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SURFACES IN P5

WHICH DO NOT ADMIT TRISECANTS

E. BALLICO AND A. COSSIDENTE

ABSTRACT. We study the trisecant lines of surfaces
embedded in P5. We are mainly interested in surfaces defined
over the algebraic closure of a finite field, embedded in the
Grassmannian G(1, 3) of lines of P3 and having no trisecant
line.

1. Introduction. The main actors in this paper are surfaces embed-
ded in G(1, 3), the Grassmannian of lines of P3 over any algebraically
closed field K and in particular we are interested in the case in which
K is the algebraic closure of a finite field GF (q), q = ph, h ≥ 1, p
prime. We will study surfaces X contained in G(1, 3) which have the
particularity to contain no trisecant lines, in the sense of Definition 2.1,
and as we will see these are very few. Actually, since our tools are al-
gebraic geometric, most of our results hold for a surface in P5, not just
for a surface in G(1, 3) seen as a smooth quadric hypersurface of P5,
see Theorems 4.1 and 4.2. Denote by PG(n, q) the projective space of
dimension n over GF (q). There is a close relation between such sur-
faces and objects coming from Galois geometries, namely, K-caps in
PG(n, q).

A K-cap in PG(n, q) is a set of K points, no three of which are
collinear, cf. [11, p. 285]. A K-cap of PG(2, q) is also called a K-arc.
The maximum value of K for which there exists a K-cap in PG(n, q)
is denoted by m2(n, q), cf. [11, p. 285]. This number m2(n, q) is only
known, for arbitrary q, when n ∈ {2, 3}. With respect to the other
values of m2(n, q), only upper bounds are known. Constructing a K-
cap of size m2(n, q), n ≥ 4 seems to be an extremely hard problem.

Some authors looked at caps contained in algebraic varieties such as
quadrics or Hermitian varieties. Here we are substantially interested in
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caps which have an algebraic structure, namely, algebraic surfaces in
the Klein quadric. For instance, conics in the Galois plane are examples
of arcs, elliptic quadrics of PG(3, q) are (q2 + 1)-caps, the Veronese
surface of PG(5, q) is a (q2 + q + 1)-cap.

However, when we claim to have proved the existence of trisecant lines
to our surface, which are always defined over GF (q), it could happen
that such trisecants are not defined over GF (q) but only over some (a
priori unknown) extension of GF (q).

2. Preliminary results. We start with the following

Definition 2.1. Let X ⊂ PN be a reduced projective scheme and
L ⊂ PN be a line. We will say that L is trisecant to X if the scheme
X ∩ L contains a length 3 subscheme of L, i.e., if and only if either L
is contained in X or X ∩ L is finite but contains at least 3 points or
card (X ∩ L) = 1 or 2, but the sum of the multiplicities of the divisor
X ∩ L of the smooth curve L at the points of X, i.e., its degree, is at
least 3.

We need the following well-known lemma.

Lemma 2.2. Let X ⊂ P4 be an integral, i.e., reduced and irreducible,
surface. Then X has at least one, and indeed infinitely many, trisecant
lines.

Proof. If X is a plane or a quadric (even singular), then it contains
infinitely many lines. Hence we may assume d := deg (X) ≥ 3. The
result is obvious if X is contained in a hyperplane. Hence, we may
assume that X spans P4. Let Y ⊂ P3 be a general integral hyperplane
section of X. Projecting from a smooth point of Y and using the
genus formulas for plane curves and Castelnuovo bound for pq(Y ) (for
the positive characteristic case, see, e.g., [18, Section 2]), we see that
Y has infinitely many trisecant lines unless deg (Y ) ≤ 4. Hence, we
may assume d = 3 or d = 4. By the characteristic free classification
of low degree surfaces, see, e.g., [21], we see that if d = 3, then X
is a scroll, possibly singular, i.e., a cone, and that if d = 4, then X
is the complete intersection of two quadric hypersurfaces, say U and
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V , of P4. Hence, if d = 3, then X contains infinitely many lines.
Assume d = 4. We reduce easily to the case in which U and V are
smooth. Let F (Z) be the smooth dimension 3 projective variety of
lines contained in a smooth quadric hypersurface Z of P4. F (Z) is
seen as a subvariety of the Grassmannian G(1, 4) of lines in P4. Since
the class F (Z)2 in the Chow ring of G(1, 4) is a nonzero integer, we
have that F (U)∩F (V ) �= ∅. Every line L ∈ F (U)∩F (V ) is a trisecant
line to X.

