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ON THE HILBERT FUNCTION OF
CERTAIN NON COHEN-MACAULAY
ONE-DIMENSIONAL RINGS

SILVIA MOLINELLI AND GRAZIA TAMONE

ABSTRACT. Let k be a field, ng, ... , n, a sequence of pos-
itive integers, A the coordinate ring of the algebroid monomial
curve in AZ'H defined parametrically by Xo =t"0,... , X, =
thr. Let G = grp(A), where M = (t"0,...,t"") and
Pa(z) = (ha(2)/(1 = 2)), where hg(z) = Zi:O,... . h;iz* €
Q|[z], be the Poincaré series of G. In this paper we study some
of the coefficients of the polynomial Zi:o R h;z* when G

is not Cohen-Macaulay. We show hs > 0 and 7h2 >0,h3 >0
under suitable assumptions.

Introduction. Let A be the coordinate ring of an algebroid mono-
mial curve in the affine space A;H defined parametrically by X, =
t"o, ..., X, = t" where 0 < ng < --- < n,, ged(ng,...,n,) =1
and ng,...,n, minimally generate the semigroup I' = (ng,...,n,).
Let M = (t",...,t") and G = gry(4) = @;>o(M'/MFL). If
Hg(i) = dimg(M?/M**1) is the Hilbert function of G and Pg(z) =
Y>>0 Hc(i)z" is the Poincaré series, it is known that Pg(z) =
ha(2)/(1 — z) where hg(z) = >0, hiz' € Q|z], hs # 0. When
G is Cohen-Macaulay, it is known that h; > 0 for each ¢ € {0,... ,s}.
When G is not Cohen-Macaulay, one may have h; < 0 for some i. In
this paper we study the coefficients h; of hg(z) when G is not Cohen-
Macaulay. To this purpose we use a characterization of the Cohen-
Macaulayness of G we gave in [3]. In Section 1 we show h; is always
positive, see Corollary 1.11. In Section 2 we study ho. There are ex-
amples where G is not Cohen-Macaulay and hy < 0, e.g., in [1] and
[2]. First, we show an example where hy < 0 and A = k[[t"0, ... ,t""]]
has both multiplicity and embedding dimension less than the ones con-
sidered in the examples of [1] and [2]. Then we prove hy > 0 when
I' is generated by my, ... ,mp,n where my,... ,m, are an arithmetic
sequence, i.e., m; = mo +id for i € {1,...,p} and n is arbitrary, with
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ged (mg,d,n) = 1, see Proposition 2.11. In Section 3 we show that
hz > 0 when I is generated by my,... ,m;,,n as above with p = 2, see
Corollaries 3.7, 3.11, 3.17, 3.23, 3.26; in Section 4 we exhibit various
examples.

1. Let A = k[[t",... ,t""]] = k[[[']] where k is a field, " is a numerical
semigroup minimally generated by ng,...,n, with 0 < ny < --- < n,
and ged (ng, ... ,n,) = 1. Let N be the set of nonnegative integers, { =
Nt e; = (8;j)o<j<r, 0 < i <7, and, for each a = Ym0, r@i€i €&,
let 9(a) = > a;n; and deg(a) = > a;. Further, for each g € T we
put £(g) = {o € £ | 0(a) = g}. In £(g) we write a <aeg B if
deg () < deg(B). Then “<gee” is an order on &(g) and, since &(g)
is a finite set, £(g) has maximal elements with respect to “<ge..” All
the maximal elements in £(g) have the same degree, we shall note by
max deg (g), see also [3, Section 2].

Let M = (t",... "), G = grp(A) = @io(MY/M™) = @G, It
is known that G =~ k[r,...,7,] where 7; = " mod (M?). In [3] we
gave the following characterization of the Cohen-Macaulayness of G.

Proposition 1.1. Let G,T', be as above. The following conditions
are equivalent:

(1) G is Cohen-Macaulay;

(2) for each g € T the following fact holds:

(1.1) maxdeg (g + cng) = maxdeg (g) + ¢ for each ¢ > 1.

In this paper we show some properties of the Hilbert function
Hg (i) = dimy(M*/M*!) when G is not Cohen-Macaulay. We recall
the Poincaré series Pg(z) = 3,5, Hg(i)z! is equal to hg(2)/(1 — 2)
where ha(z) = Y0, hiz' € Q[2] with h; = Hg(i) — Hg(i — 1) for
each 7 > 1. Let ¢ > 1. The set G; is generated over k by the elements
of the set M; = {N =713°---78~ € M*/M**1 | N # Og}. One has

Lemma 1.2. Fori € N, put
Yi={g €T [ maxdeg(g) =i} #fi=1, Yo={0}.

Then for i > 1, one has Hg(i) = card(Y;) and h; = card (V;) —
card (Y;_1).
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Proof. Since there is a one-to-one correspondence between Y; and M;
the result follows from the above definitions. o

From now on, we suppose G is not Cohen-Macaulay. Then, according
to Proposition 1.1 and Lemma 1.2 there is some g € I' that does not
satisfy (1.1) and we can express h;, i > 2, in terms of particular subsets
of Y; and Y; ;. We give some definitions.

Definition 1.3. Let g € I'. Put

Z = {g € I' | g does not satisfy (1.1)}

and if ¢ € )  we put ¢, = min{c > 1 | maxdeg(g + cng) >
maxdeg (g) +c}. Further, let S be the standard basis of I with respect
to ng, i.e.,

S={g€eTl|g—no ¢TI} and put, for i >2:

S; = {s € S | maxdeg(s) =i},
Aiii={g9€Yi_1|g¢XorgeXandc, > 1},
Bio1={9€Yi1|g€¥andc, =1},

Ci={g+mny€Yi|ge B;withj <i—1}.

One can immediately see that ¥; 1 = A; 1UB; 1,Y;={g+no| g€
A;_1}UC;US;, where there is one-to-one correspondence between A;_1
and {g+no | ¢ € 4A;_1}) and, according to Lemma 1.2, one has for
i > 2: h; = card (C;) + card (S;) — card (B;—1). In particular, one can
note

Remark 1.4. (1) One has Cy = @, so that hy = (card S2) — (card By).
(2) If Y1 N ). =@, then C5 = & and hz = (card S3) — (card Bz).

In this section we shall prove that the leading coefficient hg of the
polynomial hg(z) is positive. We need some results. One can easily
prove the following.

Lemma 1.5. Let g € T'. Then
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(1) ifc e N, ¢ > 1 is such that g+ cng € Y, then g+ c'ng € Y for
each ¢’ such that 0 <c <c—1;

(2) if g € Y and ¢4 is as in Definition 1.3, then for each i such that
1<i<egy, one has g;i =g+ (cg —i)ng € >_ and ¢y, = 1.

