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THE HYPERBOLIC TANGENT AND
GENERALIZED MELLIN INVERSION

ERIC STADE

ABSTRACT. We prove an identity that reduces a certain
product of (n — 1)n/2 hyperbolic tangent functions to a sum
of products of (n—1)/2 or n/2 such factors. Using this result,
we obtain a simplified expression for the Plancherel measure,
and corresponding inversion formula, for O(n,R)-invariant
functions on the space Py of positive definite, symmetric real
matrices.

1. Statement of results. The first objective of this article is to
derive the following curious “hyperbolic trig identity”:

Proposition 1. Let n € Z*; let ay,as,...,a, € C be such that
aj —ag ¢ in(1/2+Z) for any 1 < j, k < n. Also let i = [n/2], the
greatest integer < n/2. Then

H tanh(a; — ax)

1<j<k<n
1 n
= ong! sgn (o) Htanh(aa(m—l) - aa(2l))a
o€ESy =1
where Sy, is the symmetric group on {1,2,... ,n} and sgn (o) denotes

the sign of o.

We prove this in Section 2 below, where we also note, see Proposi-
tion 1/, that, in fact, certain summands on the righthand side may be
identified to yield a “shorter” sum. (In Proposition 1 and throughout
this paper, an empty product is understood to equal 1.)

Our second goal is to use the above proposition to simplify the “Mellin
inversion formula,” whose various elements are due to Helgason [3,
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4], Harish-Chandra [2] and Bhanu-Murty [1], for O(n,R)-invariant
functions on the space P,, of positive definite, symmetric, real matrices.
To state our result, Proposition 2 below, we briefly recall what is known
concerning this inversion formula. For our discussion we follow Terras’
concise exposition [6, Chapter 4].

To begin with, we note that P, is a homogeneous space for G =
GL(n,R) under the action

Y — Y[g| ='gY,, Y €P,;g€GL(n,R).

A function f on P, is said to be K = O(n, R)-invariant if f(Y[k])
f(Y) for all Y € P, and k € K. The version of harmonic analysis on
‘P,, that we are concerned with involves the resolution of such an f into
an integral of the “power function”

= [T/ 1y t3/2= (i /4

j=1
Y eP,, r=(r,re,...,r,) €C".

Here Yj is the j x j upper lefthand minor of Y, and | | is the determinant
(we define |Yy| =1).

In particular, let the Helgason-Mellin transform, also known as the
Helgason-Fourier transform, f of an infinitely differentiable, compactly
supported, K-invariant function f : P, — C be defined by

fr) = /Y O dn (),

where dp,(Y) is a G-invariant measure on P, normalized as in [6].
Then Mellin inversion on P,,, which in fact amounts to the usual Mellin
inversion formula on RT, when n = 1, states that

(1.1a) FY) = wn /tem FitYhao (Y en(®)[ "2 dty - - - s,

where t = (t1,... ,tp); it denotes (ity, ... ,it,);

T TG/2)
(1.1b) H )il
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L2((k - 5)/2)
(1 +k-34)/2)

(1.1¢) len(t)|72 =
1<j<k<n

(t; — tx) tanh 7 (t; — tr);

and h, is the “(zonal) spherical function”

(1.1d) B (V) = /k e (Y d

(dk is Haar measure normalized so that K has unit volume). In stating
this inversion formula, we have used essentially the notation of Terras
[6, particularly Theorem 1 and equation 3.4, Section 4.3]. However, the
latter uses, instead of our variables tq, t, ... ,t,, variables sy, s3,... , Sn
given by
it]':Sj+8j+1+"-+Sn—j/2+(n+1)/4, 1< <n.

(Note that dsy - - -ds,, = " dt; - - - dt,,). The advantage of the t-variables
is that, as is in fact pointed out in [6, Theorem 3, Section 4.2, and
Theorem 1, Section 4.3], both hy(Y) and f(it) are invariant under
permutations of the ¢;’s.