Now we will consider the case of a reducible surface X ⊂ P5.

Lemma 2.3. Let X ⊂ P5 be a reducible surface. Assume that one
of the irreducible components of X is not a Veronese surface. Then X
has infinitely many trisecant lines.

Proof. Let A be an irreducible component of X which is not a
Veronese surface. If A is degenerated, then A, and hence X, has
infinitely many trisecant lines by Lemma 2.2. Hence we may assume A
nondegenerate. We may also assume that X is not a cone. Hence, by a
theorem of Severi proved in positive characteristic by Dale [8, Theorem
6], the secant variety Sec (A) of A is P5. Hence, for a general point P
of a component B of X, with B �= A, hence with P /∈ A, there is a line
L with P ∈ L and L secant to A. L is a trisecant line to X.

By Lemma 2.3 X has at least one trisecant line (and indeed infinitely
many ones) unless each irreducible component of X is a Veronese
surface. From now on, we assume that X has no trisecant lines and
that each irreducible component X(i), 1 ≤ i ≤ s, with s ≥ 2, of X is a
Veronese surface.

Remark 2.4. Let X and X ′ be different integral surfaces in P5.
We want to check that P5 is the join J(X, X ′) of X and X ′, i.e., by
definition of join, P5 is the closure of the union of the lines spanned by
a point P ∈ X and a point P ′ ∈ X ′ with P �= P ′. Fix a general point
Q ∈ P5 and let Y , respectively Y ′, be the projection of X, respectively
X ′, into P4. Since Q is general, we have Y �= Y ′. Since Y and Y ′ are
surfaces, we have Y ∩ Y ′ �= ∅, i.e., Q ∈ J(X, X ′).
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Remark 2.5. By Remark 2.4 we have s = 2. Indeed, if s ≥ 3,
since J(X(1), X(2)) = P 5, for a general point P ∈ X(3), there is a
line L with P ∈ L, such that X(1) ∩ L �= ∅, X(2) ∩ L �= ∅ and
card (L ∩ (X(1) ∪ X(2) ∪ X(3)) ≥ 3.

3. Examples. (i) In the projective space PG(5, q), q odd, where
(Z11, Z12, Z22, Z13, Z23, Z33) are homogeneous projective coordinates,
define Fij = Z2

ij − ZiiZjj , i, j ∈ {1, 2, 3}. Set F := ∩Xij . Then F is
a degree eight surface which is the union of two Veronese surfaces of
PG(5, q), say X(1) and X(2). The intersection of these two Veronese
surfaces is the union of three conics pairwise intersecting in one point.
Furthermore, F has (2q2 − q + 2) points over GF (q) and admits no
trisecant, namely, F is a (2q2−q+2)-cap of PG(5, q). For more details,
see [5].

(ii) In the projective space PG(3, q), q �= 3, consider a twisted cubic
in its canonical form:

C = {P (t) = P (t3, t2, t, 1) : t ∈ γ+},
where t = ∞ gives the point (1, 0, 0, 0).

We recall that a chord of C is a line of PG(3, q) joining either a
pair of real points, defined over GF (q) of C, possibly coincident, or a
pair of complex conjugate points of C, namely points of C defined over
a quadratic extension of GF (q), cf. [10, Chapter 21]. Let l(t1, t2) =
P (t1)P (t2). Then

l(t1, t2) = I(t21t
2
2, t1t2(t1 + t2), t21 + t1t2 + t22, t1t2,−(t1 + t2), 1)

= I(α2
2, α1α2, α

2
1 − α2, α2,−α1, 1),

where α1 = t1 + t2 and α2 = t1t2. For p �= 3, dual to the chords of C
are the axes of the osculating developable Γ.