Further, one has

Lemma 1.6. Let s; € SNY,. Then there exists c € N, ¢ > 1, such
that s1 + cng does not belong to > .

Proof. Let s; € SNY.. Put sy = 51+ c5,np. If 59 ¢ Y, then
¢ = c5,. Otherwise, we repeat the procedure, and we obtain a sequence

of elements in ) : s1,...,s; such that
(12) Si+1 = S +Cs;No
and

maxdeg (s;+1) > maxdeg (s1) + ¢, + -+ +cs;, + 0.

i< Z (nj —ng).
j=1---r
Let s; = Y. ;. ,.a;n; be such that > a; = maxdeg(si). Further,
let s;11 = ij:o---r bjn; be such that Y b; = maxdeg(s;+1). Putting
v =c¢cs, + - +cs,;, one has

Now we show

bono + Z bjnj =81 +7Yng = Z a;n; + yno,

j=l-r j=Toer
where by <y since s1 € S, so
b= D ai+i,
j=lor j=lor
according to (1.2). Now, by adding }_,_, ,.(ro — a;)n;, one obtains

Z (bj+noaj)”j+bono=( Z nj+7>n07

j=1---r j=1---r
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SO
< Z nj+’y>n0> < (bj+n0—aj)+b0>n0,
j=1l.r j=1l.--r
then
Z n;+vy> Z (bj +no —aj) + bo
j=1l.r j=1l.r
= D bitrno— > 4
7j=0---1 j=1---r

= maxdeg (sj+1) + rng — maxdeg (s1)
> v+ i+ rno,
according to (1.2). Then i < >, ;. .(n; — no).
It follows that if k > > ., ,.(nj —no), one has sk1 ¢ . o

Remark 1.7. Let g € >,. According to the properties of S and
Lemma 1.5, one has g = s + kng with s € SN Y, k > 0. According to
Lemma 1.6, >_ is a finite set and, putting ¢, = min{c| s+ cno ¢ >.}
for each s € SN Y, one has ¢ = s+ kny with & < c,. Further,
Yo={s,s+ng,...,s+(c,—1)ng|se SN}

Now one has

Lemma 1.8. Let
n = max{maxdeg (g + c4no) | g € L}
and

m = max{maxdeg(s) | s € S}.

The following facts hold:
(1) ifi>n—2, then{geYin)_ |c;>1} =g;
(2)ifj>n—1,then ;N> = o;
3){9eX |c,=1andg+mnocY,}+a;
4)ifp>n,then Cp = and Ap_1 ={g€Yp_1|9¢ > }.
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Proof. (1) Let i > n — 2. If there is a g € ¥; N Y such that ¢g > 1,
then max deg (g9+cyno) > i+c4 > i+2, so that maxdeg (g+cgno) > n.
This is a contradiction.

(2) Let j > n—1. If there isa g € Y; N, then max deg (g + cyno) >
j+cg>j+12>n. This is a contradiction.

(3) According to the definition of n, there exists ¢’ € Y such that
max deg (¢’ +cgnp) = n (and maxdeg (¢'+c4n9) > maxdeg(g')+cyr).
Then, putting g = g’ + (cg — 1)ng, one has (Lemma 1.5): g € > and
¢y = 1. Further, maxdeg (g + no) = maxdeg (¢’ + cyno) = n, so that
g+mng €Yy

(4) Let p > n; then {g€ > | ¢y =1 and g+ ny € Y,} = @, so that
Cp, =2.

Further, according to (1), one has {g € Y,1 N> | ¢y > 1} =, so
Ap1={9€Yp1lg¢X} O

Proposition 1.9. Let n be as in Lemma 1.8. Then Hg(n — 1) <
Hg(n)

Proof. According to Lemma 1.8, one has Y,,_; N> = &. Then one
can define ¢ : Y,,_; = Y, by ¢(g) = g + no (that is injective). Such ¢
is not surjective by Lemma 1.8. So card (Y,,_1) < card (V). o

Proposition 1.10. Let n,m be as in Lemma 1.8. Then

(a) if m > n+1, one has

Hg(q— 1) = Hg(q)

for each ¢ > m+1 and Hg(m — 1) < Hg(m);
(b) if m < n, one has

Hg(q—1) = Hg(q)

for each ¢ > n+ 1.

Proof. Let ¢ > max(m+1,n+1). ThenY,_;NY =& (Lemma 1.8)
and Y; = {g+ng | g € A4_1}, since Cy = @ according to Lemma 1.8
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and S, = @ since ¢ > m, so one can define ¢ : Y1 — Y as ¢(g) =
g + ng that is one-to-one and onto. Then, according to Lemma 1.2,
one has (b) if m < n, and the first statement of (a) for ¢ > m + 1
when m > n + 1. Further, when m >n+1, one has ¥,,, 1 N> = &,
Ap—1={9€Y-1]|9¢ >} (Lemma 1.8) so A,,_1 = Y,,,_1; besides
Yoo ={9+mn0 | g € Apn_1} U S, (Lemma 1.8) where S, # @
according to the definition of m. Then card (Y,,) > card (Y,,_1), so
Hg(m) > Hg(m — 1), see Lemma 1.2. o

From Propositions 1.9 and 1.10, one has

Corollary 1.11. Let m,n be as in Lemma 1.8. The polynomial
Yico... s hiz* has degree s = max(m,n) and hy > 0.

2. In this section we consider the coefficient hs of the polynomial
Zi:o,... s hiz', and we show hy > 0 when I' is minimally generated by
an “almost arithmetic sequence.” First we recall some known examples
where hy < 0, e.g.,

A= [[t30, t35, t42, t47, t148, t153, t157, t169, t181, t193]]

defined by Herzog and Waldi in [2] and
A= [[15, 421,428 44T 448 449 450 452 454 456 458))

defined by Eakin and Sathaye in [1]. By Remark 1.4, the following
Lemma 2.1 and technical calculations, we have seen that the minimum
value of ng such that hy = Hg(2) — Hg(l) may be negative is
ng = 13. We have found the following example with he < 0, where
embedding dimension or multiplicity are less than the ones in the
previous examples:

A= [[t13, t19, t24, t44, t49, t54, t55, t59, tGO, tGG]]

where
S2 = {2711 = 38, ny +ng = 43, 2n2 = 48},

B1 = {ng,n4,n5,n7} = {44,49, 54, 59},
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so one has hy = —1 according to Remark 1.4. Further, one can see that

ng +no =3ny, N4+ ng=2n1 + na,

ns +ng =n1 + 2ny, n7+ ne = 3ns.

The following Lemma 2.1 and Corollary 2.2 show that certain ele-
ments of I' are in S under suitable assumptions.

Lemma 2.1. Leti > 1. Let g = ) agnyi be such that g € B;
with i = > ag, and g+ ng = Y bgng with j = > . bg > i+ 1. Then
the elements of the type ¢ = > byng with bj, < by for each k and
i+1<> b, <j belong to S, UC, where a = max deg(g’).

