1=17,\ m_2=24,$ one has $m_1+m_2\in Y_2,$ $m_1+m_2+n=5m_0,\ 2m_2=2n+3m_0\notin Y_2,\ B_1=\varnothing;$ then (3.18) holds.
- (4) If n=19, $m_0=20$, $m_1=27$, $m_2=34$, one has $m_1+m_2\in Y_2$, $2m_2\in Y_2$, $m_1+m_2+n=4m_0$, $2m_2+n=3m_0+m_1$, $B_1=\varnothing$, so (3.19) holds.
- (5) Let $n=22,\ m_0=25,\ m_1=32,\ m_2=39;$ then $2m_2\in Y_2,\ 2m_2+n=4m_0,\ B_1=\varnothing,$ so (3.20) holds.
- (6) If n=8, $m_0=9$, $m_1=20$, $m_2=31$, one has $n+m_1\in Y_2$, $n+m_2\in Y_2$, $n+m_1+n=4m_0$, $n+m_2+n=3m_0+m_1$, $B_1=\varnothing$, so (3.21) holds.
- (7) When n = 11, $m_0 = 20$, $m_1 = 39$, $m_2 = 58$, one has $n + m_2 \in Y_2$, $n + m_2 + n = 4m_0$, $B_1 = \emptyset$, so (3.22) holds.

REFERENCES

- 1. P. Eakin and A. Sathaye, Prestable ideals, J. Algebra 41 (1976), 439–454.
- ${\bf 2.}$ J. Herzog and R. Waldi, A note on the Hilbert function of a one-dimensional Cohen-Macaulay ring, Man. Math. ${\bf 16}~(1975),\,251-260.$
- **3.** S. Molinelli, D.P. Patil and G. Tamone, On the Cohen-Macaulayness of the associated graded ring of certain monomial curves, Beiträge zur Algebra und Geometrie **39** (1998), 249–254.

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

 $E\text{-}mail\ address:$ molinell@dima.unige.it

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

 $E ext{-}mail\ address:$ tamone@dima.unige.it