Let l′(v1, v2) = π(v1) ∩ π(v2). Then

l′(v1, v2) = I(v2
1v

2
2 , v1v2(v1 + v2), 3v1v2,

(v2
1 + v1v2 + v2

2)/3,−(v1 + v2), 1)
= I(β2

2 , β1β2, 3β2(β2
1 − β2)/3,−β1, 1)

where β1 = v1 + v2 and β2 = v1v2. From [10, Lemma 21.1.4] we have
that the total number of chords of C is q2 + q + 1. Dually, the number
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of axes of Γ is q2 + q + 1. Now, it is easy to see that l(t1, t2) represents
the generic point of a Veronese surface X(1) of PG(5, q) embedded
in G(1, 3). Similarly, l′(v1, v2) represents the generic point of another
Veronese surface X(2) of PG(5, q) embedded again in G(1, 3). So we
obtain a degree eight surface F of PG(5, q) embedded in G(1, 3) as the
union of such two Veronese surfaces. Clearly, card (X(1)∩X(2)) = q+1,
since the tangent lines to C are self-dual. These tangents represented in
G(1, 3) form a conic if q is even and a normal rational curve in PG(4, q)
if q is odd. In particular, F has 2q2 + q + 1 rational points and admits
no trisecant, namely, F is a (2q2 + q + 1)-cap of PG(5, q). For more
details, see [7].

Remark. Let M(i), i = 1, 2, be the cubic hypersurface which is the
secant variety of a Veronese surface X(i).

If M(i) ∩ X(j) �= X(i) ∩ X(j), i, j = 1, 2, i �= j, then, for infinitely
many points of M(i) ∩ X(j), there is a line L meeting X(j) and
intersecting X(i) at two other points, i.e., with card (L ∩ X) ≥ 3.
So in order for X = X(1) ∪ X(2) to have no trisecants, M(i) ∩
X(j) = X(1) ∩ X(2). This is the case in example (i). Here X(1)
and X(2) are given in parametric equations by (u2, uv, v2, uw, vw, w2)
and (u2,−uv, v2, uw, vw, w2), respectively, where u, v, w are projective
homogeneous coordinates in PG(2, q).

The equations of M(1) and M(2) are

Z0Z2Z5 − Z0Z
2
4 − Z2

1Z5 + 2Z1Z3Z4 − Z2Z
2
3 = 0

and
Z0Z2Z5 − Z0Z

2
4 − Z2

1Z5 − 2Z1Z3Z4 − Z2Z
2
3 = 0,

respectively, where (Zi), 0 ≤ i ≤ 5, are projective homogeneous
coordinates in PG(5, q). It is easy to see that M(1) ∩ X(2) = M(2) ∩
X(1) = X(1) ∩ X(2) is the locus −4u2v2w2 = 0. In particular we may
assume that (X(1)∩X(2))red is the support of a plane curve (possibly
reducible or not reduced). In example (i), X(1) ∩ X(2) is a reducible
degree 6 plane curve.

4. The main results.

The trisecant formula. Let C ⊂ P4 be a smooth genus g curve of
degree d. In 1895, Berzolari “proved” that the number of trisecant lines
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to C is ((d−2)(d−3)(d−4))/6−g(d−4) in the following sense: either C
has only finitely many (or none) trisecant lines and then their number,
“counting multiplicities” is exactly ((d− 2)(d− 3)(d− 4))/6− g(d− 4)
or C has infinitely many trisecant lines. In particular, if we assume
that C has no trisecant lines, then ((d− 2)(d− 3)(d− 4))/6 = g(d− 4).
This was made rigorous by several mathematicians and the formula
verified in characteristic 0, see, for instance, [6, 12, 13, 14, 15,
18]. Here we want to explain why these foundational works allow
us to get in positive characteristic the same assertion: if C has no
trisecant lines, then ((d − 2)(d − 3)(d − 4))/6 − g(d − 4) = 0. The
foundational works in [6, 12] and [18] are characteristic free. However,
the approach of [12] does not allow us to conclude that if there is no
trisecant line, then a suitable number, say t(C), is zero. The other
approaches allow this crucial assertion, see the introduction of [18],
and hence, [6] or [18], we may use the triple-point formula of [12, 6] or
[18] to compute the number t(C). In characteristic zero always holds
true that t(C) = ((d − 2)(d − 3)(d − 4))/6 − g(d − 4). As remarked in
[15, first part of page 2], we may use in the following way the triple-
point formula to compute t(C). Since the triple-point formula has no
term depending on the characteristic and we do not care about the
multiplicities of the solutions, we will obtain in this way that t(C) = 0
is equivalent to ((d − 2)(d − 3)(d − 4))/6 − g(d − 4) = 0, as wanted.