Proof. Let g’ be as above. If > b, = j, ie., if b, = by for
each k, then obviously ¢’ € C, where a = maxdeg(g’'). Now we
suppose » b, < j—1. If ¢ ¢ S,, then ¢ = no + h with h € T,
then g +ng = ¢ + D (bk — b )nk = h + ng + >_(by — b}, )nk, so
g=h+ Z(bk — b;c)nk,

It follows that ¢ = maxdeg(g) > maxdeg(h) + > (b — b)) =
maxdeg (h) + j — >_ b}, then maxdeg (h) <i— 1. On the other hand,
h+ng =g = bjni so that maxdeg (h+ng) > > b}, > i+1. Putting
a = maxdeg(g'), it follows that h € > NY, with ¢ < a — 1. Then
g €C,. O

Corollary 2.2. Leti > 1, and let g,9',a be as in Lemma 2.1. If
YNY, =0 forg<a-—1, theng' €5,.

Proof. If Y- NY,; = @ for ¢ < a—1, then C, = &, so the result follows
from Lemma 2.1. O

When, in particular, I" is minimally generated by an “almost arith-
metic sequence,” one can prove other properties of the elements of >
and S. So, let I' = (my,... ,mp,n) where mg,...,m, are an arith-
metic sequence, i.e., m; = mg + id for each i € {1,...,p} and n is
arbitrary; suppose gcd (mg,d,n) = 1. First we show some properties
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of the elements of " and S. We consider the two cases n > my and
n < mg.

Case n > mgy. We need the following lemma.

Lemma 2.3. Let I' = (myg,...,mp,n) where m; = mqg + id for
1<i<pandn>mg.

Let g = Zk:07_.. p @EME € > with Y ar, = maxdeg (g), and suppose
g+cgmp = Zk:o,...,p bymy + bn, where > by +b> > ap+cy+ 1. If
Dby —> ar —cg >0, one has Y kby, > p(>_ar —1).

Proof. Put o’ =" ag, b’ =Y bi. According to the assumptions, one
has

(a’ + ¢cg)mo + <Ekak>d =bmgy + (Ekbk> d + bn.

We want to prove Y kby > p(a’ — 1). Otherwise, Y kby = cp + r with
c<ad —-2,0<r<p,so

<Ekak> d= (b —a" — ¢g)mg + cpd + rd + bn,
where ¢, r are as above and b — a’ — ¢; > 0 by the assumption. By
adding a’my, one gets
g=U —ad —cg—c—1+d")mg+cmy +m, + bn,

then maxdeg(g) > b —a’ —cy+a’ +0b. So, if ' —a’ — ¢y > 1, one has
maxdeg(g) >1+a +b >d +1;if ) —a' —c, =0, one has b > 1, so
maxdeg (g) > a’ + 1. In any case, there is a contradiction. o

Through Lemma 2.3, one can prove

Corollary 2.4. Let I' be as in Lemma 2.3. Let g = Y apmy € Y,
with " ar = maxdeg(g), and let g + cgmo = Y bpmy + bn with
Ybk+b>>ap+cg+1. Then Y br <> ar+cg—1 andb> 2.

Proof. Put a =5 ar and b’ = Y bi. According to the assumption
(2.1) bV+b>a+cy+1
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it is enough to show that ¥’ <a+c, — 1.
If o > a + ¢4, one has

(2.2) (Zkak> d= (b —a—cy)mo + <Ek:bk>d + bn.

Now, if ¥ —a — ¢y = 0, one has b > 1 according to (2.1), otherwise
b' —a —cg > 1. In both cases, one has ) kar > > kby by (2.2). This
inequality and Lemma 2.3 imply p(a — 1) < > kb < Y kag < pa, so
0 <> kar—> kbr < p. Putting g = > kap—>_ kby one has, according
to the assumption, m, = (b' —a—cy +1)mg +bn, a contradiction. o

Corollary 2.5. Let I be as above, and let g = > apmy, € B, with
a =Y ag, g+mog = > bpmg + bn with > by, +b > a+ 2. Then
b <a—1andb>3.

Proof. Let ' = > bg. According to Corollary 2.4, one has b’ < a,
b > 2. So it is enough to show that &’ # a. Suppose b’ = a. Then, by
the assumption, one has

(2.3) mo + (Zkak>d = <Ekbk>d +bn,

where n > mg, b > 2, so that > kax — > kbx > 0.

Further, we note that if ' = a, one has > kby # 0, otherwise
> brmy, = b'mg = amy, then g = (a — 1)mg + bn, that implies g ¢ Y,
since b > 2. So

0 < Xkar — Xkby, < Ykay < ap,
then
Ykap — Xkby =cp+7r withc<a-—-1, 0<r <p.
If c =0, one has 0 < > kap — > kb, < p; putting ¢ = > kap, — Y kby,
according to (2.3), one has m, = bn, a contradiction. Now we have a

contradiction also when ¢ > 1. By the previous facts, one has

ap > Ykay = Xkby + cp + r > Xkbg + cp,
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then
Ykbg < (a —o)p,

SO

Ykby =6p+r" with §<a—¢c, 1<7 <p.

Then g = (a — ¢ — 0 — 1)mgo + dmy + my + (¢ — 1)mo + bn with b > 2,
so maxdeg (g) > a + 1, a contradiction. O

Corollary 2.6. Let I' be as in Lemma 2.3. If {m1,... ,mp} N By #
@, then there is only one i € {1,...,p} such that m; € By and one
has m; + mo = bn with b = maxdeg (bn) > 3.

Proof. If m; € By, according to Corollary 2.5 with a = 1, one has
necessarily m; + mg = bn with b > 3 and there is only one i, say 7,
satisfying the previous equation since I is minimally generated; further,
according to the above uniqueness, one has b = max deg (bn). O

Now we show some properties of S.

Lemma 2.7. Let T be as in Lemma 2.3. Let g = Y apmy € B, with
a=> ag. Then g+ mo=> bpmy +bn with > by +b>a+2,b>3,
and, further, if

(i) b>a and
(ii) {h € > | maxdeg (k) < a — 2} = &, one has

Ybymi + (b—1)n € S.

Proof. Let g be as above. Since ¢, = 1, one has
(24)  g+mp=Sbgmy +bn with » by+b>a+2 andb>3

according to Corollary 2.5. Now put a = ) ax and suppose that (i)
and (ii) hold.

If obgmyp + (b— 1)n € S, then > bgmy + (b — 1)n = mo + h with
h € T, so that ¢ = h 4+ n, that implies maxdeg(h) < a — 1. Now let
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h =3 ckmi + ¢'n be such that Y ¢k + ¢ = maxdeg (h); then putting
c=> ck,onehasc+c <a-1.