We will exploit this last fact to simplify the above inversion for-
mula. In particular, we see from (1.1c) that the Plancherel measure
Wy |cn (t)]~2 involves a product of (n —1)n/2 tanh functions. By Propo-
sition 1, we may rewrite this product as a sum of products of 7 tanh
factors. We exchange this sum with the integral in (1.1a). A change of
variable is made in each resulting integral; by the stated invariance of

f(it)hit(Y) we see that all the integrals are in fact the same. So they
may be combined.

The end result, as we prove in Section 3 below, is:

Proposition 2. If f is as above, then
—n(n+1)/4 |: n 1 :|
2ntnp) il I'(j/2)

./tERnf(it)hit(Y)[ 11 (tj—tk)]

1<j<k<n

™

fY) =

: [Htanhﬂ'(tml - tzz)] dty - - dt,.
=1
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Remark. Clearly, Proposition 2 provides a reduction of the number of
hyperbolic tangent factors required for Mellin inversion. Perhaps more
important for explicit calculations, though, is the fact that these factors
are “disentangled” from each other in our new inversion formula. More
precisely, we note that, in formula (1.1c), each variable ¢;, 1 < j < mn,
appears in n — 1 distinct tanh factors, and in each of these factors
appears in combination with a different variable ¢y, k& # j. On the
other hand, in the inversion formula of Proposition 2, each ¢; (where,
here, 1 < j < 27) occurs in exactly one of, and in combination with
only one other ¢; through, the tanh factors.

Thus, Proposition 2 yields the promised simplification of formulas
(1.1). We already have, with Wallace (see [5, especially the proof of
Proposition 5.1]), observed the usefulness of such a simplification in the
case of the determinant-one subspace H®> = SL(3,R)/SO(3,R) of Ps.
Specifically, we have used the “Selberg trace formula,” as realized by
Wallace [7] for SL(3,Z)\H?, to study eigenvalues of the Laplacian on
the latter space. This application of the trace formula requires explicit
information about the behavior of a certain SO(3, R)-invariant function
f, called the “heat kernel” for H?, when initially only (the H3 analog
of) f is known. Such information is more readily obtained when the
Plancherel measure is as simple as possible.

We hope that Proposition 2 will ultimately prove helpful in higher-
rank generalizations of the study just cited; at the moment, though
such generalizations await more explicit versions of the Selberg trace
formula for cases of rank > 2.

We proceed with our derivations.

2. Proof of Proposition 1. It will be convenient to introduce the
notation
h(j, k) = tanh(a; — ay)

for j,k € Z™. In the course of our proof, we will treat h(j,k) as a
formal symbol, subject only to the identities

(2'1) h(]v k) = _h(kvj)
and
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The latter identity is equivalent to the statement that

tanh(a) 4 tanh(b)
1 + tanh(a) tanh(b)’

tanh(a + b) =

and is at the core of our derivations. (Note that, in fact, equation (2.2)
is just Proposition 1, or more precisely, Proposition 1’ below, in the case
n = 3.) We assume throughout that the «;’s are as in Proposition 1,
so that the factors h(j, k) are always defined.

We proceed by induction on n: the case n =1 is trivial. Let us then
assume the proposition true for the integer n. As the cases n odd and
n even are quite different, we consider them separately.

Case 1. n odd. (So 7 = (n—1)/2.) Note that

n

1Sj<kl_[Sn+1 MR = [1:[ hgm+ 1)] [K}}cgn h(j, k)]

n

(2.3) o {H J,n+l]

> sgn(o ﬁh (21 — 1), 0(21)),
o€Sy =1

the latter equality following from the induction hypothesis. Let us
extend the domain of S,, to {1,2,... ,n+1} by putting oc(n+1) =n+1
for o € S,,. Then, since

h(c(2l —1),0(n+1))

=

1

H (jyn+1) = h(o(n),o(n+1))

(o (2),0(n + 1))

for any o € S,,, we have by equations (2.2) and (2.3),

[T 46K =5y 3 sem(o)hlotm),oln+1)

1<j<k<n+1 " oES,

H{h (21 —1),0(20)h(c(2l — 1),0(n + 1))
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~h(o(2l),0(n+1))}
a(n),o(n+1))