Let Z be a subvariety of PN , and let G(1, N) be the Grassmannian
of lines in PN .

Let T := {(P, L) ∈ Z × G(1, N) : P ∈ L} be the incidence variety.
Note that T is smooth if Z is smooth (as in our case in which Z is the
smooth curve C). The trisecant lines to Z correspond to the locus of
triple points, in the sense of [6] or [12], of the projection T → G(1, N).

Theorem 4.1. Let X ⊂ P5 be an integral surface without trisecant
lines. Assume that X has at most isolated singularities. Then either
X is a Veronese surface or it is a degree 8 surface, which is the com-
plete intersection of three quadric hypersurfaces or it has the following
description:

deg (X) = 6, the general hyperplane section of X has genus 2, X
is linearly normal and contained in four linearly independent quadrics,
card (Sing (X)) ≤ 3, a desingularization of X is a rational surface.
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Vice versa, a complete intersection of three quadric hypersurfaces
admits a trisecant line if and only if it contains a line, and this is
not the case for the general complete intersection of three quadric
hypersurfaces.

Proof. The last assertion was proved in the last part of [3, Theorem 1]
without using the characteristic zero assumption. We divide the proof
of the main assertion into eight steps. Set d := deg (X).

Step 1. By Lemma 2.2 we may assume that X spans P5.

Step 2. Since dim (Sing (X)) ≤ 0 by assumption, for a general
hyperplane H, the integral curve C := X∩H is smooth. Set g := pa(C).
Since C has no trisecant lines, by the trisecant formula, we have
((d− 2)(d− 3)(d− 4))/6− g(d− 4) = 0. If d = 4, by the characteristic
free description of surfaces of minimal degree, see [21] for the case
d = 4, either X is the Veronese surface or X is a scroll (possibly
singular, i.e., a cone over a rational normal curve of P4). In the latter
case, X contains infinitely many lines, a contradiction. Hence, we may
assume that d ≥ 5 and g = ((d − 2)(d − 3))/6. Set m1 := [(d − 1)/4],
ε1 := d − 4m1 − 1 and µ1 := 1 if ε1 = 3 and µ1 := 0 otherwise.
Set π1(d, 4) := 4m1(m1 − 1)/2 + m1(ε1 + 1) + µ1. First, assume that
g > π1(d, 4). If d > 10, by [1, p. 123], (in positive characteristic,
see for instance, the proof of [2, Proposition 2.8]), C is contained
in a minimal degree surface T of H, deg (T ) = 3. Hence, by the
characteristic free classification of such surfaces, see, e.g., [21], T is
either a smooth rational scroll or the cone over a rational normal curve
of P3. First assume that T is a smooth rational scroll. Hence T ≡ F1