Step 1. First we show that ¢ = 0. One has, according to (2.4):

Sepmyg + (¢ + 1)n + mg = Sbpmy, + bn

where Y bp +b > a+ 2. Now, if ¢ +1 < b, one has Y cgmy + mo
> bgmy + (b — ¢ — 1)n where ¢ = maxdeg (D cpmy) (since ¢ + ¢ =
max deg (h)) and

Sbp+b—c —1>a+2—-c —-1l=a-c +1>c+2,

50 Y cpmyg € Y. NY, where ¢ < a — ¢’ — 1; this implies ¢’ = 0 according
to assumption (ii).

On the other hand, ¢’ + 1 cannot be greater than b; otherwise,
Sepmp + (¢ +1=bn+mp=> bpmyg, whereb>2,c+c +1—-b=
maxdeg (> cgmy + (¢ +1 — b)n), since maxdeg (h) =c+ ¢, and

Sbp >a+2-b>c+c +1+2-b=(c+c +1-b)+2,

then
Yepmp +(+1—bn € XN Yerei1yp,

where c+c+1—b<a—b<a— 3, since b > 3, that contradicts (ii).

According to Step 1, let h = Y cpmy, with ¢ = Y ¢ = maxdeg (h).
Then c<a—1and Y agmp=g=h+n=> cgmy +n, so

(2.5) (a—c)my+ <Ekak>d = (Ekck> d+n, wherea—c>1.

Step 2. In (2.5) one has necessarily that > kax < > kcg. In fact, if
S kag > > keg, putting r = > kap, — Y ke, > 0, one has, by (2.5),

(a —c)mg + rd =n.

So, if r < (a — ¢)p, one has n € (my, ... ,mp), a contradiction.
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If r > (a — ¢)p, then n > (a — c)mg + (@ — ¢)pd = (a — c)mp > My,
so that n > mp. So, if Y by = 0, one has g + mg = bn > (a+ 2)n >
amy + mg > g+ mo; if Y by > 1, one has g + mg = Y bpmy +bn >
mo 4+ an > mo + am, > mo + g, contradictions.

Step 3. Finally, we get a contradiction.

In (2.5), one has (a —c¢)mo = (3 ke, — > kar)d+n, where a—c > 1,
according to Step 2. Now, if a—c > 2, one has ¢ = maxdeg (h) < a—2,
then h € > NY. with ¢ < a — 2 (in fact, as we have supposed,
h+mog=>bymi+ (b—1)n with Y by +b—1>a+2—-1=a+1>
2+ c+ 1 = c+ 3 that contradicts (ii); finally, if @ — ¢ = 1, one has
my > n, a contradiction. ]

From Lemma (2.7), one has immediately

Corollary 2.8. Let I' be as in Lemma (2.3). If g = > apmy € Bs
and g + mg = > bpmg + bn with > b +b > 4, then b > 3 and
Sbpgmp+(b—1)ne S.

Case n < my.

Lemma 2.9. Let I' = (mg,...,my,n) where m; = mg + id
for 1 < i < p, and let n < mgy. Let g = Y armi € >, with
> ar = maxdeg(g). Then there exist b,c,m € N such that

g+cgn=(b—c—1)mg+cmy,+m,
withb—c—1>0,b> % ar+cg+1,

by
¢ < min {Eak -1, {ﬂ] }
p

Proof. Let g be as above. Then g + cgn = Y bymy with
> by > > ar +cg+ 1, and one can choose ) bymy, such that > b, =
maxdeg (g + cgn). Put a =Y ag, b= bx. Then

and 0 < r < p.

(2.6) amg + (Zkak>d + cgn = bmg + (Zkbk> d
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where b —a — ¢y > 1 so, since n < mg, (b —a — cg)mo + (3 kbr)d <
(3" kag)d, which implies Y kax > > kbg. So, if > kb, = cp + 7,
> kar =c'p+1r' (where 0 <r < p, 0 <r' <p), one has

oo (2]

p

and ¢ < a — 1, since c¢p < > kby < Y kar < pa. Then, according to
(26),

g+ cgn =bmg + cpd+rd = (b — ¢ — 1)my + cmy, + m,,

where
b>a+csg+1>a+1>c+1,

by
cgmin{a—l,[ kak]}, 0<r<p. a
p

Corollary 2.10. Let T' be as in Lemma 2.9. If By # &, let
g=m; € By,ie€{l,...,p}. Then

(a) if i =min{j € {1,... ,p} | m; € B1}, one has m; +n = bmg with
b > 3 and b = maxdeg (bmy);

(b) if i > min{j € {1,... ,p} | m; € B1}, then m; +n =m, +b'mg
with0 <r <p,r#i, b >2,14+b =maxdeg(m, + b'myp).

Proof. Let m; € By. Then, according to Lemma 2.9,
(2.7) m;+n=(b-1mog+m, withb>3, 0<r<p,

and one can show that b = maxdeg ((b—1)mo+m,). Then mo+id+n =
bmg + rd, i.e.,

(2.8) id+n = (b—1)mg +rd,

so (b—1)mg + rd < id + my, since n < mg, where b —1 > 2.

Then (b — 2)mg + rd < id that implies r < i, so, according to (2.8),
(t—=r)d+n = (b—1)mo where 0 < i —r < p. Then m;_, +n = bmyg
with b > 3, so m;_, € Bj.
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Now, if ¢+ = min{j € {1,... ,p} | m; € B} necessarily one has r = 0,
so, according to (2.7), m; + n = bmg with b > 3. On the other hand, if
i>min{j € {1,...,p} | m; € B1}, one has in (2.7): r > 0 and r # ¢.
Then m; +n=b'mg+m, withd >2,0<r <p, r #1. O

Now one can show

Proposition 2.11. Let I' = (my,... ,mp,n) where m; = mg + id,
1<¢<p. Then hy > 0.

Proof. According to Remark 1.4, it is enough to show that card (S3) >
card (By), where

S2 = {s € S | maxdeg(s) =2},
Blz{geYlﬂE|cg:1}.

We consider the two cases n > my and n < my.

Case 1. n > mg. In view of Corollary 2.6, B; can be one of
the following sets: {m} or {m;,n} or {n} or & where m; is as
in Corollary 2.6. If m; € By, then m; + my = bn with b > 3,
b = maxdeg (bn), see Corollary 2.6. So the element 2n € Y3 and
further 2n belongs to Se according to Corollary 2.2. If n € By, one has
n+mo =Y. bpmy with > by > 3. So, by Corollary 2.2, each element
of the type > b, my with b), < by and > b}, = 2 belongs to S2. So, in
any case one has card (Sz) > card (By).