H{h (20— 1),0(20)) — h(o (2l = 1),0(n + 1))
+ h(o(20),0(n + 1))}

:21_ RENG

!
(A,B,C)

-3 sgu(o)h(o(n),o(n + 1))

3

ocES,
H h(o(20 —1), (25))]
~leA
[ (e -1), (n—l—l))}
-leB
[1~ (n+ 1))}
-leC
the outer sum on the right being over all triples (A, B, (') of pairwise
disjoint sets whose union is {1,2,3,... ,A}. (|B| is the cardinality of
B)

We now claim that the only triple (A, B,C) contributing to the
righthand side of (2.4) is the one where B and C are both empty.
Indeed, we claim that, for any other triple (A, B, C), the terms in the
corresponding sum on §;, cancel pairwise. To see that these claims hold,
suppose B, respectively C, is nonempty, and let I; € B, respectively
ly € C. Now let 7 € S,, be the transposition of 2l; — 1, respectively of
2l;, and n. Note that the product

h(o(n),o(n+ 1)) [Hh (21-1) HHh (21—1),0(n +1))

leA leB
Lllh o(n+ 1))]

is invariant under the substitutions of o7 for o; indeed, this substitution
interchanges h(o(n),o(n+1)) with A(c(2l; —1),0(n+1)), respectively
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with h(c(2l1),0(n + 1)), and leaves the other factors in the product
fixed. So, if A, is the alternating group, so that S, is the disjoint
union of A,, and A, 7, then

Y sen(o)h(o(n),o(n+1))

ceS,
H h(o (20 — 1), 25))]
:leA
[[A(e@-1), n+1))]
:leB
[ 2(e@D),0(n+ 1))]
-leC

= Z sgn (0)h(o(n),o(n+ 1))

Hh (21 — 1), 21))]
Hh (21 — 1), n+1))]
lEB

H h(o(21), o(n + 1))}
-leC

= 3" (sgn(0) + sgn (om)h(o(n), o(n + 1))

ocEA,
Hh (21 - 1), 21))]
leA
Hh (21— 1), n—i—l))}
leB
Hh n-}-l))}:O,
-leC

since sgn (1) = —1. This proves our claims. o
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Therefore, (2.4) becomes

[T A6k =5 O sen(@h(olm),o(n+ 1)

277
1<j<k<n+1 oESy
(2.5) [T A(e(2t=1),0(20))
=1
1 n+1
= 5 D sen(o Hh (21 — 1), 0(210)).
oc€ES,

This is not quite Proposition 1; we want a sum not over S,, but over
Snt+1- (In particular, the latter will be necessary for the induction
below in the case of even n, and is more consistent with the identity
obtained in that case. However, see Proposition 1’, where a formula
more concise than Proposition 1 or equation (2.5), and valid for n of
either parity, is given.)

To get such a sum we need the following

Claim 1. If, for 1 <k <n+1 and o € S,, o € Sp+1 denotes the
transposition of k and n + 1 followed by the permutation o, then

n+1
> sgn (o) [ rle(2l—1),0(20)
0€Sn =1
n+1
=Y sgn(ow) [] hlow(2l - 1),04(20)).
ocES, =1

Proof of Claim 1. First consider even k. The claim is obviously true
if Kk = n+ 1, so we may assume that this is not the case. Note then
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that
n+1
26) > (ow) [ hlow(@l — 1), 00(20)
oc€ES, =1

= Z sgn (og)h(o(k —1),0(n + 1))
oceS,
-h(o(n),o(k)) J] hlo(2—1),0(2)).
1% )2
Now, as o ranges over S, so does the permutation *o € S,, that, for a

given 2 < k < n — 1, is defined to be o preceded by the transposition
of k —1 and n. So (2.6) yields

ni+1
S sgn (ox) [ hlow(l — 1), 0x(20))
og€ES, =1

Z sgn ((*o)i)h(Fo(k — 1), (n + 1))

oSy
-h(*a(n), "o (k) T m(*o(2 —1),"o(20))
R )2
= Z sgn (o)h(o(n),o(n+ 1))
o€eS,
~h(o(k - 1),0(k)) [] hle(2—1),0(20))
oy
nt1
= 3 sgn (o) [] Ao~ 1),0020);
oESy =1

the second equality relies on the assumption k& # n + 1, so that
sgn ((*o)r) = (—1)%sgn (o) = sgn(o). This proves the claim for k
even.