(the Segre-Hirzebruch surface) and Pic (T ) � Z2, with base h, f , where
h is a hyperplane section of T and f is a line of the ruling, such that
h2 = −1, h · f = 1 and f2 = 0. Furthermore, OT (1) ≡ h + 2f and
ωT ≡ −2h−3f . We have C ∈ |ah+ bf | with a > 0 and b ≥ a. We have
d := (ah+bf)·(h+2f) = a+b and 2g−2 = (ah+bf)·((a−2)·h+(b−3)·f)
(adjunction formula), i.e., 2g − 2 = −a2 − a + 2ab − 2b. We have that
h is embedded as a line, say J . Since C · h = (ah + bf) · h = b − a,
if b ≥ a + 3, J is a trisecant line to C. Hence we may assume that
b ≤ a + 2. Note that C · f = (ah + bf) · f = a. Since d ≥ 5, we have
a ≥ 3 and so C and X have infinitely many trisecant lines given by the
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lines of the ruling of T . Now assume that T is the cone over a rational
normal curve. Let π : U → T be the minimal desingularization of T
and C ′ the strict transform of C in U . Since C is smooth, C ′ ≡ C.
We have U ≡ F3 and Pic (U) � Z2 with basis h, f such that h2 = −3,
h · f = 1 and f2 = 0. Furthermore, π∗(OT (1)) ≡ h + 3f and π(h) is
the vertex of T . Set C ′ ∈ |ah + bf | with a > 0 and b ≥ 3a. Since C
is smooth, we have b − 3a ≤ 1 and b = 3a if and only if C does not
contain the vertex of T . We have d = (ah+ bf) · (h+ 3f) = b. If either
b = 3a + 1 and a ≥ 2 or b = 3a and a ≥ 3, C and X have infinitely
many trisecant lines. Since b = d > 10, we conclude

Step 3. Note that d �= 10 because (d − 2)(d − 3)/6 = g is an integer.
Here we assume d = 9 and so g = 7. Set m := [(d−1)/3], ε := d−1−3m,
π(d, 4) := 3m(m − 1)/2 + mε, [1, p. 116]. Note that π(9, 4) = 7 = g.
By [1, Theorem 2.5], see [18, Section 2] or [2, proof of Proposition 2.8],
in the case of positive characteristic, C has infinitely many trisecant
lines, a contradiction.

Step 4. Now assume g ≤ π1(d, 4). Checking the four possible
congruence classes of d mod (4), we obtain that d ≤ 8 and so g ≤ 5.
Furthermore, d = 7 is excluded since g is an integer. If (d, g) = (5, 1)
or (6, 2), we have h1(C,OC(1)) = 0 and so C and X are linearly
normal. If d = 8, C must be linearly normal by the bound of the
genus for nondegenerate curves in P6 [18, Section 2] in the case
of positive characteristic. Hence, X is always linearly normal, i.e.,
h1(P5, IX(1)) = 0. From the exact sequence

0 −→ IX(1) −→ IX(2) −→ IC,H(2) → 0

and the linear normality of X, we obtain that every quadric hypersur-
face of H containing C lifts to a quadric containing X. First assume
(d, g) = (8, 5). Since h0(C,OC(1)) ≥ g = 5 and d ≤ 2g − 2, we see
that C is embedded as a canonical curve. By a theorem of Petri and
Saint-Donat, see [19] for the positive characteristic case, C is contained
in three linearly independent quadrics and either C is trigonal or C is
the complete intersection of these three quadrics. Furthermore, if C is
trigonal, then it is contained in a degree 3 scroll T and hence C ad-
mits infinitely many trisecant lines, as checked in Step 2. Since these
quadrics lift to quadrics containing X, if C is a complete intersection
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we easily see that X is the complete intersection of three quadrics, as
wanted.

Step 5. Here we assume that X is smooth and (d, g) = (5, 1). Set
M := OX(1). By the adjunction formula we have that (KX +M) ·M =
0 and so X has Kodaira dimension < 0. Furthermore, taking X ∩ H ′

with H ′ tangent hyperplane to X, we see that through a general point
P ∈ X, there is a singular degree 5 rational curve. Hence, by the
classification of surfaces, X is rational. Since (KX + M) · M = 0, we
have that h2(X, KX + M) = 0. Hence, by Riemann-Roch’s theorem,
h0(X, KX + M) ≥ 1. Hence, since (KX + M) · M = 0, it follows
that KX ≡ M∗, namely, X is embedded as a Del Pezzo surface. By the
classification of such surfaces [16], we know that X is isomorphic to the
blowing-up Y of P2 at five points Pi, 1 ≤ i ≤ 5, such that these five
points are contained into a unique conic, say D, which is irreducible.
The strict transform of D in Y is embedded as a degree 1 curve in P5,
i.e., X contains a line.