Case 2. n < mg. In this case n,mg cannot be in By, so By C
{m1,... ,mp}. Let By = {my,,... ,my, } with iy < i3 < -+ < 4.
Then, according to Corollary 2.10,

M4, +n = bomo,

m;, +n=mj + bimyg,

m;, +n =m;j, + bymo
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with
by = max deg (bgmg) > 3

and for each q € {1,...,k}, one has
1<jq<p, JqFiq 1+bg=maxdeg (m;, + bymo) > 3.

So, 2mg, mj, + mg,...,m;, + mg belong to Y. Further, one can
easily note that m; # mj, when m;, < mi ,; otherwise, b, < by
and m; , = m;, + (by — bg)mg). So the elements m;,,... ,m;, are
all distinct. Then, according to Corollary (2.2), the set Sz contains
2mg, mj, +my,... ,mj, +mg. Then card (S2) > card (B). O

3. In this section we show hg > 0 when I' = (mg, my, ma,n) where
mg,m1, Mo are an arithmetic sequence. We recall that, according to
Section 1, one has

hs = card (S3) + card (C3) — card (Bs)
and, in particular,
hs = card (S3) — card (B2)

when By = &, see Remark 1.4. Throughout this section I" will be
minimally generated by mg, my, ma, n, with m; = mo+id for i € {1,2}.

We start with the case mo < n. In this situation mg ¢ >_; further,
we can show

Lemma 3.1. Let my < n. Only one of the following situations can
happen:

(3.1) my +mp =bn  with b = maxdeg (bn) > 3
or

(3.2) mg +mgo =cn  with ¢ = maxdeg(cn) > 3
or

(3.3)

n 4+ mo =my + azmg  where ag > 2,1+ ay=maxdeg (my+asms)
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or
(3.4) n+my = asmy where ay = maxdeg (agms) > 3
or

(3.5) B, =0.

Further, when (3.1) or (3.2) holds, one has n < my; when (3.3) or (3.4)
holds, then n > mso.

Proof. When B; # @ and {mj,m2} N By # &, then (3.1) or (3.2)
holds, according to Corollary 2.6. In each of these cases, one can see
that n < my. Further, when n € By, one has n + mg = aymy + agms
with a; + ae > 3. This implies that a; < 1, since 2m; = mg + ma, so
ag > 2 and one has (3.3) or (3.4). In these cases it is clear that n > mso.
So, if (3.1) or (3.2) holds, one has n < my, while n > mqy if (3.3) or
(3.4) holds. Then the result follows. o

Lemma 3.2. Let mg < n. If (3.1) or (3.2) holds, then 2mg, mg +
n, 2n belong to Yo — Bs.

Proof. Suppose (3.1) or (3.2) holds. Since mo < n < m; <
mse, according to the assumption and Lemma 3.1, one obviously has
2mg, mp + n € Yo — By. Further, 2n € Y3, since b = maxdeg (bn)
(respectively, ¢ = max deg (cn)). Finally it is clear that 2n ¢ Bs. O

Lemma 3.3. Let mo < n. If (3.1) holds, then

(1) if n + maq, respectively 2mq, € Ya, then n+ mq, respectively 2ma,
¢ Bo;
(2) By C {mo + mo =2my,n+my,my + mz}.

Proof. (1) Suppose (3.1) holds. If n 4+ my € Y2, then n + mg ¢ Ba;
otherwise n + mq + my = am; with a > 4, since (3.1) implies ma,
n ¢ By by Lemma 3.1. It follows that n € (m;). If 2ms € Y3, then
2mg ¢ Bs; otherwise, 2mgy + mg = agn + aymy with ag + a3 > 4, since
(3.1) implies my ¢ B; by Lemma 3.1, i.e., mg + 2my = agn + aymy, so
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that a; < 1. According to (3.1), if a; = 1, one obtains mq € (mg, n); if
a; = 0, then 2my = my + (ag — b)n with (ag — b) > 2, since n < m; for
i=1,2,s0 2my ¢ Y.

(2) follows immediately from Lemmas 3.2, 3.3 and the fact that
m1 + mo € Y} for b > 3 according to (3.1). u]

Lemma 3.4. Let mg < n. If (3.1) holds, one has
(i) if n +my € Ya,then 3n € S3 U Cs;

(ii) if 2my € Ya, then my + 2n € S3 U Cs;

(iii) of my + mg € Y2, one has mg +2n € S5 U Cj.

Proof. By (3.1), one has my+n+mg = (b+1)n, 2m; +mo = m; +bn,
my +mg +mgy = mg + bn, where b > 3. So, according to Lemma 2.1, in
order to obtain (i), respectively (ii), (iii), it is enough to show that 3n,
respectively mi +2n, ma+2n, € Y3. One can easily prove it, according
to the assumptions. ]

Lemma 3.5. Let mg < n. If (3.2) holds, then
(1) mo +may & Bo;

(2) if n+ my € Ya, then n+ my ¢ Bo;

(3) By C {n+ ma,my + ma,2ms}.

Proof. (1) If mg + my € Bag, one has my + 2mo = ajn + agmsy with
a1 +ag > 4, since 2mg € Y2 and (3.2) implies m; ¢ By, see Lemma 3.1.
First we note that as < 1; otherwise, mg = ain +3d+ ---, so ay
must be zero, since mg < n, then as > 4, that implies 0 > mg + 7d,
a contradiction. Then m; + 2mg = ain or my + 2mg = ain + Mo,
with a; > 4, respectively, a; > 3. In any case we have contradictions,
according to (3.2), respectively, since mg < n, m; < ma.

(2) Suppose n + m; € Y;. One has n + m; ¢ Bs; otherwise,
n 4+ my + mo = azme with as > 4 (since (3.2) implies mq,n ¢ By,
see Lemma 3.1) a contradiction.

(3) follows immediately from Lemmas 3.2, 3.5 (1), (2) and the fact
that mo 4+ mo = 2m; € Y. with ¢ > 3, according to (3.2). O
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Lemma 3.6. Let mo < n. If (3.2) holds, one has
(i) if n + mq € Ys, then 3n € S3 U Cs;

(i) if my + mo € Y, then my + 2n € S5 U Cs;

(iil) if 2mq € Ya, one has ma +2n € S3 U Cs.

Proof. Tt is completely similar to the proof of Lemma 3.4. O
Corollary 3.7. Let mg < n. If (3.1) or (3.2) holds, then hg > 0.

Lemma 3.8. Let my < n. If (3.3) or (3.4) holds, then
(1) 2mg, mgy + m1, 2mq belong to Y2 — Ba;

(2) if 2my, respectively my +ma, belongs to Ya, then 2my, respectively
mq + mgy, does not belong to Bs.