The case k odd is similar; we omit the details. a
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Returning to Proposition 1, we find that (2.5) and Claim 1 combine
to give

(2.7) | A

1<j<k<n+1
1 n+1 n+1
= w7 >N sgn(ow) [ how(@l — 1), 04(20)).
" k=10ES, 1=1

But Sy+1 = {0k | 0 € Sp,1 < k < n+ 1}; moreover,

(n+1)2"a!l = 2" ((n +1)/2)(A)! = 2" T (R + 1)1,

and i+ 1=mn+1, for n odd. So (2.7) yields

| A

1<j<k<n+l
1 n+l
== Z sgn (o) H h(o(2l —1),0(20)),
2n+1 n+ 1! o€Sni1 =1

which completes our induction in the case of odd n.

Case 2. n even. (So . =n/2.) We begin in a fashion similar to that



of Case 1. We have

I1

1<j<k<n+1

(2.8)

h(j, k)
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n

[]:[ (,n+1) ] L<E€th(j,k)]

n

T [H g,n+1]

Z sgn (o ﬁh (20 —1),0(20))
=1

oc€Sy
s 3 s (o) [J{h(o(2t — 1),0020)
geS, =1

~h(o(20 = 1), (n+_1))h( (20),0(n+1))}

2’7171 Z sgn (o H{h (2l —1),0(20))

oES,

— h(o(2l - l),a(n 1)) + h(o(20),0(n+ 1))}

— g X DY (o)

(A,B,C) €Sy,

Hh (21 — 1), (21))]

'lEA

[ A1), (n-i—l))]

'lEB

I n(o( n-i—l))]

-leC

The second equality in (2.8) is the induction hypothesis; the fourth
equality is equation (2.2); on the righthand side of (2.8), A, B,C are

as in Case 1.

In Case 1, we saw that a summand corresponding to a particular triple
(A, B,C) dropped out if B or C' was nonempty. In the present case,
we claim that the terms that drop out are those for which |[BUC| > 1.
To see this, note that, if k1, ks € BUC and 7 € S, is the transposition
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of
2ky — 1 and 2ky — 1 if ky, ko € B;
2k1 — 1 and 2k if Ky € B and ks € C
2ky and 2k; — 1 if Ky € C and ks € B;
2k1 and 2ks if k1, ke € C,

(and A, is, as before, the alternating group), then:

Z sgn (o [H h(o(20 — 1), 21))]
o€Sn €A
[Hh (20 —1),0(n + ))]

ll_GIBh o(n+ 1))]
leC
= Z sgn (o [H h(o(21 — 1), 21))}
ocCA,UA,T leA
[Hh (20 — 1), n+l))]

leB

- {H h(o(2),0(n + 1))]

leC

> (sgn (o) +sgn(o7))

-Hh (20 — 1), 21))]
-lcA
Hh (21 - 1), n—i—l))]
-leB
. Hh n+1))]
-leC

=0,

since sgn (1) = —1.



So, from (2.8),

I rGr-=

1<j<k<n+1

1
npl Z
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1)l Z sgn (o)

" (A,B,C) o€ESy,
\Buo\<1

[[ A1), (21))}
-leA

[ A2 -1), (n—i—l))]
-leB

H h(o o(n+ 1))]
-leC

To complete our induction in the case of n even, we then need the

following

Claim 2. Let o € S,,. With all the notation as above, and o as in

Claim 1,

(2.10) sgn (o) Z
(A,B,C)
|BUC|<1

1)I5l [Hh (20 — 1), (21)]

leA

[Hh (21 — 1), (n—i—l))}

leB

[Hh n-i—l))]

leC
n+1 n

= ngn Ok Hh O'k 2l — ]. O'k(2l))
= =1
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Proof of Claim 2. The lefthand side of (2.10) equals

n

sgn (g){ [ r(e2l - 1),0(21))