Step 6. Here we assume that X is smooth and (d, g) = (6, 2). Set
M := OX(1) and so M2 = 6. By the adjunction formula, we have that
KX · M = −4. Hence, X has Kodaira dimension < 0. Furthermore,
taking the intersection of X with a general tangent hyperplane, we
see that X contains many singular elliptic or rational curves. Hence,
we easily see that X is rational. Thus, KX + M satisfies Kodaira
vanishing hi(X, KX + M) = 0 for i > 0, see, e.g., [20, Corollary
8], but the result was previously known and very elementary for X
rational and M very ample. Hence, by Riemann-Roch, we have
h0(X, KX + M) = 1 + (KX + M)M/2 = 2. Thus |KX + M | is a
pencil of conics. Since we have assumed that X contains no lines, we
may also assume that each of these conics is irreducible. Hence, the
base locus of |KX + M | is finite and nonempty. Let Z → X be the
resolution of this base locus. This pencil of conics induces a morphism
π : Z → P1 such that every fiber of π is a smooth rational curve. Hence
π is a P1-bundle, Z ≡ Fe, the Segre-Hirzebruch surface, with e ≥ 0,
Z contains at most one curve with self-intersection −e < 0 and the
contraction of this curve is smooth, as was assumed to be X, if and
only if e = 1. If e = 1 we have X ≡ P2. Since the plane has no degree 6
embedding, we obtain a contradiction.
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Step 7. Here we assume that (d, g) = (5, 1) and Sing (X) is finite
and not empty. Fix P ∈ Sing (X). We may assume that X is not a
cone with vertex P . Let X ′ be the projection of X from P into P4. Let
Y be the cone with vertex P and base X ′, hence X ⊂ Y . X ′ is a surface
of degree d-multP (X) ≤ d − 2. Hence, if d = 5, then X ′ is a rational
scroll, possibly singular, i.e., a cone. Thus, X has a rational pencil
of plane curves and hence infinitely many trisecant lines unless these
plane curves are conics. We may also assume that all these conics are
smooth. We easily obtain that X is rational. Hence, applying Riemann-
Roch and the adjunction formula to a minimal desingularization of X,
we obtain that X is a weak Del Pezzo surface, i.e., the anticanonical
image of the blowing-up of P2 at 5 (possibly infinitely near) points. As
in Step 6 we see that X contains at least one line.

Step 8. Here we assume (d, g) = (6, 2) and Sing (X) finite and not
empty. We copy the proof of Step 6. We obtain that X is rational and
we conclude if X has one point of multiplicity ≥ 3. We assume that
this is not the case. If card (Sing (X)) ≥ 2, projecting X into P3 from
the line spanned by two singular points (assuming that this line is not
contained in X) we obtain an integral quadric surface Y ⊂ P3. Since
Y has at most one singular point and is of multiplicity ≤ 2, we have
that card (Sing (X)) ≤ 3. Hence we are in the exceptional case. We
do not know if the exceptional case (Theorem 4.1) occurs.

Now we deal with surfaces embedded in G(1, 3). We recall that an
integral surface X contained in the Grassmannian G(1, 3) in P5 has a
bidegree (a, b) with a and b nonnegative integers. We have the following

Theorem 4.2. Let X be an integral projective surface of bidegree
(a, b) contained in the quadric G(1, 3) of P5. Assume that, except at
finitely many points, X has only planar singularities, i.e., such that
the Zariski tangent space has dimension two. Assume that min(a, b) �=
2. Assume that X is neither the Veronese surface nor the complete
intersection of three quadrics not containing a line nor the exceptional
case, Theorem 4.1. Then there exists a trisecant line to X.