Proof. (1) Suppose (3.3) or (3.4). Since n > mgz, see Lemma 3.1,
one has 2mg, mg + my € Yo — Bs. Further, 2ms € Y5, since
1+ as = maxdeg(my + aams), respectively, as = maxdeg (azms).
Finally, 2my ¢ Bs, otherwise 2mgy + mo = bymy + ben with by + by >4
(since my ¢ By when (3.3) or (3.4) holds, see Lemma 3.1), then by < 1,
b1 > 3 (since n > mg) with 2m; = mg + me, a contradiction.

(2) Let 2m1 S Yg. If 2m1 S Bg, then 2m1 + mg = b2m2 + bg’l’L
with bg + b3 > 4 (since mg + m; € Ya, see (1)), a contradiction. Let
my1 + mg € Y5. Then my + my ¢ Bs; otherwise, my + my + mo = bn
with b > 4 (since my and mg do not belong to By when (3.3) or (3.4)
holds, see Lemma 3.1), a contradiction, since n > ma. |

Corollary 3.9. Let my < n.
(1) If (3.3) holds, one has By C {mgy + n,2n};
(2) If (3.4) holds, then By C {m1 + n,ma + n,2n}.

Proof. First we note that mo +n € Y; with ¢ > 3 when (3.3) or (3.4)
holds. Further, one can show that maxdeg(m; + n) > 3 when (3.3)
holds. So the result follows from Lemma 3.8. O
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Lemma 3.10. Let mg < n, and suppose that (3.3) or (3.4) holds.
(i) if 2n € Yo, then n + 2mq € S5 U C;

(i) if my + n € Yz, then my + 2mg € S5 U Cs;

(iii) if ma + n € Ya, then 3mg € S5 U Cs.

Proof. Tt is similar to the proof of Lemma 3.4. As regards (ii), it
is useful to note that when (3.4) holds, if m; + n € Y3, then also
mi1+ mg € Ys. O

Corollary 3.11. Let mg < n. If(3.3) or (3.4) holds, one has hs > 0.

Lemma 3.12. Let mog < n. Suppose (3.5) holds. If By contains
some elements of the type m; +m;, i,j € {0, 1,2}, then only one of the
following facts holds:

2mo + mg = my1 + bn  with 2my € Ys,

(3.6)
14+ b =maxdeg(m; +bn) >4

or

(3.7) (mo +my) +mo = corn  with my + my € Y,
co1 = maxdeg (co1n) > 4

or

(3.8) (mo 4+ m2) +mo = coan  with mg +my € Ya,
co2 = maxdeg (coan) > 4

or

(3.9) (m1 + mg2) + mo = cian with my + my € Ya,
c12 = maxdeg (c1on) > 4

or

(3.10) 2mg 4+ mo = coan  with 2my € Y3,

ca2 = maxdeg (coon) > 4.

Proof. Let m; + m; € By. Then, by Corollary 2.5, one has

(aij) m; +mj +mo = mg +bon with by > 3
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or
(ﬂ”) m; +mj; + mo = Ci;n with Cij >4
where one can see that 1 + by = maxdeg(mq + bon) and c¢;; =

max deg (c;;n).

Now, according to the assumptions, it is easy to verify that one cannot
have (aij) when ¢ = Jj=0, (Za]) = (071)7 (’L,]) = (0a2)a (Zaj) = (la ]-)a
(z,7) = (1,2). So, one can have only the following situation of “type
(cij)”:
2mo +mop = my +bn  with b > 3,

1+ b = maxdeg (m; + bn).

Further, one cannot have (5;;) for (i,j) = (0,0) and, if each of the
situations (B;;) with (¢,j) # (0,0) holds, then (as2) cannot hold.
Besides, each (f;;) with (4,5) # (0,0) excludes the other ones; we
show the proof only for (8y1) and (B22) since the other proofs are very
simple.

If one has (1) and (B22), then 3d = (caz —co1)n where ca2 —co1 ¢ 3Z
since m; ¢ (mg,n) for i € {1,2}, then co2 — cp1 = 3¢ + r with
r € {1,2} and n = 3n’ with n’ € N — {0}. Then d = (3¢ + r)n’,
s0 3coin’ = 3mg + 3gn’ + rn’, that implies n' = 3n”,| since r € {1, 2},
and further n"(3cp; — 3¢ — r) = mg. It follows that n” = 1, since
ged (TL, d, mo) =1, n =9, mg = 4cp1 — c22, M1 = co1 + 2¢a9,
m2 = Bcag — 2¢p1. This implies my = 4mg + (c22 — 2¢o1)n, where
ca2 — 2¢p1 > 0, otherwise d < (3/2)myg; so, according to (fo1), one has
2¢91 < My, 0 mg > 9 (= n), a contradiction. O

(r22)

Corollary 3.13. Let mg < n. Suppose (3.5) holds. If 2ma,
respectively mqg + my or mg + m2 or my + mo, € Bz and (3.6) or
(3.10), respectively, (3.7) or (3.8) or (3.9), holds, then 3n € Ss.

Proof. According to (3.6) or (3.10), respectively (3.7) or (3.8) or
(3.9), one has 3n € Ys; the result then follows from assumption (3.5)
and Corollary 2.2. u]

Lemma 3.14. Let my < n, and suppose (3.5). Then mo +n € Ys.
Further, if By contains elements of the type m; +n, then i € {0,1} and
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the following facts can happen:

(3.11) (mo +n) +mo = agme  with ag = maxdeg (agmz) > 4

or

(3.12) mi+né¢Yy, (mg+n)+me=my+camgy
' with 1 + co = maxdeg (m + camsy) > 4

or

(3.13)

my+n€Ys, (mog+n)+mog=m;+comy and
(my1 +n)+mo=ayms with 1 + ¢y = maxdeg (my + coms) >4

and a; = maxdeg (aymz) > 4.

Proof. Since By = @, it is clear that mg + n € Y3. Suppose
m; + n € By. Then one has m; + n + mg = cymy + camy (since
m; +n € Ya, m; ¢ By) with ¢; + ¢c2 > 4 and ¢ # 2, otherwise, c2 = 0,
since n ¢ By, which implies that ¢; > 4 and n € {m4). Further, since
n ¢ By,one hasc¢; <1ifi=0,¢; =0if ¢ = 1. So we have to consider
only the following cases:

(i) (mo + n) + mg = agmsg with ag > 4,
(ii) (mo + n) + mo = my + cameg with 1 + co > 4,
(iii) (my + n) + mo = aymy with a; > 4,

where ag = maxdeg (agmz), 1 + ¢z = maxdeg (m; + camy) when
mo +n € Yz, a3 = maxdeg (aymsz) when m; +n € Ys.

Now if (ii) holds, one has (by adding d):
(m1+n)+mg=(1+ca)my with 1+ ca > 4;
on the other hand, if (iii) holds, one has (by subtracting d)):
(mp+n)+mog=my + (a; —1)my with a; > 4.

So each of the facts (ii) and (iii) implies the other one.