(211) =Y h(e(2j-1),0 n+lll;[ o(20—1),0(21))
1#j

=F

—|—Zh o(n+1) [T (ol - 1),0(21))}.

o~

Ryl
Sl

Now by (2.1), and because a nontrivial transposition has sign —1, we
find that

—sgn (0)h(0(2j — 1),0(n + 1)) = sgn (02;)h(02;(2] — 1), 02;(27));
sgn (0)h(0(2j),0(n+ 1)) = sgn (02;-1)h(02;-1(2] — 1), 02;-1(27))

for1 < =n/2. So (2.11) is equal to

h(ont+1(20 — 1), 0,41(21))

—-

sgn (ont1)
l

Il
-

ngn (025)h(02;(25 — 1),02;(25))

Hh 02 (20 — 1), 02;(21))

l#J

+ ngn (02j-1)h(02j-1(2] — 1), 02j-1(27))

I Po2i-1(20 = 1), 0251.(20))

=1
I#3
n+1 [

= ngn Ok Hh O'k 2l— 1 O'k(2l)),
= =1
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and our claim is proved. ]

The above claim, together with equation (2.9), give

n+1
[T Gk =gy 33 semlow)
1<j<k<n+1 €S, k=1

n

(2.12) A A(ox(20 - 1), 0(20))

=1

1
:2717—7) Z Sgn(a)

' 0ESnt1

=

h(o(20 —1),0(20))

1

since, as before, Sp41 = {0k |0 € Sp, 1 <k <n+1}.

Note that 7 = n+ 1 for n even. So (2.12) completes our induction
for such n; this in turn completes the proof of Proposition 1. O

Remark. Because of (2.1) it is clear that, if J is the subgroup of S,
consisting of all permutations that preserve the partition

P={{1,2},{3,4},...,{2n — 1,2n}}

of {1,2,...,2n}, then for all 0,7 € S,
or e J <= sgn(o Hh (2l - 1),0(20))
=1
=sgn (1) [ A(r (2l - 1), 7(21)).
I=1

Now an element of J may be viewed as a permutation of the 7 elements
of P, followed by an application, to the pair of numbers within each
element of P, of either the identity permutation or the transposition
of this pair. Therefore, J has 7! - 2® elements. So Proposition 1 may
be rewritten using a “shorter” sum, whose indexing set is, however,
somewhat less elementary:
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Proposition 1'. With all notation as above,

H tanh(a; —ag) = Z sgn (o H tanh(ag(2-1) — Qo (21))s

1<j<k<n €S,/ T

the sum being over a complete set of coset representatives for S, /J.

3. Proof of Proposition 2. Combining equations (1.1) with
Proposition 1, we find

. L2 ((k — j)/2)
1Y) = gy [H (4 F —j)/z>]

> sgn(o) / Fit)hir(Y)

o€Sy teER™

[ I1 (tj—tk)]

1<j<k<n

[H tanhﬂ' o(20—-1) — 0(21)):| dtl tee dtn

Now let us, for each o, replace t,(,) by t, for all 1 < g < n, in the
integral corresponding to that o. Such a substltutlon as previously
noted, leaves f(it)hy(Y) unchanged; also this change of variables
clearly has the effect of multiplying

[ 1T (tj—tk)]
1<j<k<n
by sgn (¢). So equation (3.1) becomes
el (k- 5)/2) |

il [, _dd_ T((+k-4)/2)

./tERnf(it)hit(Y)[ 11 (tj—tk)]

1<j<k<n

)=

: [Htanhﬂ'(tgll - tzz)] dty - - dty,
=1
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To get the conclusion of Proposition 2, we merely note by equation
(1.1b), and since I'(1/2) = /7, that

n!wn[ 0 r?((kjw)]

il e, TP+ k—=5)/2)

= | “ryear 1176002)] [T 1)
_ Qﬁlﬁ! [ DA ﬁr (7/2) } [r?n 1/2) f[ ]
on(nt)/4 n g !
a1 T(j/2)’

and we are done. O
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