Proof. In order to obtain a contradiction, we assume that X has no
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trisecant lines. By Lemma 2.3, we may assume X to be nondegenerate.
Let H be a general tangent hyperplane to G(1, 3) at a general point
P ∈ X. Set Q′ := G(1, 3) ∩ H. Q′ is a quadric cone of H with vertex
P and base a smooth quadric Q of P3. Set C := X ∩ H. By the
generality of H we may assume that C has only planar singularities
and that C is smooth at P . Since C has no trisecant lines and only
planar singularities, the projection of C from P is a curve Z ⊂ Q with
deg (Z) = deg (C) − 1 and Z ≡ C. Furthermore, the isomorphism
Z ≡ C induces an isomorphism OC(1)(−P ) ≡ OZ(1). Call P ′

the point of Z corresponding to P under this isomorphism, i.e., the
intersection of the tangent line to C at P with the P3 spanned by
Q. Z is a curve of type (a, b) on Q with, say, a ≤ b. Here we
assume a ≥ 3. By the adjunction formula ωZ = OZ(a − 2, b − 2).
Hence, the assumption a ≥ 3 means that ωZ(−1) ≡ ωZ(a − 3, b − 3) is
base point free. By Riemann-Roch and Serre duality this means that
h0(Z,OZ(1)(P ′)) = h0(Z,OZ(1)) = 4. The isomorphism C � Z maps
OZ(1)(P ′) to OC(1). Hence h0(Z,OZ(1)(P ′)) = h0(C,OC(1)) = 5, a
contradiction. If a = 1, then Z is smooth and rational and so C is
smooth and rational. In particular, X has only isolated singularities
and by Theorem 4.1 X has a trisecant line if it is not in one of the
excluded cases.

We were unable to check and exclude the case min(a, b) = 2 from the
exceptional cases of Theorem 4.2.

5. Other definitions of multisecant lines. Alternative ap-
proaches. There is a definition of multisecant line to singular projec-
tive varieties which arises from the theory of special divisors on smooth
curves mapped birationally to some projective space.

Definition 5.1. Let C be a smooth projective curve. We do not
assume that C is connected. Let π : C → PN be a rational morphism
and L ⊂ PN a line. L is the intersection of N − 1 hyperplanes Hi,
1 ≤ i ≤ N − 1, and each hyperplane corresponds to an effective divisor
Di on C, with deg(Di) = deg(π(C)). Let D be the intersection of these
effective divisors (counting multiplicities). D does not depend on the
choice of the hyperplanes Hi. Either D = ∅ or D is an effective divisor
on C. In the latter case we will say that L is a k-secant to π(C) if
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k ≤ deg(D).

Remark 5.2. Fix C, π, L as in the previous definition. Fix P ∈
L ∩ π(Y ). Assume that π(C) has at least t branches at P . Let D′ be
the union of the components of D with π(D′) = P . Then deg (D′) ≥ t.

Remark 5.3. If π is an embedding, i.e., π(C) is smooth, then a line
L is 3-secant to π(C) in the sense of Definition 5.1 if and only if it is
trisecant in the sense of Definition 1.1, and a similar observation is true
for the corresponding definitions of k-secant lines, k ≥ 1. Note that,
by Remark 5.1 and its proof (plus a local computation) this is always
false if N > 2 and L is a general line through a singular point P .

Remark 5.4. Let C ′ ⊂ P4 be an integral curve and π : C → C ′ the
normalization. Set d := deg (C ′) and let g := pa(C ′) be the geometric
genus of C ′. We claim that if π(C ′) has no 3-trisecant lines in the sense
of Definition 5.1, then (d−2)(d−3)(d−4) = g(d−4). The claim follows
from the characteristic free computation of an enumerative formula due
to Castelnuovo, see [1, Proposition 4.2] for a more general but less
explicit formula due to Macdonald and [9, Theorem 2.1] for the proof
of the Castelnuovo formula and the correction of some misprints in [1].
For the foundational work needed [1, Section 1], i.e., Grothendieck-
Riemann-Roch formula, and [1, Chapter 8] in a positive characteristic,
it is sufficient to use étale cohomology with value in Z/lZ, l a prime
different from the characteristic, instead of singular cohomology with
Z as coefficients. In particular, if C ′ is smooth and C ′ has no trisecant
lines in the sense of Definition 1.1, by Remark 5.3 we have that
(d − 2)(d − 3)(d − 4) = g(d − 4).