Further, (i) N (ii) = @. O
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Corollary 3.15. Let my < n and suppose (3.5). If (3.11) holds, then
3my € S3. If (3.12) holds, one has my + 2my € S3. If (3.13) holds,
then 3mg, my 4+ 2ms € Ss.

Proof. According to (3.11), respectively, (3.12) or (3.13), one has
3mg, respectively my 4+ 2mg or 3mgy and my + 2ms, € Y3. Then the
result follows from the assumption (3.5) and from Corollary 2.2. o

Lemma 3.16. Let mg < n, and suppose (3.5). If 2n € Bsy, then

2n + mgo = bymy + bomo  with 2n € Ys,

(3.14)
by + by = maxdeg (bymy + bomy) >4 and by € {0,1}.

Further,
(1) if b; #0 fori=1,2, one has my + 2my € Ss;
(2) if by =0, then 3mg € Ss;
(3) if by =1, then mq + 2mg, 3ms € Ss.

Proof. Follows from the assumptions and Corollary 2.2. o
Corollary 3.17. Let mg < n and suppose (3.5). Then hz > 0.
Proof. First we remark

(3.14) N (3.11) = (3.14) N (3.13) = @

if by = 0;
(3.14)N(3.12) = (3.149) N (3.13) = @

if by = 1. Moreover, when 2n ¢ Bs, one easily sees that card (S3) >
card (Bz) according to Corollaries 3.13 and 3.15. o

Now we consider the case I' = (mg,m1, ma,n) with n < mg. As
regards Bj, one can prove
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Lemma 3.18. Let I" be as above, n < mqg. Only one of the following
situations can happen:

(3.15) my +n=cmg, ma+n=(c—1)myg+m
' with ¢ = max deg (cmp) = maxdeg ((c— 1)mo +my) > 3

or
(3.16) ma2 +n =c'my with ¢ = maxdeg(c'mo) >3 andm; ¢ By
or

(3.17) By = @.

Proof. Since n < mg, one obviously has n,mo ¢ B;. So, when
By # @, one has my € By or m;y ¢ B;. Then, according to
Corollary 2.10, if m; € By, respectively if m; ¢ B, then (3.15),
respectively (3.16), holds. u]

Lemma 3.19. Let n < mg. If (3.15) or (3.16) holds, then
(i) 2n, n + my belong to Yo — Bo;
(11) 2mg € Yo — Bo;

(iii) n + my, n 4+ mo do not belong to Bs.

Proof. (i) Since n < m;, mg < m; for i = 1,2, one immediately has
2n € Yo — By, n+my € Yo — Bs.

(ii) Suppose (3.15) or (3.16) holds. Then 2mg € Ys, since ¢ =
maxdeg ((¢ — 1)mgy + mq), respectively ¢’ = maxdeg (¢'mg). Further,
2mg ¢ Ba; otherwise, (since 2mg € Y2, n ¢ By) 2mg+n = aym;+asms
with a; 4+ a2 > 4, a contradiction.

(iii) We have only to show that n + my ¢ Bs if (3.16) holds. In this
case n + my € Yo, since my ¢ By; furtherif n + m; € Ba, one has
2n + my = agmo + asmeo with ag + ax > 4, that implies as = 0, so
n+ cd'mgy = (ap — 1)mo + my with ¢ > 3, ap — 1 > 3, a contradiction.
O
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Corollary 3.20. Let n < mg. If (3.15) or (3.16) holds, then

By C {mo + my,mp +ma =2m1, my +m2,2m2}.

Remark. When (3.15) holds, one has that if 2my € Y5 then my+my €
Ys.

Suppose 2my € Y3. If my + my € Yy, one has m; + my = an + bmyg
with a4+b > 3;if b > 1, then 2my = an+ (b—1)mg+my; if b = 0, then
a >3 and 2my = (a — 1)n + (¢ — 1)my, so that maxdeg (2m2) > 3.

Lemma 3.21. Let n < mg. If (3.15) holds, then
(i) if m1 + mo € Y, then 3mg € S3 U Cs;

(ii) if 2my € Yz, then 2my + mq € S3 U Cs;

(iii) if my + mo € Ya, then 2mg + mo € S3 U Cs;

(iv) if 2my € Yy, then 3my € S3 U Cs.

Proof. If (3.15) holds, one has that my + mo + n = (¢ + 1)my,
2mi+n = my+cmg, mi+mat+n = mao+cmg, 2metn = (¢—2)mo+3my,
where ¢ > 3. So, according to Lemma 2.1, in order to have the result
it is enough to show that 3my, respectively 2mg 4+ m1, 2mg + me, 3mq,
belongs to Y3. One can prove it, according to the assumptions. O

Lemma 3.22. Let n < mg. If (3.16) holds, one has
(i) if mo + ma € Y, then 3mg € S3 U Cs;

(i) if m1 + ma € Ya, then 2mg +my € Ss U Cs;

(iil) if 2mq € Ya, then 2mqg + mo € S3 U Cls;

(iv) mo + my ¢ Bo.

Proof. The proof of (i), (ii) and (iii) is similar to the proof of
Lemma 3.21. Let us show (iv). Suppose (3.16) and mg + my € Ya.
Then, if my + m; € Bg, one has, by Lemma 2.9, mg + m; +n =
(b—1)mg+ m, with b> 4,0 <r <2, then m; +n = (b — 2)mg + m,,

which contradicts (3.16). o



296 S. MOLINELLI AND G. TAMONE

From Corollary 3.20, Lemma 3.21 and Lemma 3.22, one has
Corollary 3.23. Let T be as above, n < mqy. If By # &, then hg > 0.

Lemma 3.24. Let n < mg and suppose (3.17) holds. If m; +m; €
By, 4,5 € {0,1,2}, then (i,7) = (1,2) or i = j = 2 and only one of the
following facts holds:

my+my € By, 2mo ¢&Ys, mi+me+n=>bmg

(3.18) :
with by = maxdeg (bymg) > 4

or

m1+m2€B2, 2m2€Y2, my+mo +n =bymy
(3.19) and 2mg +mn = (by — 1)mo +my with by = maxdeg (bymyg)
= maxdeg ((by — 1)mgo +mq) > 4

or
(3.20) 2mqy € Ba, 2mo+mn =bamgy with by = maxdeg (barng) > 4.

Further, if (3.19) holds, then 3mg, 2mg + my € S3 U Cs; if (3.18) or
(3.20) holds, one has 3mg € S3 U Cs.

Proof. According to Lemma 2.9 and the assumption By = &, it is
easy to see that mo+m1, mg+msz = 2my do not belong to Bs. Further,
if 2mg € Ys, one has 2my ¢ Bs; otherwise, 2mg—+n = aym +asmsg with
a1 + az > 4, a contradiction. So, if m; +m; € By, one has necessarily
(1,7) = (1,2) or i = j = 2. If my + my € By, then (since By = &) only
the following

(1) my+meg +n= b1m0 (Wlth b1 Z 4)

can happen, so b; = maxdeg (bymy). From (i) it also follows that
2mg+n = (by —1)mo+m; where b; > 4 and maxdeg ((by —1)mo+my)
when 2my € Y5.

When 2mqy € Ba, if (i) does not hold, according to Lemma 2.9 only
the following situation can happen:

(ii) 2mg + n = bamg (with by > 4) and one can see by =
max deg (bamyp).
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It is immediate to see that (i) N (ii) = @.

If (3.19) holds, then 3myg, 2m, + m; both belong to Y3, according to
the properties of by; so 3mg and 2my + m; belong to S3 U C3 according

to Lemma 2.1. In a similar way, one can show that 3my € S3 U Cs
when (3.18) or (3.20) holds. o

Lemma 3.25. Letn < my, and suppose (3.17) holds. If n+m; € Bo,
then only one of the following facts holds:

n+my+n=kmo andn+mas+n=(k —1)mo+my

(3.21) ,
with n +my,n + mo € Ys
or
(3.22) n+mo+n=kymg withn-+mq €Ys

where k; = maxdeg (k;jmg) > 4 for j € {1,2}, k1 = maxdeg((k1 —
].)m() + ml).

Further, if (3.21) holds, one has 3mg and 2my+m; belongs to S3UCs;
if (3.22) holds, then 3mgy € S3 U Cs.

Proof. Clearly n+ my ¢ Bs. If n 4+ m; € By one has 2n + m; =
kymg + kims with k; + k] > 4; it implies necessarily ki = 0, so one has
k1 = k1 + ki = maxdeg (kimo + kims) and n 4+ my +n = kymyg, then
also n+mg+n = (k1 —1)mo+m;. Moreover, one can prove n+mg € Yz,
s0 n + mgy € B and one has k; = maxdeg ((ky — 1)mg + my) > 4.

If n + mg € By and (3.21) does not hold, then necessarily one has

2n 4+ mg = kamg where k2 > 4 and one has k2 = maxdeg (kamyg), so
(3.22) holds.

Clearly, (3.21) N (3.22) = @. If (3.21) holds, then, according to the
properties of k1 and Lemma 2.1, one has 3mg, 2my + m; belong to
S3 U C5; in a similar way, one can see that 3mg € S3 U C5 when (3.22)
holds. i

Corollary 3.26. Let n < my, and suppose By = @. Then one of
the following facts can hold:

(i) Bs = 2,
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or

(ii) By = {2m2} or By = {n + mg} or By = {m; + my} and
3mg € S3UC3 or

(iii) Bs = {m1 + ma,2m2} or Bs = {n + my,n + ma} and 3my,
2mg + my belong to S3 U Cj.

In any case, one has hs > 0.

Proof. If By # @, according to Lemmas 3.24 and 3.25, one has
By C {my + m2,2mo,n+my,n+ma} NYa.
Further, each of the conditions in {(3.18), (3.19), (3.20)} U {(3.21),
(3.22)} excludes the other ones.

Then B, cannot contain more than two elements. Now, according to
Lemmas 3.24 and 3.25, one has that (ii) or (iii) holds and, in any case,
h3 > 0. O

4. In this section we show an example for each of the conditions
considered in Lemmas 3.1, 3.12, 3.14, 3.16, 3.18, 3.24 and 3.25.

Examples 4.1. Suppose mgy < n.

(1) Let mg =7, my = 20, mg = 33, n = 9. Then my + my = 3n, so
(3.1) holds.

(2) If mg =17, my =18, ma =29, n = 12, one has my + mg = 3n, so
(3.2) holds.

(3) When mg = 7, my = 10, mp = 13, n = 29, one has n + mg =
my + 2mag, so (3.3) holds.

(4) If mg =7, my =10, mo = 13, n = 32, one has n + my = 3maq, so
(3.4) holds.

(5) When my = 9, my = 13, mg = 17, n = 10, then 2my € Y3,
B; =@, 2my + mg = my + 3n, so (3.6) holds.

(6) Let mg = 9, my = 22, my = 35, n = 10; then my + m; € Y3,
Bl = @, (mo + ml) + moy = 4n, SO (37) hOldS.

(7) If mg = 8, my = 14, my = 20, n = 9, one has mg + mg € Y3,
B; =@, (mg + mga) + my = 4n, so (3.8) holds.
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(8) When mgy = 7, my = 16, mg = 25, n = 12, one has my +my € Y3,
B, = @, (m1 + m2) + mp = 4n, so (3.9) holds.

(9) If mg = 10, my = 19, mo = 28, n = 11, then 2my € Y3, B = &,
2mg 4+ mg = 6n, so (3.10) holds.

(10) Let mog = 9, my = 13, my = 17, n = 50; then my + n € Y3,
B, = @, (mg + n) + mo = 4ma, so that (3.11) holds.

(11) When my = 8, my = 11, mg = 14, n = 37, one has my +n € Y3,
m1+n =6mgy ¢ Y, By =, (mg +n) +mo =my1 + 3ma, so (3.12)
holds.

(12) If mg = 9, m; = 13, my = 17, n = 46, one has my + n € Y3,
mi+n € Ya, By = &, (mo+n)+mg = my+3mz, (mi1+n)+mo = 4may,
so (3.13) holds.

(13) Let mg = 9, my = 14, my = 19, n = 31; then 2n € Y3, B; = &,
2n + mg = my + 3mo, so (3.14) holds.

Examples 4.2. Suppose n < mg.

(1) Let n = 6, mg = 7, my = 15, ma = 23; one has my + n = 3myg
and mgy + n = 2mgy + mq, so (3.15) holds.

(2) If n =6, my =7, m = 11, my = 15, then my + n = 3my,
my ¢ By and (3.16) holds.

(3) When n = 9, mg = 10, my = 17, mo = 24, one has my +mg € Y3,
my +msg +n = bmyg, 2mg = 2n+3mgy ¢ Y, By = &; then (3.18) holds.

(4) If n =19, my = 20, m; = 27, my = 34, one has m; + mg € Y3,
2mg € Ys, m1 + mg +n = 4dmyg, 2ms +n = 3mg + my, By = I, so
(3.19) holds.

(5) Let n = 22, my = 25, my = 32, my = 39; then 2my € Y3,
2mg +n = 4my, By = &, so (3.20) holds.

(6) If n =8, mog =9, my = 20, my = 31, one has n + my € Y3,

n+me € Yo, n+mq +n =4mgy, n+ms +n =3mg+my, By = I, so
(3.21) holds.

(7) When n = 11, my = 20, m; = 39, mg = 58, one has n+mz € Y3,
n+ my +n = 4my, By = &, so (3.22) holds.
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