Definition 5.5. Let Y be an integral, normal projective surface,
π : Y → PN a birational morphism and L ⊂ PN a line. We will
say that L is 3-secant to π(Y ) if either L is trisecant to π(Y ) (in the
sense of Definition 1.1) or there is a curve C ′ ⊂ Y , such that, calling
f : C → C ′ ⊂ PN the normalization, L is 3-secant to C ′ := f(C) in
the sense of Definition 5.1.

Remark 5.6. Fix Y and π as in Definition 5.5. Fix P ∈ Sing (Y ).
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Assume that π(Y ) has no multiple linear space as a tangent cone at P .
Then the intersection of π(Y ) with a general linear space of codimension
dim (Y ) − 1 passing through P is a singular curve with at least two
branches. Hence, every line L containing P is 2-secant to π(Y ) and so
every line L with P ∈ L and L ∩ π(Y ) �= {P} is trisecant to π(Y ).

6. Integral surfaces of P5 which contain every trisecant line.
Our purpose in this last section is to give a few examples of integral
surfaces X ⊂ P5 such that every trisecant line to X, in the sense of
Definition 1.1, is contained in X. By virtue of Theorem 4.1, we will see
that in many such examples X contains a line.

We fix a nondegenerate integral surface X ⊂ P5 and set d := deg (X).
Let g be the arithmetic genus of a general hyperplane section of X.

Remark 6.1. Assume that X is linearly normal. Assume that there
is a finite set W of X, possibly W = ∅, such that every hyperplane
section of X disjoint from W is set-theoretically cut out by quadrics.
We fix any such hyperplane section C := X ∩ H with H ∩ W = ∅.
Every trisecant line to C, in the sense of Definition 2.1, is contained in
the intersection of the quadrics containing C. Hence, every trisecant
line to C is an irreducible component of C. Now fix a trisecant line
L to X. If L ∩ W �= ∅, we take a hyperplane H with L ⊂ H and
H ∩ W = ∅. Then L is a component of X ∩ L and so L ⊂ X. In
particular, if W = ∅, every trisecant line to X is contained in X. This
is the case in the following

Example 6.2. Assume X is smooth and d ≤ 8 and either (d, g) =
(8, 5) or g + 4 = d ≤ 6. If (d, g) = (8, 5) we checked that X is the
complete intersection of three quadrics, and so from Bezout’s theorem
if a line is trisecant to X it will be completely contained in X. Hence
we may assume (d, g) = (6, 2) or (5, 1) or (4, 0). In the latter case,
we conclude by the classification of varieties of degree 4 [21]. Hence
we may assume (d, g) = (6, 2) or (5,1). In all cases we checked in
the proof of Theorem 4.1 that X is linearly normal and that every
smooth hyperplane section of X has homogeneous ideal generated by
quadrics. Let H be a hyperplane such that H ∩ X is integral. Since
d ≥ 2g + 2 and g := pa(X ∩ H), the classical proof of the fact that
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a linearly normal curve of that degree and genus, has homogeneous
ideal generated by quadrics, gives that the integral curve X ∩H is set-
theoretically cut out by quadrics. In order to obtain a contradiction,
assume the existence of a trisecant line L to X with card (X ∩ L)
finite. Since card (X ∩ L) is finite, and X is smooth, for a general
hyperplane H, with L ⊂ H, the scheme X ∩ H is smooth at all points
of X ∩ L. Since X is smooth, X ∩ H is also locally Cohen-Macaulay,
i.e., it has no embedded components. Since X ∩ H is smooth along
X ∩ L, X ∩ H cannot be a multiple of a curve. By the generality
of H, X ∩ H contains no line and all the irreducible components of
(X ∩ H)red have the same degree, and all of them appear with the
same multiplicity in the scheme X ∩ H. Since 5 is prime, only the
possibility d = 6 remains and X ∩ H reduced but reducible, with two
components of degree 3 or three components of degree 2. First assume
that the rational projection of X from L into P3 has a surface image.
Since X is irreducible, by Bertini’s theorem we obtain that, for a general
hyperplane H with L ⊂ H, the scheme (X∩H)red is irreducible (and in
characteristic 0, X ∩H is also irreducible). Hence, X ∩H is irreducible
and so set-theoretically intersection of quadrics.
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